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Abstract

Active reconfigurable intelligent surfaces (RISs) have recently been proposed to compensate for the severe

multiplicative fading effect of conventional passive RIS-aided systems. Each reflecting element of active RISs

is assisted by an amplifier such that the incident signal can be reflected and amplified instead of only being

reflected as in passive RIS-aided systems. This work addresses the practical challenge that, on the one hand,

in active RIS-aided systems the perfect individual CSI of the RIS-aided channels cannot be acquired due to

the lack of signal processing power at the active RISs, but, on the other hand, this CSI is required to calculate

the expected system data rate and RIS transmit power needed for transceiver design. To address this issue,

we first derive closed-form expressions for the average achievable rate and the average RIS transmit power

based on partial CSI of the RIS-aided channels. Then, we formulate an average achievable rate maximization

problem for jointly optimizing the active beamforming at both the base station (BS) and the RIS. This problem

is then tackled using the majorization–minimization (MM) algorithm framework, and, for each iteration, semi-

closed-form solutions for the BS and RIS beamforming are derived based on the Karush-Kuhn-Tucker (KKT)

conditions. To ensure the quality of service (QoS) of each user, we further formulate a rate outage constrained

beamforming problem, which is solved using the Bernstein-Type inequality (BTI) and semidefinite relaxation

(SDR) techniques. Numerical results show that the proposed algorithms can efficiently overcome the challenges

imposed by imperfect CSI in active RIS-aided wireless systems.

Index Terms

Reconfigurable intelligent surface (RIS), intelligent reflecting surface (IRS), active RIS, beamforming,

partial channel state information (CSI).
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I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have attracted extensive research attention from both

academia and industry thanks to their appealing features of low cost, low power consumption, pro-

grammability, and easy deployment [2], [3]. In fact, they are envisioned to be one of the key candidate

technologies of sixth generation (6G) mobile communication systems [4], [5]. The existing literature has

mainly focused on the investigation of passive RISs, where each reflecting element can only reflect the

incident signals. However, passive RISs have an inherent disadvantage: the signals reflected by the RISs

suffer from multiplicative fading, which causes the received signal to be extremely weak. Multiplicative

fading implies that the equivalent pathloss of the transmitter-RIS-receiver link is the product of the

transmitter-RIS link pathloss and the RIS-receiver link pathloss, which is typically thousands of times

higher than that of the unobstructed direct BS-receiver link [6]. Most of the existing works on passive

RISs bypass this issue by assuming a much larger pathloss exponent for the direct link than for the

reflected links [7], [8].

To overcome the multiplicative fading effect, the authors of [9] and [10] recently proposed a new

active RIS architecture. Unlike passive RISs, active RISs are additionally equipped with active reflective

amplifiers. Therefore, active RISs can not only adjust the phase of the reflected signal, but also amplify

the reflected signal. The authors of [10] showed that in an application scenario with direct links, passive

RISs can only obtain a 3% data rate gain, while active RISs can obtain a 108% gain. In addition, they

also presented a hardware platform for active RISs.

Different from traditional active antenna arrays, active RISs do not require radio frequency (RF)

chains and digital signal processing circuits, such that active RISs can be relatively thin, which facilitates

deployment. Since active RISs comprise amplifiers, their hardware power consumption is increased

compared to passive RISs. However, the authors of [11] recently compared the performances of passive

RISs and active RISs for the same total power consumption (including hardware power consumption),

and showed that active RISs outperform passive RISs when the number of reflecting elements is small

and the system power budget is sufficiently large. Therefore, active RISs can mitigate the multiplicative

fading effect while retaining the benefits of passive RISs.

Due to the above advantages, active RISs have attracted significant research interest recently. The

authors of [12] compared the performances of passive RISs and active RISs, and optimized the RIS

location and number of reflecting elements. The authors of [13] investigated the resource allocation

design for active RIS-aided multiuser systems. Furthermore, active RISs have been considered for

wireless powered communications to enhance throughput and energy efficiency [14].
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It is widely known that, for passive RIS-aided systems, only the cascaded channel state informa-

tion (CSI) of the transmitter-RIS-receiver link is needed for transceiver design. However, due to the

introduction of amplifiers, for active RIS-aided systems, the RIS transmit power and the thermal noise

amplified by the RISs need to be taken into account for transceiver design, which requires the individual

CSI of the transmitter-RIS link and the RIS-receiver link. However, active RISs cannot estimate the two

individual channels as they are not equipped with an RF chain. To the best of the authors’ knowledge,

all existing works on active RISs assume the availability of perfect CSI of the transmitter-RIS and

RIS-receiver links, respectively, which is challenging to obtain in practice. Therefore, it is imperative

to study the system design for the case, where only partial CSI of the individual active RIS-aided

channels is available.

Against this background, in this work, average achievable rate maximization and average power

consumption minimization are addressed, respectively, if only partial CSI of the individual RIS-aided

channels is available. To this end, we assume that the RIS-aided channels are Rician distributed.

Although the perfect CSI of the individual RIS-aided channels is not available, knowledge of the

deterministic light-of-sight (LoS) components and the statistics of the Gaussian distribution of the

non-LoS (NLoS) components can be acquired. In particular, the angle and distance information of the

LoS links can be determined via localization techniques [15]. Based on this partial CSI, we derive

analytical expressions for the average achievable rate and the average RIS transmit power. Then, the

average achievable rate is maximized by jointly optimizing the active beamforming at the BS and RIS

under an RIS average transmit power constraint. Since system designs based on average achievable

rate maximization cannot guarantee the QoS of each user, we further study designs based on a rate

outage constrained power minimization problem.

The main contributions of this work can be summarized as follows:

• To the best of the authors’ knowledge, this is the first work on active RIS-aided systems that

investigates the practical issue of partial CSI knowledge. Based on the distributions of the indi-

vidual RIS-aided channels, we propose a joint active beamforming design at the BS and the RIS

for maximization of the average achievable rate for partial CSI. In addition, we also study the

robust active beamforming design to minimize the average total power consumption under rate

outage probability constraints.

• Closed-form expressions for the average achievable rate and the average RIS transmit power in the

presence of partial CSI are derived. Furthermore, the average achievable rate maximization problem

is efficiently solved in an iterative manner exploiting the majorization–minimization (MM) concept.
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Specifically, a surrogate quadratic function for active beamforming is constructed to minorize

the original non-concave objective function. Then, alternating optimization (AO) is employed to

decouple the BS and RIS beamforming vectors. For each subproblem, a semi-closed-form solution

is obtained based on the Karush–Kuhn–Tucker (KKT) conditions.

• To guarantee a predefined outage probability, we develop an outage constrained beamforming

design that minimizes the average transmit power subject to constraints on the RIS amplification

gain and the rate outage probability, respectively. The Bernstein-type inequality (BTI) is applied to

safely approximate the outage probability constraints such that the non-convexity of the constraints

is mitigated. Then, the beamforming vectors at both the BS and the RIS are updated by using

semidefinite relaxation (SDR) in an iterative manner.

• Our simulation results demonstrate that active RISs can effectively overcome the negative impact

of the multiplicative fading effect and perform much better than the conventional passive RISs.

Furthermore, since the RIS amplifier circuits consume power, there exists an optimal number of

RIS reflecting elements.

The rest of this paper is organized as follows. In Section II, we introduce the considered system model.

The average achievable rate maximization problem and the average power minimization problem are

respectively revealed in Sections III and IV. Finally, Sections V and VI report numerical results and

conclusions, respectively.

Notations: The following mathematical notations and symbols are used throughout this paper.

Vectors and matrices are denoted by boldface lowercase letters and boldface uppercase letters, re-

spectively. X∗, XT, XH, and ||X||F denote the conjugate, transpose, Hermitian (conjugate transpose),

and Frobenius norm of matrix X, respectively. vec(X) denotes the vectorization of matrix X. ||x||2
denotes the L2-norm of vector x. Operations Tr{·}, Re{·}, |·|, λ(·), and 6 (·) denote the trace, real

part, modulus, eigenvalue, and angle of a complex number, respectively. Diag(x) is a diagonal matrix

with the entries of x on its main diagonal. Furthermore, diag(X) is a vector whose entries are the

main diagonal elements of matrix X. [x]m denotes the m-th element of vector x. [X]m:n,p:q is a matrix

consisting of the m-th to the n-th rows and the p-th to the q-th columns of matrix X. The Kronecker

product, Hadamard product, and Khatri-Rao product between two matrices X and Y are respectively

denoted by X⊗Y, X⊙Y, and X ⋄Y. X � Y means that X−Y is positive semidefinite. C denotes

the complex field, R denotes the real field, and j ,
√
−1 is the imaginary unit. CN(µ,Σ) represents

the distribution of a circularly symmetric complex Gaussian random vector with mean vector µ and

covariance matrix Σ.
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(a) circuit of passive reflecting element (b) circuit of active reflecting element

reflection coefficient:

Fig. 1: Active and passive RIS-aided communication system, respectively.

