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Abstract—In this paper, an intelligent reflecting surface (IRS) is
leveraged to enhance the physical layer security of an integrated
sensing and communication (ISAC) system in which the IRS
is deployed to not only assist the downlink communication for
multiple users, but also create a virtual line-of-sight (LoS) link for
target sensing. In particular, we consider a challenging scenario
where the target may be a suspicious eavesdropper that potentially
intercepts the communication-user information transmitted by the
base station (BS). To ensure the sensing quality while preventing
the eavesdropping, dedicated sensing signals are transmitted by the
BS. We investigate the joint design of the phase shifts at the IRS
and the communication as well as radar beamformers at the BS to
maximize the sensing beampattern gain towards the target, subject
to the maximum information leakage to the eavesdropping target
and the minimum signal-to-interference-plus-noise ratio (SINR)
required by users. Based on the availability of perfect channel state
information (CSI) of all involved user links and the accurate target
location at the BS, two scenarios are considered and two different
optimization algorithms are proposed. For the ideal scenario where
the CSI of the user links and the target location are perfectly
known at the BS, a penalty-based algorithm is proposed to obtain
a high-quality solution. In particular, the beamformers are obtained
with a semi-closed-form solution using Lagrange duality and the
IRS phase shifts are solved for in closed form by applying the
majorization-minimization (MM) method. On the other hand, for
the more practical scenario where the CSI is imperfect and the
target location is uncertain, a robust algorithm based on the S-
procedure and sign-definiteness approaches is proposed. Simulation
results demonstrate the effectiveness of the proposed scheme in
achieving a trade-off between the communication quality and the
sensing quality, and also show the tremendous potential of IRS for
use in sensing and improving the security of ISAC systems.

Index Terms—Intelligent reflecting surface, integrated sensing
and communication, robust design, physical layer security, transmit
beamforming.

I. INTRODUCTION

Driven by emerging applications for high-accuracy sensing

services such as autonomous driving, robot navigation, and

intelligent traffic monitoring, etc., a new paradigm is required

to shift from communication-based network designs to networks

with sensing-communication integration [1]. The research on the

integration of sensing and communication networks has recently

attracted significant attention along the following two directions:

radar-communication coexistence [2] and integrated sensing and

communication (ISAC) [3]. In the former, the radar transceiver

and the communication transmitter are geographically separated,

which usually results in strong co-channel interference and
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requires prohibitive feedback overhead to exchange information

for coordination between two systems. For the latter, the radar

and communication functionalities share a common hardware

platform, which leads to both integration and coordination gains.

Recently, we are witnessing a booming interest from both

academia and industry on ISAC systems due to their reduced

hardware cost, lower power consumption, and more efficient

radio spectrum usage [4]. Based on design priorities and under-

lying requirements, ISAC systems can be classified into three

categories: communication-centric (C&C) designs [5], radar-

centric (R&C) designs [6], and joint waveform designs [7]–

[9]. For C&C design, the sensing functionality is integrated into

the existing communication platform, where the communication

performance has the highest priority. The objective of this

type of design is to exploit the communication waveform to

implement the sensing functionality while satisfying the quality-

of-service (QoS) of the communication users. In contrast to

the C&C design, sensing has the highest priority in R&C

designs. The objective of this approach is to modulate the

information into the sensing waveform to realize the communi-

cation functionality without significantly degrading the sensing

performance. The performance of the two types of designs above

is fundamentally limited by the hardware platforms and signal

processing algorithms and fails to achieve a scalable tradeoff

between sensing and communication. The last category, i.e.,

joint waveform design, creates new waveforms instead of relying

on existing communication or radar waveforms, and provides

additional degrees of freedom (DoFs) to support high data rates

and to improve sensing quality. As an example of the joint

design approach, the authors in [7] revealed that communication-

only waveform design is inferior to the joint design of commu-

nication and radar waveforms in terms of beampattern synthesis,

especially when the number of communication users is less than

the number of targets. However, the ISAC system performance

is significantly deteriorated by unfavorable propagation envi-

ronments with signal blockages, especially for target sensing.

In general, only the reflected echo signals that pass through

line-of-sight (LoS) links are treated as useful information for

sensing while non-LoS (NLoS) links are treated as harmful

interference or clutter. Unmanned aerial vehicles (UAVs) have

been leveraged to assist ISAC systems since the UAV can

establish strong LoS links between the UAV and users/targets

by adjusting its trajectory or deployment [10]–[13]. However,

the UAV-enabled ISAC is not suitable for providing long-term

coverage due to the inherently limited battery capacity available

on a UAV. This raises a new open question: How to provide long-

term and ubiquitous sensing coverage in harsh environments

where the channel links are blocked in the ISAC system?

Recently, intelligent reflecting surface (IRS) technology has

attracted significant attention and is regarded as a promising

technology towards for beyond-fifth-generation (B5G) and sixth-

generation (6G) systems, due to its capability of manipulating
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the wireless propagation environment with low power con-

sumption and hardware cost [14], [15]. Specifically, an IRS

is a two-dimensional planar array comprising a large number

of sub-wavelength metallic units, each of which is able to

independently control the phases and/or amplitudes of imping-

ing signals. Due to the small size of each reflecting unit, a

reasonably-sized IRS can be constructed with a large number

of reflecting elements and can provide significant beamforming

gains to compensate for signal attenuation over long distances

[16]. Motivated by this, IRS technology has been extensively

investigated in the literature for various applications such as mo-

bile edge computing (MEC) [17]–[19], wireless power transfer

[20]–[23], and multi-cell cooperation [24]–[26]. The use of IRS

is very appealing for ISAC since it is able to create virtual LoS

links for both communication and sensing. Some representative

works, see e.g., [27]–[29], have studied the use of IRS for

sensing and verified their potential for enhancing target sensing.

