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Abstract

Channel state information (CSI) plays a critical role in achieving the potential benefits of massive

multiple input multiple output (MIMO) systems. In frequency division duplex (FDD) massive MIMO

systems, the base station (BS) relies on sustained and accurate CSI feedback from the users. However,

due to the large number of antennas and users being served in massive MIMO systems, feedback over-

head can become a bottleneck. In this paper, we propose a model-driven deep learning method for CSI

feedback, called learnable optimization and regularization algorithm (LORA). Instead of using l1-norm

as the regularization term, a learnable regularization module is introduced in LORA to automatically

adapt to the characteristics of CSI. We unfold the conventional iterative shrinkage-thresholding algorithm

(ISTA) to a neural network and learn both the optimization process and regularization term by end-to-

end training. We show that LORA improves the CSI feedback accuracy and speed. Besides, a novel

learnable quantization method and the corresponding training scheme are proposed, and it is shown that

LORA can operate successfully at different bit rates, providing flexibility in terms of the CSI feedback

overhead. Various realistic scenarios are considered to demonstrate the effectiveness and robustness of

LORA through numerical simulations.
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I. INTRODUCTION

As a core technology for the sixth generation (6G) of wireless networks, massive multiple

input multiple output (MIMO) systems can provide higher data rates and link reliability [1].

To realize the benefits provided by massive MIMO, such as beamforming [2] and more reliable

signal detection [3], accurate channel state information (CSI) at the base station (BS) is necessary

in both the time division duplex (TDD) and frequency division duplex (FDD) modes. In the

TDD mode, downlink CSI can be obtained directly from uplink CSI under the assumption

of perfect channel reciprocity. However, the TDD mode may not work well in time sensitive

scenarios, such as live streaming and vehicular communications [4]. In the FDD mode, the

uplink and downlink use different frequency resources at the same time. However, due to the

lack of perfect channel reciprocity in the FDD mode, the user equipments (UEs) need to estimate

downlink CSI and feed it back to the BS [5]. Nevertheless, the huge feedback overhead due to

the large number of antennas at the BS and the large number of users being served can become

a significant performance bottleneck. Therefore, a CSI feedback method with low overhead and

high accuracy is essential to deliver the promised gains of massive MIMO systems in next

generation communication networks.

It was shown in [6] and [7] through experiments that shared local scatterers lead to correlations

across CSI in spatial and frequency domains with the increasing scale of antennas in massive

MIMO systems. Following 2-dimensional discrete Fourier transformation (2D-DFT), CSI is

shown to exhibit approximate sparsity in the angular-delay domain, which means that CSI can

be compressed to reduce the feedback overhead [8].

Compressive sensing (CS) based methods can be used to project sparse signals to a low-

dimensional space and recover them efficient with theoretical guarantees. The first CS based

CSI feedback method for massive MIMO systems was proposed in [9], which considers both

2D-DFT and Karhunen-Loeve Transform (KLT) as sparsifying bases. In [10], the authors used

the statistical information about the angle-of-departure (AOD) to develop a basis for sparsity

mapping and a weighted l1-norm was proposed for recovery, which achieves a better performance

than the DFT basis. Considering orthogonal frequency-division multiplexing (OFDM) systems,

a multidimensional CS-based analog CSI feedback method was proposed in [11], which treats

the CSI feedback design as a multidimensional matrix compression and recovery problem, and

exploited tensor decomposition. However, these methods are limited in general as they cannot
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identify the best basis, and the projected CSI matrices are often not perfectly sparse, resulting

in performance loss. Although some particular priors are shown to reduce the high requirement

of sparsity [10], [12], [13], these ‘manual’ designs are done in a case-by-case bias and are still

not efficient enough due to the diverse use cases and high performance requirements of future

systems.

In recent years, data-driven methods, in particular, deep learning (DL), has achieved notable

success in a variety of wireless communication applications [14], such as channel estimation

[15], signal detection [3], joint source-channel coding [16], decoding [17], and beamforming

[18]. DL-based methods have also made tremendous strides for CSI feedback. Specifically, we

identify two main groups of works. First group includes convolution based methods, where a

convolutional neural network (CNN) is trained on channel data to reduce its dimension. In the

second group, we consider model-driven methods.

The authors in [19] were the first to employ DL method for CSI feedback and proposed a

simple CNN auto-encoder architecture for dimensionality reduction, which has been considered

as a baseline for most DL-based CSI feedback methods. The encoder and decoder in [19]

carry out the compression and recovery operations, respectively. Since increasing the receptive

field in CNN can extract more information from the input, CsiNet+ in [20] considers different

convolution kernel dimensions. Inspired by the inception model, the authors in [21] designed

CRNet, which uses multi-paths and multi-receptive fields in both encoder and decoder to improve

the performance. MRFNet proposed in [22] shows that the larger number of convolution channels

can recover more details of CSI. In [23], projected CSI coefficients are further quantized, and

entropy coded to reduce the required rate. A significant improvement was reported with respect

to CsiNet [19]. This approach was extended to CSI feedback from multiple nearby users in [24],

where the correlation among CSI matrices is exploited to achieve better compression efficiency.