II. SYSTEM MODEL

A. Signal Transmission Model

As shown in Fig. 1, we consider an RIS-aided downlink multiple-input single-output (MISO) system,

where an N-antenna BS communicates with K single-antenna users. The RIS is assumed to be equipped

with M reflecting elements, and its reflection coefficient matrix is given by Λw = Diag(w1, · · · , wM) ∈
CM×M . Here, 6 wm and |wm| denote the phase shift and the reflection gain of the m-th RIS element,

respectively. For passive RISs, each RIS element comprises an impedance adjustable circuit to vary the

phase shift [16]. Thus, passive RISs are capable of reflecting the incident signal1 without consuming

direct-current (DC) power, which leads to a reflection gain of |wm|2= 1 and negligible thermal noise.

However, the multiplicative fading effect results in a weak received signal power for the passive RIS

reflection link. To address this issue, the authors of [9] and [10] proposed a new active RIS architecture,

where each active RIS element includes an active reflection-type amplifier to also amplify the incident

signals. Therefore, the reflection gain is given by 1 ≤ |wm|2≤ amax, where amax is the maximum

amplification gain.

The BS transmits K data symbols collected in vector s = [s1, · · · , sK ]T ∈ CK×1 to the users

by applying precoder matrix F =[f1, · · · , fK ] ∈ C
N×K . By assuming independent complex Gaussian

signals with E[ssH] = IN , the BS transmit power is given by E{||Fs||22} = ||F||2F≤ PN , where PN is

1Here, we assume an ideal reflective material without reflection loss. If reflection loss is considered, then |wm|2< 1.
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the BS transmit power budget. Denote by Hdr ∈ CM×N the channel from the BS to the RIS, and by

hk ∈ CN×1 and hr,k ∈ CM×1 the channels from user k to the BS and to the RIS, respectively. Then,

the signal received by user k is given by

yk = hH
kFs + hH

r,kΛw(HdrFs + z) + nk

= (hH
k + hH

r,kΛwHdr)Fs + hH
r,kΛwz+ nk, (1)

where nk and z are the zero-mean additive white Gaussian noise (AWGN) at the user and the RIS,

respectively, which follow distributions nk ∼ CN(0, σ2
k) and z ∼ CN(0, σ2

zIM) with noise powers

σ2
k and σ2

z , respectively. Notice that the thermal noise z, which can be ignored in passive RIS-aided

systems, has to be considered in active RIS-aided systems because of the amplification. The transmit

power of the active RIS is given by

E{||Λw(HdrFs+ z)||22} = ||ΛwHdrF||2F+||w||22σ2
z , (2)

where w = [w1, · · · , wM ]H. Furthermore, the achievable rate of user k is given by

Rk(F,w) = log2

(
1 +

|(hH
k + hH

r,kΛwHdr)fk|2∑K
i=1,i 6=k|(hH

k + hH
r,kΛwHdr)fi|2+σ2

k + ||hH
r,kΛw||22σ2

z

)
. (3)

B. Channel Model

In practice, not all of the channels connecting the BS and the users can be individually estimated.

Specifically, the direct BS-user channels {hk}Kk=1 can be estimated by turning off the RIS [17]. Thus,

it is reasonable to assume that perfect CSI of the direct BS-user channels is available at the BS.

However, for the passive/active RIS-aided channels, we can only estimate the cascaded BS-RIS-user

channel Gk, which is the product of the BS-RIS channel Hdr and the RIS-user channel hr,k, i.e.,

Gk = diag(hH
r,k)Hdr. As a result, we cannot estimate Hdr and hr,k individually due to the lack of

signal processing capability at the passive/active RIS [18]. There is an extensive literature on cascaded

CSI estimation in RIS-aided communication systems [17], [19]–[21]. Thus, in this work, we also

assume that {Gk}Kk=1 is perfectly known at the BS. In passive RIS-aided communication systems,

knowledge of the CSI of the cascaded channels is typically sufficient for transceiver and RIS reflection

phase shift design [8], [22]–[24]. However, in active RIS-aided systems, the instantaneous RIS transmit

power in (2) and the instantaneous achievable rate in (3) depend on the individual instantaneous CSI

of Hdr and hr,k, respectively, and this CSI is impossible to obtain. To address this issue, in this work,

we focus on the investigation of the average achievable rate and the average RIS transmit power based

on statistical CSI of Hdr and hr,k.
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In particular, Hdr and hr,k are modelled as correlated Rician fading channels as follows

Hdr =
√
β0/(δ0 + 1)(

√
δ0H̄dr + H̃dr), (4)

hr,k =
√
βk/(δk + 1)(

√
δkh̄r,k + h̃r,k), ∀k, (5)

where {δk}Kk=0 are the Rician factors, and {βk}Kk=0 are the distance-dependent large-scale pathloss

coefficients. The LoS components H̄dr and {h̄r,k}Kk=1 are determined by the angles-of-arrival (AoAs)

and the angles-of-departure (AoDs) [25]. The physical positions of the BS and the RIS are generally

fixed and known in advance, and the users’ locations can be determined by GPS positioning [26] or

pilot-based positioning algorithms [27]. Thus, the communication distance and LoS angle information

can be assumed to be known by the BS. The NLoS components are distributed as H̃dr ∼ CN(0,ΣR⊗
ΣB) and h̃r,k ∼ CN(0,Σr,k), where ΣB � 0 is the spatial correlation matrix with unit diagonal

elements at the BS for channel H̃dr, and ΣR � 0 and Σr,k � 0 are the spatial correlation matrices

with unit diagonal elements at the RIS for channels H̃dr and h̃r,k, respectively. The spatial covariance

matrices can be estimated with the method proposed in [28] or the model proposed in [29]. Thus,

in the following, we model H̃dr and h̃r,k as H̃dr = Σ
1/2
R EΣ

1/2
B with vec(E) ∼ CN(0, IM ⊗ IN) and

h̃r,k = Σ
1/2
r,k er,k with er,k ∼ CN(0, IM), respectively.

Since the communication distances between the BS and the users are generally long and the

electromagnetic environment is complex, we assume channels {hk}Kk=1 to be Rayleigh distributed.

C. Average Achievable Rate and Average RIS Transmit Power

Since perfect instantaneous CSI of Hdr and {hr,k}Kk=1 is not available, in this work, we consider the

average achievable rate and average RIS transmit power, denoted as Ehr,k |Gk
{Rk(F,w)} for all k and

EHdr|Gk
{||ΛwHdrF||2F+||w||2Fσ2

z}, respectively. Here, the average rate and average RIS transmit power

are short-term (instantaneous) measures that capture the expected performance over the distributions

of {hr,k}Kk=1 and Hdr for given {Gk}Kk=1.

First, we derive an analytical expression for the average achievable rate. With the definitions w̃ =

[wH, 1]H and Hk =
[
GH

k ,hk

]H
such that w̃HHk = hH

k +hH
r,kΛ

H
wHdr, (3) can be reformulated as follows

Rk(F,w) = log2

(
1 +

|w̃HHkfk|2∑K
i=1,i 6=k|w̃HHkfi|2+σ2

z ||hH
r,kΛ

H
w||22+σ2

k

)
. (6)

Since the function f(x) = log2(1 +
1
x
) is convex in x, by using Jensen’s inequality, we can obtain a

lower bound for Ehr,k|Gk
{Rk(F,w)} as follows

Ehr,k |Gk
{Rk(F,w)}
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≥ R̄k (F,w)

= log2

(
1 +

|w̃HHkfk|2∑K
i=1,i 6=k|w̃HHkfi|2+σ2

zEhr,k|Gk

{
||hH

r,kΛ
H
w||22

}
+ σ2

k

)

= log2

(
1 +

|w̃HHkfk|2∑K
i=1,i 6=k|w̃HHkfi|2+σ2

zTr
{
ΛwEhr,k |Gk

{
hr,kh

H
r,k

}
ΛH

w

}
+ σ2

k

)

(a)
= log2


1 +

|w̃HHkfk|2
∑K

i=1,i 6=k|w̃HHkfi|2+σ2
zTr

{
Λw

(
βkδk
δk+1

h̄r,kh̄
H
r,k +

βk

δk+1
Σr,k

)
ΛH

w

}
+ σ2

k




(b)
= log2


1 +

|w̃HHkfk|2
∑K

i=1,i 6=k|w̃HHkfi|2+σ2
z

(
βkδk
δk+1

||Diag(h̄r,k)w||22+ βk

δk+1
||w||22

)
+ σ2

k




= log2

(
1 +

|w̃HHkfk|2∑K
i=1,i 6=k|w̃HHkfi|2+wHΨkw + σ2

k

)
, (7)

where Ψk = βkσ
2
z

δk+1

(
δkDiag(h̄r,k ⊙ h̄∗

r,k) + I
)

and I denotes the identity matrix. Equality (a) in (7) is

obtained due to hr,k ∼ CN

(√
βkδk/(δk + 1)h̄r,k,

βk

δk+1
Σr,k

)
and Ehr,k|Gk

{
hr,kh

H
r,k

}
= βkδk

δk+1
h̄r,kh̄

H
r,k +

βk

δk+1
Σr,k. Equality (b) in (7) is due to Tr

{
Λwh̄r,kh̄

H
r,kΛ

H
w

}
= ||Diag(h̄r,k)w||22 and βk

δk+1
Tr
{
ΛwΣr,kΛ

H
w

}

= βk

δk+1
Tr
{
ΛwΛ

H
w

}
= βk

δk+1
||w||22, as Σr,k has unit diagonal elements.