These methods all benefit from effective CNN design technics. Researchers have also adopted

other DL techniques for CSI feedback. The authors in [25] proposed a CSI feedback method

based on generative adversarial networks (GANs). In [26], CSI feedback is modeled as an image

super resolution problem, and SRNet is proposed. To extract time correlation of CSI, CNN-

LSTM-A [27] and CsiNet-LSTM [28] are proposed, respectively. Although the aforementioned

CNN based methods have achieved significant performance improvements compared to their CS-

based counterparts, these methods simply treat the channel matrix as a two-dimensional ‘image’

with local correlations, which may limit their performance.
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Model-driven DL methods exploit our prior knowledge about the particular learning problem.

Bringing model-driven and data-driven approaches together, model-driven DL methods not only

make the learned model more explainable and predictable [29], but also avoid the requirements

for accurate and explicit modeling. In [30], the authors proposed a model-driven DL method

to improve the recovery accuracy in CSI feedback, by unfolding a conventional CS algorithm

into a neural network (NN) and learning the measurement matrix. Inspired by the transformation

matrix design and unfolding, TiLISTA-Joint was proposed in [31], which not only learns the

down-sampling matrix, but also uses sparse auto-encoder to learn the sparse transformation. To

further improve the recovery accuracy, the authors exploited the attention mechanism for sparse

transformation learning and proposed FISTA-Net in [32].

Although the model-driven DL methods have exhibited remarkable success in CSI feedback,

current methods are all designed with an l1-norm regularization term, which cannot extract the

prior knowledge of CSI in some cases. Actually, how to design a suitable regularization (i.e.,

data prior) is an enduring problem in machine learning. It is well-known that l0-norm is the

optimal regularization term to describe sparsity, but the optimization with l0-norm is untractable.

When the measurement matrix satisfies restricted isometry property (RIP) condition, l1-norm is

equivalent to l0-norm in terms of sparse signal recovery [33]. Besides, the authors in [34] utilized

a mixture of Gaussian distributions to learn the noise distribution. Although the proposed method

in [34] does not explicitly formulate a regularization term, the data prior has been learned in

the loss function. Due to the strength of DL, the authors proposed a proximal dehaze-net, which

learns a haze-related prior to achieve the obvious performance gain in single photo dehazing

[35]. In [36], the authors proposed the RCDNet to automatically extract the prior from rain

images for better deraining.

Inspired by the model-driven methods for CSI feedback and regularization term learning

in [34]–[36], in this paper, we propose a joint regularization and optimization method, called

learnable optimization and regularization algorithm (LORA). LORA exploits a NN to learn the

regularization term for better fitting the characteristics of CSI, and develops an iterative algorithm

with learnable parameters to achieve performance gains.

The main contributions of this work are summarized as follows:

• Existing model-driven DL architectures for CSI feedback all unfold the algorithm derived

from an optimization problem with the l1-norm regularization term, which cannot describe

the prior of CSI well due to its imperfect sparsity. Instead, LORA treats the regularization
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term as a learnable function that can be adjusted according to the characteristics of CSI itself.

The proposed method results in a novel algorithm of model-driven DL for CSI feedback

with significant improvements in the performance.

• To mitigate the effect of quantization in LORA, we exploit quantization-aware training

(QAT) with learnable quantization parameters, such as quantization scale and zero point

value. The proposed quantization method eases the performance decay caused by quantiza-

tion in different bit levels.

• The numerical results show that LORA has a superior performance than CsiNet+ [20],

CRNet [21], TiLISTA-Joint [31] and ISTA-NET in different scenarios based on 3GPP

TR 38.901 [37]. Moreover, the performance with channel estimation error and complexity

comparisons are provided. We also carry out ablation studies to explore the effects of

different modules of LORA on the final performance.

The rest of this work is organized as follows. Section II describes the massive MIMO system,

CSI feedback procedure and channel model. We re-formulate the CSI feedback problem and

present the basic algorithm in Section III. In Section IV, we present LORA with insights in

detail. Numerical results and analyses are provided in Section V to demonstrate the superiority

of LORA compared to the existing CSI feedback schemes. Finally, the paper is concluded in

Section VI.

Notations: Throughout the paper, bold uppercase letters, bold lowercase letters and non-bold

letters are used to denote matrices, vectors and scalars, respectively. ‖ ·‖2 is the Euclidean norm.

| · | stands for element-wise absolute value. (·)T and (·)H are transpose and conjugate transpose,

respectively. The real and complex number fields are R and C, respectively. The expectation

operation is represented by E{·}.

II. SYSTEM MODEL

A. Massive MIMO system and CSI feedback

We considers the downlink of a single-cell massive MIMO OFDM system in the FDD mode,

where a BS equipped with Nt � 1 antennas serves single-antenna user equipment (UE) [19]

over Ñc subcarriers. The received signal at the n-th subcarrier (n = 1, . . . , Ñc) in the frequency

domain can be expressed as

yn = h̃Hn vnxn + zn, (1)
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Fig. 1: The real part of the complete channel matrix in (a) spatial-frequency domain, the real

part of the complete (b) and the cropped (c) channel matrices in angular-delay domain.

where h̃n ∈ CNt×1, vn ∈ CNt×1 and xn ∈ C are the downlink channel vector, corresponding

precoding vector and the modulated transmitted signal, respectively, while zn ∼ CN (0, 1) denotes

the random additive Gaussian noise. The detailed channel model will be introduced in Section

II-B. In the FDD mode, the downlink channel vector h̃n has to be estimated at the UE and sent

back to the BS. The overall downlink CSI matrix can be expressed as H̃ = [h̃1, h̃2, · · · , h̃Ñc
],

which consists of 2NtÑc real numbers. We can transform H̃ from spatial-frequency domain to

angular-delay domain by 2D-discrete Fourier transformation (DFT) as

H = FdH̃Fa, (2)

where Fd ∈ CNt×Nt and Fa ∈ CÑc×Ñc are DFT matrices. As mentioned, H has approximate

sparsity in angular-delay domain. Moreover, only the first few rows of H have significant values

because the delay between multipath components typically lies within a limited period in the

delay domain. So, we preserve only the first Nc < Ñc rows and remove the rest. An example

illustrating the real part of the complete and cropped channel matrix in angular-delay domain,

and the complete channel matrix in spatial-frequency domain are shown in Fig. 1.

In this case, H is still used to denote the truncated CSI. Although the required number of

feedback parameters has been reduced from 2Nt × Ñc to 2Nt × Nc, the feedback overhead is

still too large and will consume significant channel resources.

Following the prior works, we consider a pair of encoder-decoder networks to compress

and recover CSI, and a pair of quantizer-dequantizer for quantization. As shown in Fig. 2,

H ∈ R2×Nt×Nc is fed into the encoder network, whose output is M float parameters. Then, the

float parameters are quantized to a bit stream by the quantizer, whose output is denoted by c.
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Fig. 2: CSI feedback procedure.

The dequantizer and the decoder are applied at the BS. The dequantizer transforms c to float

numbers and the decoder recovers the dequantizer output to H ∈ R2×Nt×Nc . The compression

ratio (CR) is defined as CR ,M/2NtNc. The whole feedback procedure can be presented as

c = Qe (fe(H , Θe), Θq) , (3)

Ĥ = fd (Qd (c, Θdq) , Θd) , (4)

where Ĥ is the reconstructed and cropped CSI, fe and fd denote the encoder and decoder

networks, Qe and Qd denote the quantizer and dequantizer functions, Θe, Θd, Θq, Θdq are the

parameters of fe, fd, Qe and Qd, respectively. The complete CSI can be obtained by zero-padding

followed by inverse DFT operation on Ĥ .

B. Channel model

Due to the large size of the antenna array implemented in massive MIMO systems, spherical

wave channel model should be considered instead of a plane wave channel model [38]. This

is also verified through measurements in [39] and [40]. Spherical wave channel model is more

realistic, and has been widely adopted in wireless communication applications [41]–[43]. We

also adopt a 3-D geometric stochastic channel model [44] in this work, which incorporates the

spherical wave channel model.

In particular, we model the differences of antennas and sub-paths of channel in detail by
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Fig. 3: The geometric relationship between the BS, UE and scatterers.

considering the scatterers1. The initial length of the k-th path, dk, can be expressed as

dk = ‖r‖2 + τkc, (5)

where ‖r‖2 is the initial distance between the BS and the UE, τk is the delay of the k-th path,

and c is the speed of light. We define qk,m as the arrival vector of the m-th sub-path in the k-th

path pointing from the initial UE location to the scatterers. Then, its length can be expressed as

‖qk,m‖2 =
d2k − ‖r‖22

2(dk + rT q̄k,m)
, (6)

where

q̄k,m ,


cosφak,m cos θak,m

sinφak,m cos θak,m

sin θak,m

 , (7)

φak,m and θak,m are the azimuth and elevation angle of arrival (AOA) of the m-th sub-path in the

k-th path, respectively. Therefore, the location of the scatterers can be obtained by the geometric

relationship shown in Fig. 3.