Next, to derive an analytical expression for the average RIS transmit power, we provide a useful

lemma, as follows.

Lemma 1 Let H ∈ CM×N = H̄ + Σ
1/2
r HwΣ

1/2
t represent a random matrix following distribution

H ∼ CN(H̄,Σr ⊗ Σt) with mean H̄ and covariance Σr ⊗ Σt, where Hw is a complex Gaussian

random matrix with independent and identically distributed (i.i.d.) entries of zero mean and unit

variance. Given matrix X ∈ CN×N , we have

EH

{
HXHH

}
= H̄XH̄H + Tr {XΣt}Σr.

Proof: Please refer to the proof of Lemma 2 in [30]. �

By using Hdr ∼ CN

(√
β0δ0
δ0+1

H̄dr,
β0

δ0+1
(ΣR ⊗ΣB)

)
and Lemma 1, the average RIS transmit power

P (F,w) can be obtained as

P (F,w) = EHdr|Gk

{
||ΛwHdrF||2F+||w||22σ2

z

}

= Tr
{
ΛwEHdr

{
HdrFF

HHH
dr

}
ΛH

w

}
+ ||w||22σ2

z

= Tr {Λa
RISQ}+ ||w||22σ2

z , (8)

where Q =
(

β0δ0
δ0+1

H̄drFF
HH̄H

dr +
β0

δ0+1
Tr
{
FFHΣB

}
ΣR

)
and Λa

RIS = ΛH
wΛw.
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III. AVERAGE ACHIEVABLE RATE MAXIMIZATION

In this section, we maximize the average achievable rate under a constraint on the average RIS

transmit power. To this end, a concave lower bound of the non-concave objective function is constructed,

and a KKT-based AO algorithm is developed.

A. Problem Formulation

The proposed problem can be formulated as follows

max
F,w

K∑

k=1

Ehr,k |Gk
{Rk(F,w)} (9a)

s.t. ||F||2F≤ PN , (9b)

EHdr|Gk

{
||ΛwHdrF||2F+||w||2Fσ2

z

}
≤ PM , (9c)

1 ≤ |wm|2≤ amax, ∀m, (9d)

where PM is the maximum average RIS transmit power.

Since Ehr,k |Gk
{Rk(F,w)} and EHdr|Gk

{||ΛwHdrF||2F+||w||2Fσ2
z} are not analyticaly tractable, Prob-

lem (9) cannot be solved directly. Thus, based on (8) and (7), Problem (9) is lower bounded as follows

max
F,w

K∑

k=1

R̄k (F,w) (10a)

s.t. ||F||2F≤ PN , (10b)

P (F,w) ≤ PM , (10c)

1 ≤ |wm|2≤ amax, ∀m. (10d)

Problem (10) is still difficult to solve due to the non-concave objective function in (10a), the non-convex

amplification gain constraints in (10d), and the coupling of variables F and w.

B. Problem Reformulation

In the following, we propose an AO algorithm to solve Problem (10) based on the MM algorithm

(see, e.g., [31], [32] for tutorial introductions to MM algorithms). Specifically, the key idea of MM

algorithms is to construct an easy-to-solve surrogate problem by deriving a minorizer of the original

non-convex objective function, which is then used for optimization. Specifically, assuming that f(x)
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is the original objective function which needs to be maximized over a convex set Sx, its minorizers

(denoted by f̃(x|xn)) at a given point xn should satisfy the following conditions [32]:

(A1) :f̃(xn|xn) = f(xn), ∀xn ∈ Sx;

(A2) :f̃(x|xn) ≤ f(x), ∀x,xn ∈ Sx;

(A3) :f̃
′

(x|xn;d)|x=xn= f
′

(xn;d), ∀d with xn + d ∈ Sx;

(A4) :f̃(x|xn) is continuous in x and xn,

where f
′
(xn;d), defined as the direction derivative of f(xn) in direction d, is given by

f
′

(xn;d) =lim
κ→0

f(xn + κd)− f(xn)

κ
.

Based on the MM framework, we derive a quadratic lower bound of R̄k (F,w) shown in the following

lemma, the proof of which is similar to the proof in [22, Appendix A].

Lemma 2 For a fixed point {Fn,wn}, R̄k (F,w) is minorized by the concave surrogate function

R̃k (F,w|Fn,wn) given by

R̃k (F,w|Fn,wn) = constk + 2Re
{
akw̃

HHkfk
}
− bk(||w̃HHkF||22+wHΨkw), (11)

where

ak =
tn,∗k

rnk − |tnk |2
, bk =

|tnk |2
rnk (r

n
k − |tnk |2)

, constk = Rk (F
n,wn)− bk(σ

2
k + rnk ),

tnk = (w̃n)HHkf
n
k , rnk =

K∑

i=1

|(w̃n)HHkf
n
i |2+(w̃n)HΨkw

n + σ2
k.

Function (11) is biconcave in F and w, which motivates us to update F and w in an iterative

manner. In particular, in the proposed AO algorithm, we first update F based on the concave function

R̃k (F|Fn) = R̃k (F,w|Fn,wn) for a given w, and then we update w based on the concave function

R̃k (w|wn) = R̃k (F,w|Fn,wn) for a given F.

C. Optimization of Precoding Matrix F

By using Lemma 2, a lower bound of the objective function in (10a) with respect to F, denoted by

R̃sum(F), is obtained as

R̃sum(F) =
K∑

k=1

R̃k (F,w|Fn,wn)

= constF + 2Re
{
Tr
{
CH

FF
}}

− Tr
{
FHAFF

}
, (12)
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where constF =
∑K

k=1 constk−wH(
∑K

k=1 bkΨk)w, CF =
∑K

k=1 a
∗
kH

H
k w̃tHk , AF =

∑K
k=1 bkH

H
k w̃w̃HHk,

and tk ∈ RK×1 is a selection vector in which the k-th element is equal to one and all the other elements

are equal to zero.

After some manipulations, the average RIS transmit power in (8) can be rewritten as a quadratic

function of F as follows

P (F) =
β0δ0
δ0 + 1

Tr
{
FHH̄H

drΛ
a
RISH̄drF

}
+

β0

δ0 + 1
Tr {Λa

RISΣR}Tr
{
FHΣBF

}
+ ||w||22σ2

z

=
β0δ0
δ0 + 1

Tr
{
FHH̄H

drΛ
a
RISH̄drF

}
+

β0

δ0 + 1
Tr {Λa

RIS}Tr
{
FHΣBF

}
+ ||w||22σ2

z

=Tr
{
FHDFF

}
+ ||w||22σ2

z , (13)

where we have Tr {Λa
RISΣR} = ||w||22 and DF = β0δ0

δ0+1
H̄H

drΛ
a
RISH̄dr +

β0

δ0+1
||w||22ΣB.

Combining (12) with (13), and ignoring irrelevant constant terms, the surrogate subproblem of (10)

with respect to F for a given w is formulated as follows

max
F

2Re
{
Tr
{
CH

FF
}}

− Tr
{
FHAFF

}
(14a)

s.t. ||F||2F≤ PN , (14b)

Tr
{
FHDFF

}
+ ||w||22σ2

z ≤ PM . (14c)

Problem (14) is a standard second-order cone programming (SOCP) problem and can be solved with

CVX. However, the computational complexity of SOCP-based algorithms is high. In the following, we

solve Problem (14) by exploiting the standard dual decomposition method. In particular, the Lagrange

function of Problem (14) is given by

L(F, γF , µF )

=Tr
{
FHAFF

}
− 2Re

{
Tr
{
CH

FF
}}

+ γF (||F||2F−PN ) + µF (Tr
{
FHDFF

}
+ ||w||22σ2

z − PM),

where Lagrange multipliers γF ≥ 0 and µF ≥ 0 are associated with constraints (14b) and (14c),

respectively. The dual function d(γF , µF ) is given by

d(γF , µF ) = max
F

L(F, γF , µF ). (15)

Thus, the dual problem of Problem (14) can be formulated as follows

min
γF≥0,µF≥0

d(γF , µF ). (16)



12

Firstly, by exploiting the first-order KKT necessary and sufficient condition of the problem in (15),

i.e.,
∂L(F,γF ,µF )

∂F∗ =
(
AF + γopt

F I+ µopt
F DF

)
Fopt − CF = 0, we obtain the optimal solution of F for

fixed dual variables (γ
[v]
F , µ

[v]
F ) in iteration v as follows

F(γ
[v]
F , µ

[v]
F ) =

(
AF + γ

[v]
F I+ µ

[v]
F DF

)−1

CF . (17)

Then, the dual problem (16) can be solved by the gradient projection algorithm, i.e., the dual variables

are updated as follows

γ
[v+1]
F =

[
γ
[v]
F + ς [v]∇γF d(γ

[v]
F , µ

[v]
F )
]+

, (18a)

µ
[v+1]
F =

[
µ
[v]
F + ς [v]∇µF

d(γ
[v]
F , µ

[v]
F )
]+

, (18b)

where

∇γF d(γ
[v]
F , µ

[v]
F ) = ||F(γ[v]

F , µ
[v]
F )||2F−PN (19a)

∇µF
d(γ

[v]
F , µ

[v]
F ) = Tr

{
(F(γ

[v]
F , µ

[v]
F ))HDFF(γ

[v]
F , µ

[v]
F )
}
+ ||w||22σ2

z − PM . (19b)

The initialization points can be set as γ
[0]
F = 0 and µ

[0]
F = 0. Then, (17) and (19) are updated in an

alternating manner until ||(γ[v+1]
F , µ

[v+1]
F )− (γ

[v]
F , µ

[v]
F )||→ 0. Note that although the algorithm proposed

for solving Problem (14) requires iterations, the computational complexity is comparatively low due

to closed-form expressions employed in each iteration, see Section III-F.