To model the spherical wave, each antenna element s at the BS is considered separetly. Given

an initial antenna element location and its departure vector of the m-th sub-path in the k-th path

pk,m, the departure vector of the s-th antenna of the m-th sub-path in the k-th path ps,k,m, the

corresponding elevation AOD θds,k,m and azimuth AOD φds,k,m can be derived as

θds,k,m = arcsin
ps,k,m,z
‖ps,k,m‖2

(8)

1The following illustrations are based on the single-bounce model for simplifying notations, which can be easily extended

to the multi-bounce model. In Section V, the proposed method is evaluated on the multi-bounce model. More details about the

multi-bounce model can be found in [44].
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gs,k =

Mk∑
m=1

 Frx,θ

(
θak,m, ϕ

a
k,m

)
Frx,ϕ

(
θak,m, ϕ

a
k,m

)
T Ps,k,m

 Ftx,θ

(
θds,k,m, ϕ

d
s,k,m

)
Ftx,ϕ

(
θds,k,m, ϕ

d
s,k,m

)
 e(−jψ0

k,m−jψs,k,m) (14)

and

φds,k,m = arctan
ps,k,m,y
ps,k,m,x

, (9)

where

ps,k,m = pk,m − es, (10)

and es is the vector from initial antenna element to the s-th antenna element, while ps,k,m,x,

ps,k,m,y and ps,k,m,z are the Cartesian coordinate components of ps,k,m. Therefore, the determin-

istic phase ψs,k,m and delay τs,k can be derived by

ψs,k,m =
2π

λc
(ds,k,m mod λc) (11)

and

τs,k =

∑Mk

m=1 ds,k,m
Mkc

, (12)

where

ds,k,m = ‖ps,k,m‖2 + ‖qk,m‖2, (13)

Mk is the number of sub-paths in the k-th path, λc is the wavelength and mod stands for the

module operation. The above modeling has taken spherical wave into consideration. Therefore,

the channel between the s-th BS antenna and the UE via the k-th path can be described as (14),

which is shown on the top of the next page, where Ps,k,m, Frx,θ, Frx,ϕ, Ftx,θ, Ftx,ϕ, j and ψ0
k,m

are the polarization coupling matrix of the s-th antenna of the m-th sub-path in the k-th path,

elevation polarimetric antenna response at the receiver, azimuth polarimetric antenna response

at the receiver, elevation polarimetric antenna response at the transmitter, azimuth polarimetric

antenna response at the transmitter, imaginary unit and the random phase of the m-th sub-path

in the k-th path, respectively.

Therefore, the (s, l)-th element of H̃ in spatial-frequency domain can be expressed as

H̃s,l =
K′∑
k=1

gs,ke

(
−j2π l−1

Ñc
Bτs,k

)
, (15)

where B is the bandwidth and K ′ is the number of paths, s = 1, · · · , Nt and l = 1, · · · , Ñc.
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III. PROBLEM FORMULATION

In this section, we first formulate CSI feedback as a linear inverse problem following the

related works. Then, the iterative shrinkage-thresholding algorithm (ISTA) will be introduced,

which inspired the proposed method.

A. Problem formulation

We consider a learnable matrix as the encoder, which can be conveniently designed as a light

linear layer, and is appropriate for the UE due to its limited computation and storage ability.

Therefore, the projected vector v can be expressed as

v = Ax, (16)

where A is the learnable matrix and x ∈ R2NtNc is the vector form of the CSI matrix H . The

decoder at the BS can be regarded as solving an inverse problem, which is presented as

min
x

1

2
‖v −Ax‖22. (17)

Due to the huge dimension reduction, the problem (17) is highly ill-posed; and hence hard

to solve directly. Typically, a regularization term is introduced into the optimization function to

exploit any known prior information about the optimal solution. Therefore, the problem (17) can

be modified as

min
x

1

2
‖v −Ax‖22 +R(x), (18)

where R(x) is the regularization term.

B. ISTA

Considering the sparsity of CSI, conventional CS-based and model-driven DL methods utilize

l1-norm as the regularization term. Therefore, the problem (18) can be written as

min
x

1

2
‖v −Ax‖22 + λ‖x‖1. (19)
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ISTA [45] is a classical iterative method to solve problem (19), and the related model-driven

DL methods for CSI feedback [30], [31] are inspired by it. Its iterative formulation at the t-th

step can be expressed as

u(t) = x(t−1) − αAT
(
Ax(t−1) − v

)
, (20)

x(t) = sign(u(t))max(0, |u(t)| − θ), (21)

where u(t), 0, θ and α are the intermediate variable, zero vector, thresholding term and step

size, respectively. The sign and max are element-wise operations, which can be expressed as

sign(u) =


1 if u > 0

0 if u = 0

−1 otherwise

(22)

and

max(u, θ) =

 u if u ≥ θ

θ if u < θ.
(23)

IV. DESIGN OF LORA AND TRAINING SCHEME

In this section, we first propose a novel model-driven DL method, called LORA, which unfolds

the derived iterative formulations to a NN and incorporates a regularization learning module.