D. Optimization of Reflection Vector w

In order to facilitate the subsequent derivations, we convert the surrogate objective function
∑K

k=1 R̃k (F,w|Fn,wn) and average RIS transmit power in (8) into quadratic functions of w as follows

R̃sum(w) =

K∑

k=1

R̃k (F,w|Fn,wn)

= constw + 2Re
{
wHcw

}
−wHAww, (20)

with constw =
∑K

k=1 constk + 2Re{
∑K

k=1 akh
H
k fk} −

∑K
k=1 bkh

H
kFF

Hhk, cw =
∑K

k=1 akGkfk −
∑K

k=1 bkGkFF
Hhk, and Aw =

∑K
k=1 bkGkFF

HGH
k + (

∑K
k=1 bkΨk), and

P (w) = wHDww, (21)

with Dw = β0δ0
δ0+1

Diag
(
diag

(
H̄FFHH̄H

))
+ β0

δ0+1
Tr
{
FHΣBF

}
I+ σ2

zI.

Exploiting (20) and (21), we formulate a surrogate subproblem for (10) with respect to w for a

given F as follows

max
w

2Re
{
wHcw

}
−wHAww (22a)
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s.t. wHDww ≤ PM , (22b)

1 ≤ |wm|2≤ amax, ∀m. (22c)

Problem (22) can be transformed into an SOCP by relaxing the non-convex constraint 1 ≤ |wm|2 in

(22c) via a linear approximate constraint 1 ≤ 2Re{(wn
m)

∗wm} − |wn
m|2 by using the first-order Taylor

approximation at fixed point wn
m. The resulting approximate SOCP problem is given by

max
w

2Re
{
wHcw

}
−wHAww (23a)

s.t. wHDww ≤ PM , (23b)

1 ≤ 2Re{(wn
m)

∗wm} − |wn
m|2, ∀m, (23c)

|wm|2≤ amax, ∀m. (23d)

To find a low-complexity solution for (23), we adopt the alternating direction method of multipliers

(ADMM) [33]. In particular, we introduce auxiliary variable u = [u1, · · · , uM ]T such that u = w and

1 ≤ |um|2≤ amax, ∀m. The augmented Lagrangian of the optimization problem is given by

Lξ(w,u,η) = wHAww − 2Re
{
wHcw

}
+ ζ ||w− u+ η||22,

where ζ > 0 is a penalty parameter. The benefit of including the penalty term is to make the dual

function differentiable. The ADMM method comprises the following steps 2:

w[i+1] = arg min
w∈{wHDww≤PM}

Lξ(w,u[i],η[i]), (24)

u[i+1] = arg min
u∈{1≤|um|2≤amax,∀m}

Lξ(w
[i+1],u,η[i]), (25)

η
[i+1] = η

[i] +w[i+1] − u[i+1]. (26)

• Updating w: w[i+1] can be obtained using the KKT conditions. We form the Lagrangian function

of Problem (24) with Lagrange multiplier γw as L(w, γw) = wHAww− 2Re
{
wHcw

}
+ ζ ||w−u[i] +

η
[i]||22+γw(w

HDww−PM), and obtain the first-order KKT necessary condition for the optimal w[i+1]

as
∂L(w[i+1],γopt

w )
∂w∗ = (Aw + γopt

w Dw + ζI)w[i+1] − cw + ζ(η[i] − u[i]) = 0. Then, w[i+1] is given by

w[i+1](γopt
w ) =

(
Aw + γopt

w Dw + ζI
)−1

(cw − ζ(η[i] − u[i])). (27)

Function gw(γw) = (w[i+1](γw))
HDww

[i+1](γw) is a monotonically decreasing function of γw. If

gw(0) ≤ PM , then w[i+1] = (Aw + ζI)−1 (cw − ζ(η[i] − u[i])). Otherwise, gw(0) > PM . Based

2Please note that wn
m in Problem (23) is the updated value in each iteration of the MM algorithm, while w

[i+1] in Problem (24) is

the updated value in each iteration of the ADMM method.
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on the complementary condition of γw(gw(γw) − PM) = 0, we need to find a positive γw such

that gw(γw) − PM = 0. Defining γw,1 =
√

(cw−ζ(η[i]−u[i]))HD
−1
w (cw−ζ(η[i]−u[i]))

PM
, we have gw(γw,1) <

(γw,1)
−2 (cw−ζ(η[i]−u[i]))HD−1

w (cw−ζ(η[i]−u[i])) = PM . Then, a unique γopt
w ∈ (0, γw,1) must exist

such that gw(γ
opt
w ) = PM , and thus γopt

w can be found by using a one-dimensional search.

• Updating u: The optimization problem in (25) is equivalent to

min
u

||w− u+ η||22 s.t. 1 ≤ |um|2≤ amax, ∀m. (28)

Its solution is given by u[i+1] = [|w[i+1] + η
[i]|]

√
amax

1 exp(j 6 (w[i+1] + η
[i])), where operator |·| returns

the elementwise absolute value and operator [x]uu maps x elementwise onto the interval [u, u].

E. Algorithm Development

Under the MM framework, the solution F of Problem (14) and the solution w of Problem (23) in each

AO iteration can be obtained with low complexity using the proposed KKT-based and ADMM methods,

respectively. The convergence speed of the MM algorithm will be affected by the tightness of the

lower bound of the original objective function given in Lemma 2. Thus, an acceleration method, called

SQUAREM [34], is adopted to accelerate the MM-based algorithm, as is summarized in Algorithm

1. FF (Fn) in Step 9 and Fw (wn) in Step 20 represent the objective function values of Problem (14)

and Problem (23) in the n-th iteration, respectively.

PF (·) in Step 8 and Pw(·) in Step 19 are projection operations onto the nonlinear constraint sets of

F and w, respectively, which ensure the feasibility of the updated solutions. The projection operation

is defined as P(x) = argminz∈S||z − x||22, where S is the constraint set of z [35, Equ. (4.4.13)].

Therefore, for the power constraint set of F, PF (·) is obtained as follows

PF (X) = argmin
F

||F−X||F s.t. (14b), (14c). (29)

and for the power and amplification gain constraints of w, Pw(·) is obtained as follows

Pw(x) = argmin
w

||w− x||2 s.t. (22b), (22c). (30)

Steps 9 to 12 and Steps 20 to 23 are used to maintain the monotonicity of the objective function

values.

F. Complexity Analysis

Algorithm 1 requires solving Problem (14) and Problem (23). In the following complexity analysis,

we neglect terms with low-order complexity. To solve Problem (14), we first need to calculate AF and
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Algorithm 1 Low-complexity MM algorithm

Initialize: Initialize F0 and w0. Set n = 1

1: repeat

2: Set w = wn−1

3: Obtain F1 from Problem (14) based on Fn−1

4: Obtain F2 from Problem (14) based on F1

5: R1 = F1 − Fn−1

6: R2 = F2 − F1 −R1

7: ωF = − ||R1||F
||R2||F

8: Fn = −PF (F
n−1 − 2ωFR1 + ω2

FR2)

9: while FF (F
n) < FF (F

n−1) do

10: ωF = (ωF − 1)/2

11: Fn = −PF (F
n−1 − 2ωFR1 + ω2

FR2)

12: end while

13: Set F = Fn

14: Obtain w1 from Problem (23) based on wn−1

15: Obtain w2 from Problem (23) based on w1

16: r1 = w1 −wn−1

17: r2 = w2 −w1 − r1

18: ωw = − ||r1||2
||r2||2

19: wn = −Pw(w
n−1 − 2ωwr1 + ω2

wr2)

20: while Fw (wn) < Fw (wn−1) | do

21: ωw = (ωw − 1)/2

22: wn = −Pw(w
n−1 − 2ωwr1 + ω2

wr2)

23: end while

24: n = n+ 1

25: until |FF (Fn)− FF (Fn−1) |→ 0 and |Fw (wn)− Fw (wn−1) |→ 0
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DF , which have computational complexity orders of O(M2NK+MNK) and O(M2NK), respectively.

The calculation of CF is similar to that of AF . Then, the inverse operation in (17) has complexity

O(M3). Therefore, the approximate computational complexity of solving Problem (14) is O(M3 +

M2NK + MNK), where constant coefficients are ignored. The computational complexity of the

ADMM algorithm used for solving Problem (23) is mainly determined by the calculation of Aw,

Dw, and the inverse operation in (27), which have complexities of O(MNK2 +M2NK), O(MNK),

and O(M3), respectively. Also, computing cw involves similar steps as computing Aw. Neglecting

the constant coefficients, the approximate complexity of the ADMM algorithm is given by O(M3 +

MNK2+M2NK+MNK). Thus, the approximate complexity of Algorithm 1 per iteration is O(M3+

MNK2 +M2NK +MNK).

G. Convergence Analysis

Next, we analyze the convergence of the proposed algorithm. The monotonic convergence of the MM

algorithm has been proved in [32] and [36]. In the following, we prove the monotonic convergence

of Algorithm 1. Let f(F,w) =
∑K

k=1 R̄k (F,w) denote the objective value of Problem (10) and

f̃(F,w) =
∑K

k=1 R̃k (F,w) represent its minorizer. In the nth iteration, given wn, we have

f(Fn,wn) = f̃(Fn,Fn) ≤ f̃(Fn+1,Fn) ≤ f(Fn+1,wn),

where the first equality follows from condition (A1), the first inequality is due to the optimal solution

of Problem (14), and the second inequality follows from condition (A2). Subsequently, given Fn+1, it

is straightforward to show that

f(Fn+1,wn) = f̃(wn,wn) ≤ f̃(wn+1,wn) ≤ f(Fn+1,wn+1).

Therefore, the sequence of objective values {f(Fn+1,wn+1)} generated by the AO algorithm is mono-

tonically non-decreasing. Since F belongs to a convex set, every limit point of Fn is a d-stationay

point of Problem (10) [22]. Furthermore, since w belongs to a non-convex set, every limit point of

wn is a B-stationay point of Problem (10) [22].

IV. OUTAGE CONSTRAINED AVERAGE POWER MINIMIZATION

In the previous section, we have investigated the average rate maximization problem for the practical

case where only partial CSI of the RIS-aided channels is available. However, this problem formulation

cannot guarantee the QoS of the individual users and outages may occur in an uncontrolled manner.

Thus, in order to ensure the QoS of the individual users, in this section, we jointly optimize the
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beamforming matrices at both the BS and the RIS to guarantee that the probability that the instantaneous

achievable rate of each user exceeds a target rate is larger than a predefined value, while minimizing

the total transmit power consumption comprising the BS transmit power and the average RIS transmit

power. To obtain a tractable problem formulation, the outage probability constraint is approximated by

the BTI, and then an SDR-based AO algorithm is proposed to optimize the beamforming matrices.

A. Problem Formulation

The proposed optimization problem is formulated as follows

min
F,w

||F||2F+EHdr|Gk

{
||ΛwHdrF||2F

}
+ ||Λw||2Fσ2

z (31a)

s.t. Pr{Rk(F,w) ≥ rk} ≥ 1− ρk, ∀k, (31b)

1 ≤ |wm|2≤ amax, ∀m, (31c)

where (31b) ensures that the probability that each user can successfully decode its message for a data

rate of rk is no less than 1 − ρk, where ρ1, · · · , ρK ∈ (0, 1] are the corresponding maximum outage

probabilities.

B. Problem Reformulation

Problem (31) is computationally intractable since outage probability constraint (31b) does not have

a analytical expression. Therefore, we safely approximate (31b) by some easy-to-handle constraints by

exploiting the following lemma.

Lemma 3 (Bernstein-Type Inequality: Lemma 1 in [37]) Assume f(x) = xHUx + 2Re{uHx} + u,

where U ∈ Hn×n, u ∈ Cn×1, u ∈ R, and x ∈ Cn×1 ∼ CN(0, I). Then, for any ρ ∈ [0, 1], the following

approximation holds:

Pr{xHUx+ 2Re{uHx}+ u ≤ 0} ≥ 1− ρ (32a)

⇒Tr {U}+
√

2 ln(1/ρ)x− ln(ρ)λ+
max(U) + u ≤ 0 (32b)

⇒





Tr {U}+
√
2 ln(1/ρ)x− ln(ρ)y + u ≤ 0

√
||U||2F+2||u||22 ≤ x

yI−U � 0, y ≥ 0,

(32c)

where λ+
max(U) = max(λmax(U), 0) and λmax(U) denotes the maximum eigenvalue of U. x and y are

slack variables.
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Please refer to [37] for a proof of Lemma 3.

To utilize Lemma 3, the outage probability in (31b) is firstly reformulated into the form of (32a):

Pr {Rk(F,w) ≥ rk} = Pr
{
w̃HHkΦkH

H
k w̃ − ||hH

r,kΛw||22σ2
z − σ2

k ≥ 0
}
, (33)

where

Φk = fkf
H
k /(2

rk − 1)− F−kF
H
−k, (34a)

F−k = [f1, ..., fk, fk+1, ..., fK ]. (34b)

Substituting (5) and h̃r,k = Σ
1/2
r,k er,k into (33), we have

Pr {Rk(F,w) ≥ rk} = Pr
{
eHr,kUker,k + 2Re{uH

k er,k}+ uk ≤ 0
}
,

where

Uk =
βk

δk + 1
Σ

1/2
r,k Λ

a
RISΣ

1/2
r,k , (35a)

uk =
βk

√
δk

δk + 1
Σ

1/2
r,k Λ

a
RISh̄r,k, (35b)

uk =
βkδk
δk + 1

h̄H
r,kΛ

a
RISh̄r,k −

1

σ2
z

(
w̃HHkΦkH

H
k w̃ − σ2

k

)
. (35c)

Furthermore, the following theorem is provided to facilitate the subsequent derivations.

Theorem 1 Given matrices A ∈ CN×N , b ∈ CN , and C ∈ CN×N , we have

Tr {ADiag(b)CDiag(b)} = bT(AT ⊙C)b. (36)

Proof: Please refer to Appendix A. �

Then, we establish the following identities:

Tr {Uk} =
βk

δk + 1
Tr {Λa

RIS} , (37a)

||Uk||2F =

(
βk

δk + 1

)2

Tr {Σr,kΛ
a
RISΣr,kΛ

a
RIS}

=

(
βk

δk + 1

)2

pT
RIS(Σ

T
r,k ⊙Σr,k)pRIS, (37b)

||uk||22 =
(
βk

√
δk

δk + 1

)2

Tr
{
h̄r,kh̄

H
r,kΛ

a
RISΣr,kΛ

a
RIS

}

=

(
βk

√
δk

δk + 1

)2

pT
RIS((h̄

∗
r,kh̄

T
r,k)⊙Σr,k)pRIS, (37c)

λ(Uk) = λ

(
βk

δk + 1
Σ

1/2
r,k Λ

a
RISΣ

1/2
r,k

)



19

=
βk

δk + 1
λ(Σr,kΛ

a
RIS), (37d)

where pRIS = diag(Λa
RIS). Equations (37b) and (37c) are obtained based on Theorem 1.

Therefore, applying Lemma 3, constraint (31b) can be approximated as follows




βk

δk+1
Tr {Λa

RIS}+
√

2 ln(1/ρk)xk − ln(ρk)yk +
βkδk
δk+1

h̄H
r,kΛ

a
RISh̄r,k

− 1
σ2
z

(
w̃HHkΦkH

H
k w̃ − σ2

k

)
≤ 0, ∀k,

βk

δk+1
||C1/2

k pRIS||≤ xk, ∀k,
ykI− βk

δk+1
Σr,kΛ

a
RIS � 0, ∀k,

yk ≥ 0, ∀k,

(38)

where Ck =
(
ΣT

r,k + 2δk(h̄
∗
r,kh̄

T
r,k)
)
⊙Σr,k, and x = [x1, · · · , xK ]

T and y = [y1, · · · , yK ]T are auxiliary

variables.

Using P (F,w), defined in (8), and the analytical constraints in (38), Problem (31) can be equivalently

transformed into

min
F,w,x,y

||F||2F+P (F,w) (39a)

s.t. (38),

1 ≤ |wm|2≤ amax, ∀m. (39b)

To overcome the coupling of variables F and w, we employ AO to solve Problem (39). The resulting

non-convex subproblems for F and w are separately relaxed by using SDR [38] and then solved with

CVX in an iterative manner.

C. Optimization of Precoding Matrix F

Given w, we define new variables Γk = fkf
H
k constrained by Γk � 0 and rank(Γk) = 1, ∀k.