Moreover, considering the quantization in CSI feedback procedure, the QAT and learnable

quantization methods will be employed.

A. Architecture of LORA

As in Equation (16) presented above, we consider the CSI in the vector form. However, instead

of fixing the regularization term to l1-norm, we consider R(x) as a learnable transform, which

is assumed to be differentiable. Then, the iteration formulation at the t-th step (t = 1, . . . , T ) in

the solution of problem (18) can be derived as

x(t) = x(t−1) − α(t−1) (AT (Ax(t−1) − v) +∇R(x(t−1))
)
, (24)

where ∇R(·) stands for the gradient of R(·). Therefore, each iteration can be designed as a block

to develop the decoder of LORA. The step size α in (24) is also set as a learnable parameter

that is different in each block. The matrix A is the same one used by the encoder. To learn

∇R(·), each block employs a regularization learning module, which will be introduced in detail

in the next sub-section. The overall architecture of LORA is presented in Fig. 4.
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(a) (b)

Fig. 4: The NN architecture and forward procedure of LORA: (a) shows the overall architecture

of LORA with the encoder and decoder. (b) shows the detailed architecture of one block in

LORA, including the regularization learning module.

Model-driven DL exploits NNs to replace the explicit expressions or manually-set parameters

in model-based methods. This can mitigate the performance loss due to inaccurate modeling,

while exploiting the valuable knowledge of the model simultaneously. Besides, model-driven DL

methods can also prevent the over-fitting problem, and are usually easier to train compared to

purely data-driven NN approaches.

Notably, the initialization of x is important due to the use of gradient descent. Since CSI has

sparsity, and its values are near zero, x(0) = 0 is considered as the initialization for LORA.

B. Regularization learning module

The parameters in ISTA, such as the measurement matrix, step size, etc, are all treated as

learnable parameters in existing works. However, the regularization term is set as conventional l1-

norm. Meanwhile, l1-norm is not a fully accurate prior because of the weak sparsity of CSI. Even

with strict sparsity, the measurement matrix needs to satisfy RIP condition to ensure the exactly

signal recovery by using l1-norm. Therefore, making the regularization learnable to directly fit

the characteristics of CSI is a promising approach to this problem.

The regularization learning module architecture is shown in Fig. 4, which is a light multi-layer

perceptron (MLP). The number of neurons of the input layer, hidden layer, and output layer of
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the regularization learning module are set as 2NtNc, 1024 and 2NtNc, respectively. Therefore,

the mathematical expression for the regularization learning module can be expressed as

MLP(x) = W2σ (W1x) , (25)

where W1 ∈ R1024×2NtNc and W2 ∈ R2NtNc×1024 are the parameters of the first and second

linear layers, σ(·) is the rectified linear unit (ReLU) activation function and x ∈ R2NtNc is the

input of the regularization learning module.

The reasons for choosing MLP as the architecture of the regularization learning module are

as follows: (1) MLP has been proved that it has universal approximation ability [46], which is

suitable to characterize the complex properties of CSI; (2) The linear layer in MLP has a dense

connection architecture, which can keep the original information as much as possible compared

to a local connection architecture, such as a convolution operator. Since the regularization term is

the part of the optimization problem, which needs to be set down once the training is finished, the

parameters of the MLP should be shared by all the blocks. Meanwhile, the number of trainable

parameters will be reduced in this way.

C. Training scheme with quantization

LORA is trained in an end-to-end manner. Mean square error (MSE) is used as the loss

function, which can be written as

L(Θ) =
1

T

T∑
i=1

‖Ĥi −Hi‖22, (26)

where T is the total number of samples in the training set and Θ is the parameter of NN. To

avoid hyper-parameter tuning for dynamic learning rate adjustment operator, ADAM [47] with

fixed learning rate is applied as the optimization operator.

The quantization module is also considered in CSI feedback for practical implementation. The

conventional quantization procedure can be generally summarized as

q = round

(
clip

(
r − z

s
, n, p

))
, (27)

b = num2bit(q), (28)

where r, s, z and q are the float number, scale, zero point vaule and integer number, n and p

are the lower bound and upper bound of the clip function, clip and round are the cliping and
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rounding functions, num2bit is the function which converts an integer number to bits and b is

the resultant bit stream.