Correspondingly, Φk in (34a) can be rewritten as Φk = Γk/(2
rk − 1)−

∑K
i=1,i 6=k Γi, and the objective

function in (39a) can be re-expressed as

||F||2F+P (F) = Tr

{
(I+DF )

K∑

k=1

Γk

}
+ σ2

zTr {Λa
RIS} . (40)

Since constraint rank(Γk) = 1 is non-convex and hard to be tackled directly. We adopt the SDR

technique, that is, we first obtain an intermediate solution by dropping the rank-one constraint, and

then construct a rank-one optimal solution from the intermediate solution. Specifically, by removing

the rank-one constraints, the relaxed subproblem for Γ = [Γ1, · · · ,ΓK ] of Problem (39) is given by

min
Γ,x,y

Tr

{
(I+DF )

K∑

k=1

Γk

}
(41a)
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s.t. (38),

Γk � 0, ∀k, (41b)

where we have omitted all irrelative constant terms that do not depend on Γ. Problem (41) is a standard

SDP and can be solved using CVX. The following theorem further reveals the tightness of SDR for

Problem (41), the proof of which can be found in [39, Appendix C].

Theorem 2 Assuming that the relaxed Problem (41) is feasible, there always exists a feasible solution

{Γ⋆
k}Kk=1 satisfying rank(Γ⋆

k) = 1, ∀k.

Based on Theorem 2, the optimal BS beamforming vectors {f⋆k}Kk=1 can be obtained from {Γ⋆
k}Kk=1

via eigenvalue decomposition.

D. Optimization of Reflection Vector w

Next, we consider the subproblem of solving w for a given F. We introduce auxiliary variable

W̃ = w̃w̃H with constraints W̃ � 0 and rank(W̃) = 1, thus Λa
RIS defined in (8) and pRIS defined in

(37) can be expressed as Λa
RIS = Diag(diag([W̃]1:M,1:M)) and pRIS = diag([W̃]1:M,1:M), respectively.

Correspondingly, the objective function in (21) and the constraints in (38) are equivalent to

P (W̃) = wHDww = Tr
{
DwDiag(diag([W̃]1:M,1:M))

}
, (42)

and 



βk

δk+1
Tr
{
Diag(diag([W̃]1:M,1:M))

}
+
√

2 ln(1/ρk)xk − ln(ρk)yk

− 1
σ2
z

(
Tr
{
HkΦkH

H
k W̃

}
− σ2

k

)
≤ 0, ∀k,

βk

δk+1
||C1/2

k diag([W̃]1:M,1:M)||≤ xk, ∀k,
ykI− βk

δk+1
Σr,kDiag(diag([W̃]1:M,1:M)) � 0, ∀k,

yk ≥ 0, ∀k.

(43)

Adopting again the SDR technique and removing non-convex constraint rank(W̃) = 1, we obtain the

rank-relaxed subproblem for W̃ of Problem (39) by ignoring irrelevant constants as follows

min
W̃,x,y

P (W̃) (44a)

s.t. (43),

1 ≤ [diag(W̃)]m ≤ amax, 1 ≤ m ≤ M, (44b)

[diag(W̃)]M+1 = 1, (44c)
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W̃ � 0, (44d)

which is a standard SDP and can be solved using CVX. Since the diagonal elements of W̃ are

independently constrained in (44b) and (44c), the optimal solution, W̃⋆, of (44) may not be rank-one.

Therefore, only a suboptimal w̃⋆ can be constructed from W̃⋆ by using the Gaussian decomposition

technique. Specifically, we consider the eigenvalue decomposition of W̃⋆, W̃⋆ = EΥEH, where

the columns of E are the eigenvectors of W̃⋆, and diagonal matrix Υ contains the corresponding

eigenvalues. Then, we compute 1000 candidate vectors, {vi = EΥ1/2ei/[EΥ
1/2ei]M+1}1000i=1 with

ei ∼ CN(0, IM+1), such that each vi satisfies the QoS constraints. Then, the vi that minimizes the total

power consumption is selected as the optimal w̃⋆. In order to ensure convergence of the proposed AO

algorithm, in each iteration, we need to find a w̃⋆ that decreases the objective function value compared

with the previous iteration, see Section IV-F. This can always be achieved empirically by generating

a sufficient number of trial vectors for Gaussian randomization.

E. Computational Complexity

As CVX employs the interior point method, the computational complexity of solving Problems (41)

and (44) is given by [40]

O((

J∑

j=1

cj + 2I)1/2n(n2 + n

J∑

j=1

c2j +

J∑

j=1

c3j

︸ ︷︷ ︸
due to LMI

+ n

I∑

i=1

v2i

︸ ︷︷ ︸
due to SOC

)),

where n is the number of variables, J is the number of linear matrix inequalities (LMIs) of size cj ,

and I is the number of second-order cone (SOC) constraints of size vi. For Problem (41), the number

of variables is n1 = NK, (38) only contains linear contraints, and (41b) contains K LMIs of size N .

Therefore, the approximate complexity of Problem (41) is oF = O([KN ]1/2n1[n
2
1 + n1KN2 +KN3]).

For Problem (44), there are n2 = M variables, K LMIs of size M and K SOC of size M in (43),

and one LMI of size M +1 in (44d). The remaining constraints are linear. Therefore, the approximate

complexity of Problem (44) is oe = O([KM +2K]1/2n2[n
2
2 +2n2KM2 +KM3]) by neglecting terms

with low-order complexity. Finally, the approximate complexity per iteration is oF + oe.

F. Convergence Analysis

Finally, we analyze the convergence behavior obtained by alternately solving Problems (41) and (44)

for solving Problem (39). Let g(F,w) denote the objective value of Problem (39). Given wn in the

nth iteration, we have

g(Fn,wn) ≥ g(Fn+1,wn),
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Fig. 2: The simulation system setup.

as we can find the global optimal solution for Problem (41) based on Theorem 2. Then, given Fn+1,

we can always find a wn+1 for Problem (44) satisfying

g(Fn+1,wn) ≥ g(Fn+1,wn+1)

by using the Gaussian decomposition technique. Therefore, the sequence of objective values

{g(Fn+1,wn+1)} generated in an alternating manner is monotonically non-increasing. Thus, the ob-

tained solutions are stationary points of Problem (39).

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the performance of an active RIS-aided

system, where the BS and an active or passive RIS are located at (0 m, 0 m) and (xRIS m, 10 m), as

shown in Fig. 2. K users are randomly and uniformly distributed in a circle with a radius of 5 m and

centered at (100 m, 0 m). The large-scale pathloss coefficients are modelled as β = −PL0−10α log10(d)

dB, where d is the link distance in meters and α is the pathloss exponent which is set to 3.5 and 2 for

the BS-user and the RIS-aided links, respectively. PL0 = 40 dB denotes the pathloss at a distance of 1

meter, i.e., we assume a carrier frequency of 3.5 GHz [41]. Unless specified otherwise, the BS and the

RIS are equipped with N = 8 antennas and M = 32 reflecting elements, respectively, the maximum

amplification gain of the RIS is assumed to be amax = 40 dB, the Rician factors are δ0 = ... = δK =

δ = 10, and the noise power at the RIS and the users are set to σ2
z = σ2

1 = ... = σ2
K = −80 dBm.

Compared with passive RISs, the power comsumed by active RISs also includes the transmit power

and the circuit power for amplification. Thus, the maximum total RIS power consumption is given by

PRIS = PM +Pcir. Here, the circuit power Pcir = M(Pc+PDC) comprises the power consumed by the

phase shifters and the control circuits of the RIS elements, Pc, and the DC biasing power, PDC, used

to drive the amplifies of the active RIS elements. For consistency, the circuit power of each RF chain,

PRF, is also accounted for in the maximum BS power comsumption, denoted by PBS = PN +NPRF.

According to [9], we set PDC = −5 dBm, Pc = −10 dBm, and PRF = 23 dBm.
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Fig. 3: The convergence behaviour of different algorithms for 1 randomly generated channel realization, when N = 8,

M = 32, and a
max

= 40 dB.

A. Maximum Achievable Rate

In this subsection, we evaluate the ergodic achievable rate of the active RIS-aided system as discussed

in Section III for 500 independent realizations of {hk,Gk}Kk=1, except for the convergence analysis in

Fig. 3. We denote the ergodic achievable rate obtained by averaging the lower bound on the average

achievable rate in (7) 3 and the corresponding instantaneous achievable rate in (6) over all channel

realizations as “Act. RIS-LB” and “Act. RIS”, respectively. For comparison, we also consider an upper

bound for “Act. RIS”, denoted as “Act. RIS-perfect”, for which we assume the availability of perfect

CSI, and a corresponding lower bound, denoted as “Act. RIS-non-robust”, for which we ignore the

NLoS components of the RIS-aided channels in (6) for beamformer design. In addition, systems with

passive RIS and without RIS are also considered as performance benchmarks, and are denoted as “Pas.

RIS” and “No RIS”, respectively. We determine the total power consumption of the active RIS-aided

system as PBS + PRIS, that of the passive RIS-aided system as PBS + MPc, and that of the system

without RIS as PBS. For a fair comparison, the maximum total power consumption is set to the same

value for all considered schemes.

Fig. 3 illustrates the convergence and complexity of the proposed Algorithm 1, denoted as “Pro.

Alg. 1”, where the RIS is located at (80 m, 10 m). An SOCP-based algorithm is considered as a

3The ergodic achievable rate and the average achievable rate should not be confused: the latter is given by Eh
r,k|Gk

{Rk(F,w)} in

(7), while the former is given by Ehk,Gk
{Rk(F,w)} = Ehk,Gk

{Eh
r,k|Gk

{Rk(F,w)}}.
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benchmark algorithm, denoted as “SOCP Alg.”. For the “SOCP Alg.”, auxiliary variables are introduced

to transfer the non-concave rate expression in the objective function to the constraints, and then SCA

is used to handle the non-convex constraints. The resulting SOCP problem with multiple constraints

can be directly solved using CVX. An SOCP based algorithms can handle optimization problems with

multiple and complex constraints, but for a large number of variables, their complexity becomes high.

As can be seen in Fig. 3(a), “SOCP Alg.” converges faster than “Pro. Alg. 1” if the number of users

is small (K = 1, 2), while it loses its advantage for large numbers of users (K = 3, 4, 5). Fig. 3(b)

shows that the CPU time consumed by “Pro. Alg. 1” is significantly smaller than that of “SOCP Alg.”,

especially when the number of users is large. This is because the number of variables in multi-user

systems is high, which causes a high computational complexity per interation in “SOCP Alg.”, while

the complexity per iteration of Algorithm 1, benefiting from semi-closed-form solutions, is low and

not sensitive to the number of variables.
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Fig. 4: Achievable rate versus number of users, when N =

8, M = 32, and amax = 40 dB.
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Fig. 5: Achievable rate versus the number of RIS elements,

when N = 8 and K = 4.

Fig. 4 investigates the ergodic achievable rate for RIS-aided systems as a function of the number

of users. Here, PBS and PRIS are set to 2.6 W and 0.1 W, respectively. First, as can be observed,

the ergodic achievable rate of “Act. RIS-LB” is only slightly lower than that of “Act. RIS”, when the

RIS-aided channels follow a Rayleigh distribution (δ = 0). When the Rician factor increases to 10,

which means a reduction of the uncertain NLoS components, the ergodic achievable rate of “Act. RIS-

LB” is almost equal to that of “Act. RIS”. This confirms the tightness of the proposed lower bound

expression in (7). Furthermore, the ergodic achievable rates for “Act. RIS” and “Act. RIS-perfect”

are almost the same in the single-user case, and the gap between them increases with the number of
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users. This is because the negative impact of partial CSI becomes more significant as the number of

users increases. Finally, the proposed “Act. RIS” always outperforms “Act. RIS-non-robust”, which

reveals that a robust design is needed and that the proposed problem formulation and the corresponding

algorithm can efficiently mitigate the performance loss caused by partial CSI.

The ergodic achievable rate as a function of the number of RIS elements is shown in Fig. 5 for

K = 4 users and with a passive or active RIS fixed at (80 m, 10 m). It is observed that the improvement

in ergodic achievable rate provided by the active RIS is affected by the amplification gain αmax and

the RIS power consumption PRIS. First, for amax = 40 dB, increasing PRIS from 0.0316 W to 1 W

yields little performance improvement, which means that each reflecting element is operating with the

maximum amplification gain in this scenario, i.e., amax = 40 dB limits the RIS power consumption

even for PRIS = 0.0316 W. For amax = 60 dB, increasing PRIS to 1 W yields a further improvement

in the ergodic achievable rate. Next, for PRIS = 0.0316 W, more RIS reflecting elements may actualy

reduce the ergodic achievable rate. This is because the RIS circuit power consumption increases with

the number of RIS elements, and as a result, the available RIS transmit power decreases and leads to

a performance loss for PRIS = 0.0316 W. Although the available RIS transmit power is also reduced

for PRIS = 1 W, the remaining transmit power is sufficient to support the additional RIS elements to

achieve a performance improvement due to the resulting increased beamforming gain. Furthermore,

for PRIS = 0.1 W, the performance gap between “Act. RIS” and “Act. RIS-perfect” increases with the

number of RIS reflecting elements, which reveals a higher performance loss for RIS-aided channels

with more coefficients due to the higher impact of the imperfection caused by partial CSI. Nevertheless,

compared to “Act. RIS-non-robust”, the proposed “Act. RIS” can still efficiently mitigate the uncertainty

of the partical CSI. Finally, for M = 64 and a total power consumption of 2.7 W, compared with the

No RIS scenario, the passive RIS yields a maximum performance gain of 59.96%, while the active

RIS with amax = 40 dB and amax = 60 dB achieves performance gains of 543.27% and 688.57%,

respectively.

B. Minimum Average Power

The minimum average power consumption investigated in Section IV is evaluated in this subsection.

Each point in the following figures is obtained by averaging over 500 independent channel realiza-

tions. The maximum outage probabilities and target rates of all users are respectively assumed to be

identical, i.e., ρ1 = ... = ρK = ρ = 0.05 and r1 = ... = rK = r. For a fair comparison, the total

achievable power consumption including the total transmit power and the circuit power consumption,

i.e., ||F||2F+P (F,w) +M(Pc + PDC) +NPRF, is adopted as performance metric. For the benchmark
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Fig. 6: Total power consumption and outage probability versus the number of RIS elements, when N = 8, K = 4, ρ = 0.95,

and r = 5 bps/Hz.

“Act. RIS-non-robust”, the beamformer in Problem (39) is obtained by ignoring the NLoS components

of the RIS-aided channels.

Fig. 6 shows the minimum total power consumption and the outage probability versus the number

of RIS elements for a multi-user system (K = 4), wherein the target rate of each user is r = 5

bps/Hz. The other parameters are set to the same values as for Fig. 5. First, as can be observed in Fig.

6(a), an RIS equipped with only 16 active elements can reduce the total power consumption by 90%

compared to the “No RIS” scenario, while an RIS with 16 passive elements can reduce the total power

consumption by only 33%. Increasing the number of active reflecting elements further to M = 64 can

reduce the total power consumption by 92%, compared to the case without RIS. Second, the “Act.

RIS-non-robust” scheme consumes the least power as the NLoS components of RIS-user links are

ignored for beamformer design. However, this comes at the expense of a high outage probability, cf.

Fig. 6(b).

To further demonstrate the effectiveness of the proposed “Act. RIS”, Fig. 6(b) compares the outage

probabilites of “Act. RIS” and “Act. RIS-non-robust”. In particular, the outage probability for each

channel realization {hk,Gk}Kk=1 is calculated as follows: For a given channel realization {hk,Gk}Kk=1,

1000 conditional channel realizations {(Hdr, {hr,k}Kk=1)
(z)}1000z=1 are drawn from their distributions. Then,

the outage probability is defined as the ratio of the number of outage conditional channel realizations

to the total number of conditional channel realizations, where an outage is declared when the target
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Fig. 7: Average power consumption versus RIS location, when N = 8, M = 8, K = 1, ρ = 0.95, and r = 10 bps/Hz.

rate of at least one user cannot be satisfied. Fig. 6(b) reveals that system outages occur frequently with

“Act. RIS-non-robust”, especially for low values of M (M ≤ 48) due to low spatial diversity gain.

However, the proposed “Act. RIS” scheme can effectively control the system outage probability to a

very low level and meets the required outage probability, i.e., ρ = 0.05, for M ≥ 16. This illustrates

the ability of the proposed scheme to mitigate the uncertainties of partial CSI.

To investigate the impact of the location of the RIS on the total power consumption and the outage

probability, Fig. 7 considers only a single user located at (100 m, 0 m), cf. Fig. 2. First, compared

with the “No RIS” scenario, the “Pas. RIS” system can reduce the total power consumption by 31% ∼
55.47%, while the total power consumption reduction in the “Act. RIS” system is considerably higher

and reaches 92%, as shown in Fig. 7(a). Second, the “Pas. RIS” system has the worst performance

if it is placed in the middle of the BS-user link due to the severe multiplicative fading. On the other

hand, “Act. RIS” can siginificantly mitigate the impact of multiplicative fading in the middle of the

BS-user link and yields a better performance. Finally, the total power consumption of the proposed

“Act. RIS” scheme and “Act. RIS-non-robust” are almost the same, cf. Fig. 7(a), but, “Act. RIS” yields

zero outage probability, cf. Fig. 7(b), which again underscores the benefit of the proposed scheme in

mitigating the uncertainties introduced by CSI.

VI. CONCLUSIONS

In this work, we have addressed the practical problem that perfect individual CSI knowledge of the

RIS-aided channels in active RIS systems is not available. Considering this limitation, we have derived
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analytical expressions for the average achievable rate and the average RIS transmit power taking into

account the partial CSI knowledge of the individual RIS-aided channels. To address the uncertainty

caused by the partial CSI, we formulated joint BS and RIS beamforming optimization problems to

respectively maximize the average sum achievable rate and minimize the average total transmit power

subject to rate outage probability constraints. For the average sum achievable rate maximization prob-

lem, a computationally efficient AO algorithm exploiting closed-form expressions in every iteration has

been proposed under the MM framework. Furthermore, to facilitate the beamforming design for average

transmit power minimization, we adopted the BTI to bound the rate outage probability constraints.