The corresponding dequantization procedure can be expressed as

q̄ = bit2num(b), (29)

r̂ = q̄× s + z, (30)

where bit2num is the function which converts bits to integer vaules, q̄ is the integer vaules

converted by bit2num function and r̂ is the dequantized float vaules corresponding to r. The

quantization and dequantization operations can be regarded as two blocks, which are inserted

to the end of the encoder and the begining of the decoder, respectively. Therefore, the forward

procedure of NN can be regarded as CSI feedback with quantization and dequantization. Mean-

while, since end-to-end training is applied, the backward procedure can be regarded as learning

parameters with the effect of quantization. However, the rounding function is not differentiable,

which would prevent back-propagation during training. Instead, we can employ straight-through

differentiation [48], where we set
∂round(x)

∂x
, 1. (31)

The aforementioned training scheme is a modified QAT method, which is inspired by the QAT

in NN quantization [49] and CsiNet+ [20]. Although QAT achieves a reasonable performance,

it still has the weakness that the scale and zero point value, which are essential parameters for

quantization, are manually set in QAT. As the quantization procedure is embedded into the end-

to-end training, the scale and zero point vaule can also be learned and trained jointly. Considering

the back-propagation during training, the derivatives of scale and zero point value can be derived

from (27), (30) and (31) as

∂ r̂

∂s
'

 − r−z
s

+ round( r−z
s

) if n < r−z
s
< p

n or p otherwise
(32)

and
∂ r̂

∂z
'

 0 if n < r−z
s
< p

1 otherwise.
(33)

We name the scale learnable quantization method as LSQ, and both scale and zero point vaule

learnable quantization method as LSZQ. The LSQ and LSZQ are modified versions of NN

quantization methods in [50] and [51], respectively.
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V. NUMERICAL EXPERIMENT

In this section, we study the effect of different design options of LORA. Moreover, the

numerical results evaluating the performance of LORA in terms of the reconstruction accuracy,

channel estimation error and the complexity in comparison with other baselines are presented.

A. Experiment settings

1) Data generation: QuaDRiGa [44] is a general channel simulator that meets the 3GPP

standards. Moreover, the spherical waves introduced in Section II as well as other realistic

scenarios can be modeled by QuaDRiGa. Therefore, in this work, we use QuaDRiGa to gener-

ate CSI matrices in rural macro non-line-of-sight (RMANLOS), urban macro non-line-of-sight

(UMANLOS), and urban micro non-line-of-sight (UMINLOS) scenarios. The carrier frequency,

number of subcarriers, subcarrier interval and Nc are set as 3.5GHz, 1024, 30kHz and 32 for the

above three scenarios. The BS is equipped with a cross-polarized uniform planar array (UPA)

with half wavelength antenna spacing and Nt = 32 antennas. The UE is assumed to move along

a linear trajectory with a velocity of v̂ = 6km/h. The heights of the BS are 10m, 10m, and

25m for RMANLOS, UMINLOS and UMANLOS, respectively. Training and test datasets are

generated with 40000 and 10000 samples, respectively.

2) Training settings and evaluation metric: LORA is implemented in PyTorch. The parameters

of the NN are updated and optimized by the ADAM optimizer with default settings. The learning

rate, number of epochs and batch size are set to 0.001, 1000 and 200, respectively. We use the

normalized mean square error (NMSE) as the evaluation metric, which is defined as

NMSE = E

{
‖H − Ĥ‖22
‖H‖22

}
. (34)

Unless stated otherwise, all experiments are implemented with the above settings.

B. Ablation studies for the LORA architecture

In this sub-section, the effects of different design options of LORA will be studied through ab-

lation. The design motivations presented in Section IV are supported by the following numerical

results.
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(a) (b) (c)

Fig. 5: The visualization results of the last block of a trained LORA using MLP and CNN as

two alternative architectures for the regularization learning module. (a) is the result of using

CNN, while (b) is the result of using MLP. (c) is the groundtruth.

TABLE I: The NMSE performance of the output of each block of a trained LORA using MLP

and CNN under CR= 1/16 in the RMANLOS scenario.

Block order MLP CNN

1 0.2936 0.317

2 0.0888 0.5911

3 0.0174 0.0848

4 0.0012 0.0753

1) Architecture of the regularization learning module: To further illustrate the reasons of

using MLP as the regularization learning module, we present the output of the last block using

MLP and CNN2 in Fig. 5. The part of the output of the last block, which corresponds to the

real part of the CSI, are shown in the figures. By comparing the visualization results, it can be

seen that using CNN loses some information in the region of red box, while the MLP recovers

them well. Numerical results are also presented in TABLE I to compare the NMSE performance

achieved by the two architectures. The above visualization and numerical results show that using

MLP for the regularization learning module in LORA achieves a better performance than using

CNN.

2The CNN here consists of two convolutional layers with ReLU activation function. The convolution filter sizes are 3 × 3

and the number of convolution channels is 32 and 2, respectively.
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Fig. 6: The NMSE performance of different ISTA-based methods under different CR values in

the RMANLOS scenario.