Subsequently, an AO algorithm with guaranteed convergence was developed by exploiting SDR. Our

simulation results confirmed that the proposed design for average achievable rate maximization closely

approaches the performance obtained for perfect CSI. Moreover, our results revealed that compared to

the non-robust scheme ignoring the unknown NLoS components, the proposed rate outage constrained

design guarantees the QoS of each user.

APPENDIX A

THE PROOF OF THEOREM 1

To prove Property 1, we exploit vec(ADiag(b)C) = (CT ⋄A)b [35, Equ. (1.11.21)]. Then, we have

Tr {ADiag(b)CDiag(b)} =
(
vec(CTDiag(b)AT)

)T
vec(Diag(b))

=
(
(A ⋄CT)b

)T
vec(Diag(b)) (45)

= bT(A ⋄CT)Tvec(Diag(b))

= bT(AT ⊙C)b, (46)

where (45) is due to property vec(ADiag(b)C) = (CT ⋄A)b, and (46) is due to

(A ⋄CT)Tvec(Diag(b)) =




(a1 ⊗ c1)
T

(a2 ⊗ c2)
T

...

(aN ⊗ cN)
T



vec(Diag(b))

=




(a1 ⊙ c1)
T

(a2 ⊙ c2)
T

...

(aN ⊙ cN)
T



b

= (AT ⊙C)b,
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where A =
[
a1 a2 · · · aN

]
and CT =

[
c1 c2 · · · cN

]
.

Thus, Theorem 1 is proved.

REFERENCES

[1] G. Zhou, C. Pan, and H. Ren, “Active reconfigurable intelligent surface aided communication with partial CSI,” The 14th

International Conference on Wireless Communications and Signal Processing (WCSP 2022), accepted.

[2] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE

Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[3] C. Pan, H. Ren, K. Wang et al., “Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research

directions,” IEEE Commun. Mag., vol. 59, no. 6, pp. 14–20, Jun. 2021.

[4] X. You, C.-X. Wang, J. Huang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new

paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1, pp. 1–74, 2021.

[5] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research

problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May/Jun. 2020.

[6] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based modeling and scalable optimization of large intelligent reflecting

surfaces,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, Apr. 2021.

[7] C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, “Intelligent reflecting surface aided MIMO

broadcasting for simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1719–

1734, Jun. 2020.

[8] H. Shen, W. Xu, S. Gong, Z. He, and C. Zhao, “Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna

communications,” IEEE Commun. Lett., vol. 23, no. 9, pp. 1488–1492, Jun. 2019.

[9] R. Long, Y. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE

Trans. Wireless Commun., vol. 20, no. 8, pp. 4962–4975, Aug. 2021.

[10] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in

6G?” 2021. [Online]. Available: https://arxiv.org/abs/2103.15154

[11] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power

budget?” IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, May 2022.

[12] C. You and R. Zhang, “Wireless communication aided by intelligent reflecting surface: Active or passive?” IEEE Wireless Commun.

Lett., vol. 10, no. 12, pp. 2659–2663, Dec. 2021.

[13] D. Xu, X. Yu, D. W. Kwan Ng, and R. Schober, “Resource allocation for active IRS-assisted multiuser communication systems,”

in Proc. 55th Asilomar Conference on Signals, Systems, and Computers, Nov. 2021, pp. 113–119.

[14] P. Zeng, D. Qiao, Q. Wu, and Y. Wu, “Active IRS aided WPCNs: A new paradigm towards higher efficiency and wider coverage,”

2021. [Online]. Available: https://arxiv.org/abs/2111.11600v1

[15] C. Pan, G. Zhou, K. Zhi et al., “An overview of signal processing techniques for RIS/IRS-aided wireless systems,” 2021.

[Online]. Available: https://arxiv.org/abs/2112.05989

[16] S. Shen, B. Clerckx, and R. Murch, “Modeling and architecture design of reconfigurable intelligent surfaces using scattering

parameter network analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1229–1243, Feb. 2022.

[17] Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework,

algorithms, and analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6607–6620, Oct. 2020.

[18] A. L. Swindlehurst, G. Zhou, R. Liu, C. Pan, and M. Li, “Channel estimation with reconfigurable intelligent surfaces-a general

framework,” Proc. IEEE, vol. 110, no. 9, pp. 1312–1338, Sept. 2022.

https://arxiv.org/abs/2103.15154
https://arxiv.org/abs/2111.11600v1
https://arxiv.org/abs/2112.05989


30

[19] Y. Wei, M.-M. Zhao, M.-J. Zhao, and Y. Cai, “Channel estimation for IRS-aided multiuser communications with reduced error

propagation,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2725–2741, Apr. 2022.

[20] X. Wei, D. Shen, and L. Dai, “Channel estimation for RIS assisted wireless communications: Part II - an improved solution based

on double-structured sparsity,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1403–1407, May 2021.

[21] G. Zhou, C. Pan, H. Ren, P. Popovski, and A. L. Swindlehurst, “Channel estimation for RIS-aided multiuser millimeter-wave

systems,” IEEE Trans. Signal Process., vol. 70, pp. 1478–1492, Mar. 2022.

[22] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “Intelligent reflecting surface aided multigroup multicast MISO

communication systems,” IEEE Trans. Signal Process., vol. 68, pp. 3236–3251, Apr. 2020.

[23] X. Yu, D. Xu, and R. Schober, “Enabling secure wireless communications via intelligent reflecting surfaces,” in Pro. IEEE Global

Communications Conference (GLOBECOM), Dec. 2019, pp. 1–6.

[24] S. Zhang and R. Zhang, “Capacity characterization for intelligent reflecting surface aided MIMO communication,” IEEE J. Sel.

Areas Commun., vol. 38, no. 8, pp. 1823–1838, Jun 2020.

[25] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[26] Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, and H. Wymeersch, “Error bounds for uplink and downlink 3D

localization in 5G millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 4939–4954, Aug. 2018.

[27] A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable intelligent surfaces for localization: Position and orientation

error bounds,” IEEE Transactions on Signal Processing, vol. 69, pp. 5386–5402, Aug. 2021.

[28] Y.-C. Liang and F. Chin, “Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA

systems,” IEEE J. Sel. Areas Commun., vol. 19, no. 2, pp. 222–232, Feb. 2001.

[29] E. Björnson and L. Sanguinetti, “Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces,” IEEE

Wireless Commun. Lett., vol. 10, no. 4, pp. 830–834, Apr. 2021.

[30] R. Zhang, S.-H. Leung, Z. Luo, and H. Wang, “Precoding design for correlated MIMO-AF relay networks with statistical channel

state information,” IEEE Trans. Signal Process., vol. 66, no. 22, pp. 5902–5916, Nov. 2018.

[31] Hunter, D. R., and K. Lange, “A tutorial on MM algorithms,” The American Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[32] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine

learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.

[33] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating

Direction Method of Multipliers, Apr. 2011, vol. 3, no. 1.

[34] R. Varadhan and C. Roland, “Simple and globally convergent methods for accelerating the convergence of any EM algorithm,”

Scand. J. Statist., vol. 35, no. 2, pp. 335–353, 2008.

[35] X.-D. Zhang, Matrix Analysis and Applications. Cambridge University Press., 2017.

[36] M. W. Jacobson and J. A. Fessler, “An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms,” IEEE

Trans. Image Process., vol. 16, no. 10, pp. 2411–2422, Oct. 2007.

[37] K. Wang, A. M. So, T. Chang, W. Ma, and C. Chi, “Outage constrained robust transmit optimization for multiuser MISO downlinks:

Tractable approximations by conic optimization,” IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.

[38] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process.

Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[39] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework of robust transmission design for IRS-aided MISO

communications with imperfect cascaded channels,” IEEE Trans. Signal Process., vol. 68, pp. 5092–5106, Aug. 2020.

[40] A. Ben-Tal and A. Nemirovski, (Lectures on modern convex optimization: Analysis, algorithms, and engineering applications).

Philadelphia, PA, USA: SIAM. MPSSIAM Ser. Optim., 2001.

[41] 3GPP, “Technical specification group radio access network; study on 3D channel model for LTE (release 12),” TR 36.873 V12.7.0,

Dec. 2017.


	I Introduction
	II System Model
	II-A Signal Transmission Model
	II-B Channel Model
	II-C Average Achievable Rate and Average RIS Transmit Power

	III Average Achievable rate maximization
	III-A Problem Formulation
	III-B Problem Reformulation
	III-C Optimization of Precoding Matrix F
	III-D Optimization of Reflection Vector w 
	III-E Algorithm Development
	III-F Complexity Analysis
	III-G Convergence Analysis

	IV Outage constrained average power minimization
	IV-A Problem Formulation
	IV-B Problem Reformulation
	IV-C Optimization of Precoding Matrix F
	IV-D Optimization of Reflection Vector w 
	IV-E Computational Complexity
	IV-F Convergence Analysis

	V Numerical results
	V-A Maximum Achievable Rate
	V-B Minimum Average Power 

	VI Conclusions
	Appendix A: The proof of Theorem 1
	References