2) Effect of learnable part: To verify the effectiveness of the regularization learning module in

LORA, and to motivate the particular architecture argued for in Section IV-A, the performance of

conventional ISTA3, ISTA-NET, TiLISTA-Joint and LORA are compared next. The ISTA-NET

stands for an ISTA unfolding method, which has learnable measurement matrix, step size and

threshold. In TiLISTA-Joint, in addition to the parameters in ISTA-NET, a sparse transformation

is also learned. In this experiment, the conventional ISTA is the baseline method, which has no

learnable part. The results are shown in Fig. 6. As we can see, the performance increases as we

learn more parameters of the underlying model. This phenomenon suggests that the performance

can be improved by making more of the model parameters learnable. Specifically, the results

verify that the learnable regularization outperforms l1-norm regularization term. In addition, the

importance of regularization in terms of the performance can be shown among the compared

DL methods.

We also compare the l1-norm of the output of the ISTA-NET and LORA, to further study

the learned regularization term. The results are shown in TABLE II. It can be seen that the l1-

norm of the output has obvious difference between ISTA-NET and LORA in different scenarios.

Although the learned regularization term has no explicit formulation, we can conclude that the

learned regularization term is different with the conventional l1-norm according to the NMSE

performance and the l1-norm of the output.

3We choose Gaussian matrix as the measurement matrix.
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TABLE II: The l1-norm of the output of different methods under CR= 1/16 in the UMANLOS

and UMINLOS scenario.

Methods

Scenarios
UMANLOS UMINLOS

ISTA-NET 3.74 8.18

LORA(ours) 4.39 10.15

TABLE III: The NMSE performance of LORA with different number of blocks and width of

MLP under CR= 1/64 in the RMANLOS scenario.

Neurons

Blocks
4 5 6 7

512 0.1791 0.1706 0.1656 0.1625

1024 0.0099 0.0071 0.0055 0.0047

4096 0.1629 0.0137 0.0105 0.0081

3) Effect of different blocks of LORA and the width of MLP: The number of blocks of LORA

and the neurons of hidden layer in MLP are investigated. The impact of these two hyper-

parameters on the performance of LORA is shown in TABLE III. If the performance is more

important than complexity in some scenarios, such as the high accuracy communication, LORA

has the potential to improve the performance by using more blocks according to the results

in TABLE III. However, it is worth to mention that increasing the width or depth of a NN

may cause the difficulties in training, such as gradient vanishing and explosion. The training

parameters, such as the learning rate and batch size, need to be carefully adjusted.

C. Performance results

The performance of LORA is evaluated in the aforementioned three scenarios, and compared

with four DL benchmarks to investigate the effectiveness and robustness of LORA. CsiNet+

and CRNet are considered as two CNN-based benchmarks. Meanwhile, TiLISTA-Joint and the

ISTA-NET are considered as the unfolding based benchmarks. The results are shown in Fig. 7

- Fig. 9 for the three scenarios RMANLOS, UMANLOS and UMINLOS, respectively. LORA

outperforms all four benchmarks clearly under all CR values in all the scenarios, especially under

small CR values. The presented results demonstrate the superiority of LORA compared with
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Fig. 7: The NMSE performance versus CR for different methods in the RMANLOS scenario.
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Fig. 8: The NMSE performance versus CR for different methods in the UMANLOS scenario.

two CNN-based and two unfolding based methods in terms of the recovery accuracy even under

CR = 1/64. Moreover, the robustness of LORA in terms of achieving a superior performance

in a variety of communication scenarios and CR values are verified. Therefore, LORA is a

promising method in practice with high performance and small overhead.

Next, we study the impact of channel estimation errors on the performance of LORA. In

particular, different from the above experiments that assumed perfect CSI at the UE, the additive

white Gaussian noise is added to the CSI as the input during both training and testing stages. The

NMSE performance under CR= 1/64 of TiLISTA-Joint and LORA in the RMANLOS scenario

are compared. The signal-to-noise ratio (SNR) is used to adjust the noise level introduced to

the CSI. According to the results in Fig. 10, LORA significantly outperforms TiLISTA-Joint in
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Fig. 9: The NMSE performance versus CR for different methods in the UMINLOS scenario.
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Fig. 10: The NMSE performance with different SNRs.

all noise levels, which suggests that LORA has better capability to adapt to different degrees of

channel estimation errors. Notably, the NMSE here is defined as

NMSE = E

{
‖Hgt − Ĥ‖22
‖Hgt‖22

}
, (35)

where Hgt denotes the perfect CSI. Since the input of LORA contains channel estimation

errors, the results in Fig. 10 also show the denoising capability of LORA in addition to the

CSI compression and recovery.

D. Complexity

Here, we analyze the storage and computational complexity of LORA. At the encoder of

LORA, there is only a measurement matrix, which has ((2NtNc)
2 × CR) parameters. At the
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TABLE IV: The number of parameters of different methods in the encoder and decoder,

respectively.

Methods
CR=1/4 CR=1/64

Encoder Decoder Encoder Decoder

CsiNet+ 1,048,772 1,069,936 65,732 86,896

TiLISTA-Joint 1,048,576 11,468,820 65,536 10,485,780

LORA(ours) 1,048,576 16,777,220 65,536 16,777,220

TABLE V: The computation cost(s) of different methods with CR= 1/64 in RMANLOS scenario.

Methods Train Test

ISTA - 90.96

CsiNet+ 64.307 6.712

TiLISTA-Joint 109.688 10.432

LORA(ours) 29.337 3.54

decoder of LORA, each block has a learning rate parameter and a regularization learning

module, which has (4NtNc× 1024) parameters. Thus, the total number of parameters of LORA

is ((2M + 1282)NtNc + 4). However, due to the parameters sharing of regularization learning

module for each block, the number of trainable parameters of LORA is ((2M + 4096)NtNc + 4).

The number of parameters of CsiNet+, TiLISTA-Joint and LORA at the encoder and decoder

are also shown in TABLE IV. We also consider CR= 1/4 and CR= 1/64 to represent the large

CR and small CR cases. The results show that unfolding-based methods have less parameters

at the encoder, but more parameters are needed at the decoder. It is because the convolution

operator shares parameters and has less connections with the output of the former layer than

MLP. However, since the BS usually has large storage, it is desirable to employ a larger model

on the decoder side.

The main operator employed in LORA is a linear layer, whose computational cost can be

calculated as Nin × Nout. Nin and Nout are the sizes of input and output of the linear layer,

respectively. Therefore, the encoder, decoder and total computational complexity of LORA are

O(MNcNt), O(MN2
t N

2
c ) and O(MN2

t N
2
c ), which indicates that the computational cost of

LORA depends on the number of antennas, preserved sub-carriers and feedback parameters.

In following, CR= 1/64 is used as an example to compare the running time of one epoch of
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Fig. 11: The NMSE performance versus CR for different quantization methods and bit levels in

the RMANLOS scenario.

three DL based methods, and the results are shown in TABLE V. The key hardwares used in

this experiment are i5-9400F CPU and RTX2080 GPU. According to TABLE V, it is obvious

that LORA costs the least time among the compared methods, which shows the superiority of

LORA in terms of computing time. Moreover, by comparing ISTA and learnable ISTA methods

(i.e., TiLISTA-Joint and LORA), it can be inferred that introducing learnable regularization term

improves the recovery performance while reducing inference time simultaneously. By separating

the training and testing parts, it can be clearly observed that DL based methods have faster

inference speed. Although the proposed method will cost extra time in training compared with

conventional ISTA, online fine-tuning or MAML [52] can be exploited to highly reduce the

number of training epochs.

E. Quantization

Different from the above simulations that ignore the quantization error, the proposed quan-

tization method is evaluated in this sub-section. We first compare joint training LORA and

the quantizer-dequantizer, and training the quantizer-dequantizer on a well-trained LORA. The

NMSE of these two approaches are 0.0053 and 0.0069 under CR= 1/4 in the RMANLOS

scenario. Hence, as one would expect, joint training is preferable as the NN parameters adapt

to the quantization effect.

We next compare three methods with four different CRs and two different bit levels in the

RMANLOS scenario. The NMSE performance of the quantization methods are presented in Fig.
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11. QAT is the baseline method for comparison. From the figure, it is seen that LSQ and LSZQ

both outperform QAT. Moreover, the performance increases with the increase in the number of

learnable parameters in the quantization module; that is LSZQ outperforms LSQ. The results

not only verify that the scale and zero point value are essential parameters of the quantization,

but also demonstrate the effectiveness of making these parameters learnable. As expected, the

performance of all three methods improve with the number of quantization bits. In addition,

the performance of LSQ and LSZQ increase with the increase in the CR more significantly in

8-bit quantization than 4-bit quantization. It is also interesting that the improvement of LSQ and

LSZQ compared to QAT also increases with the number of quantization bits. This phenomenon

may be attributed to that the impacts of scale and zero point value on quantization are amplified

due to the increase in the number of quantization bits.

VI. CONCLUSION

In this paper, a model-driven DL method, called LORA, has been proposed for efficient

CSI feedback in FDD massive MIMO systems. LORA is constructed by unfolding an iterative

optimization algorithm with learnable parameters. In particular, the derivatives of the regular-

ization term of the optimization problem is parameterized as a learnable MLP to automatically

and directly extract the characteristics of CSI rather than using the fixed conventional l1-norm.

Besides, a scale and zero point value learnable quantization method with end-to-end training was

proposed to ease the performance decay caused by quantization. The numerical results not only

show the effects of the various components of LORA, supporting the presented architecture, but

also demonstrate the superiority and robustness of this architecture with respect to the existing

techniques in the literature. It has been also shown that LORA with the proposed quantization

method can be effective at different bit levels providing, flexibility in terms the available feedback

channel capacity.
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