A handful of related works have been conducted on IRS-aided

ISAC in the literature, see [30]–[34], via jointly optimizing

IRS phase shifts and transmit beamformers to increase the

sensing quality while satisfying communication QoS of the

users. However, the above works assumed that the targets are

not attempting to intercept the transmitted signals. In ISAC

systems, the transmitted signals may not only contain sensing

signals but also communication signals, which could be readily

intercepted by malicious targets. The problem of maintaining

the communication QoS and the target sensing performance

while also ensuring limited information leakage to the targets

has received very little attention. Although works [35] and [36]

studied secure transmission designs for ISAC system, the role

of IRS for sensing and communication was not unveiled and

their proposed transceiver designs are also no longer applicable

in the presence of an IRS.

Motivated by the above issues, in this paper we study a secure

IRS-aided ISAC system where the IRS is leveraged to not only

assist the downlink communication from the base station (BS) to

multiple legitimate users, but to also create a virtual LoS link for

target sensing. In addition, we consider a challenging scenario

where the target may be an eavesdropper that desires to intercept

information transmitted by the BS. The main contributions of

this paper are summarized as follows:

• We study an IRS-aided ISAC system for enhancing the

physical layer security and realizing both communication

and sensing. To ensure the sensing quality while preventing

eavesdropping, dedicated sensing signals are transmitted

at the BS. Our objective is to maximize the sensing

beampattern gain by jointly optimizing the communication

beamformers, radar beamformers, and IRS phase shifts,

subject to the maximum tolerable information leakage

to the eavesdropping target and the minimum signal-to-

interference-plus-noise ratio (SINR) required by the users.

Based on whether or not perfect channel state informa-

tion (CSI) and target location information are known by

BS, two different optimization problems are formulated.

Subsequently, two different algorithms are proposed, i.e., a

penalty-based algorithm and a robust algorithm.

• For the ideal scenario where the CSI of the user links

and the target location are known at the BS, the resulting

optimization problem is non-convex due to the presence

of coupled optimization variables in both the objective

function and constraints. In addition, the unit-modulus

constraint imposed on each IRS phase shift renders the

formulated problem more difficult to solve. To address

this difficulty, a penalty-based algorithm is proposed in

which the beamformers are obtained with a semi-closed-

form solution using Lagrange duality and the IRS phase

shifts are obtained with a closed-form solution by applying

majorization-minimization (MM), both of which signifi-

cantly reduce the computational complexity of the penalty-

based algorithm.

• For the more practical scenario where perfect CSI of

communication channels and the target location are not

available at the BS, we design a robust transmission

strategy. The resulting optimization problem involving an

infinite number of constraints is more challenging to solve

than the former one, and the previous penalty-based al-

gorithm is no longer applicable. To solve this optimization

problem, the S-procedure and sign-definiteness approaches

are applied to transform the infinite number of inequalities

into a finite number of linear matrix inequalities (LMIs).

Then, an efficient alternating optimization (AO) algorithm

is proposed that toggles between optimizing the transmit

beamformers and IRS phase shifts.

• Our simulation results verify the effectiveness of the pro-

posed scheme in achieving a trade-off between the commu-

nication quality and the target sensing quality and validate

the tremendous potential of IRS to achieve significant

beampattern gains and guarantee ISAC system security. Our

results also show that dedicated sensing signals are required

to further improve the system performance.

The rest of the paper is organized as follows. Section II

introduces the system model and problem formulations for the

considered IRS-aided secure ISAC system. In Section III, a

penalty-based algorithm is proposed to solve the perfect CSI and

the known-target location case. In Section IV, a robust design

algorithm is proposed to solve the case with imperfect CSI

and uncertain target location. Numerical results are provided

in Section V and the paper is concluded in Section VI.

Notations: Boldface upper-case and lower-case letters denote

matrices and vectors, respectively. Cd1×d2 stands for the set

of complex d1 × d2 matrices. For a complex-valued vector

x, ‖x‖ represents the Euclidean norm of x, arg(x) denotes a

vector containing the phase of the elements of x, and diag(x)
denotes a diagonal matrix whose diagonal elements are given by

the elements of x. (·)T , (·)∗, and (·)H stand for the transpose

operator, conjugate operator, and conjugate transpose operator,

respectively. ‖X‖F and rank (X) represent the Frobenius norm

and rank of X, respectively, and X � 0 indicates that matrix

X is positive semi-definite. A circularly symmetric complex

Gaussian random variable x with mean µ and variance σ2

is denoted by x ∼ CN
(

µ, σ2
)

. ⊗ denotes the Kronecker

product operator and O (·) indicates the big-O computational

complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a secure IRS-aided ISAC system that comprises

a dual-function BS, an IRS, one target of interest,1 and K
single-antenna users, as shown in Fig. 1. The BS is equipped

with a uniform linear array with N transmit antennas, and the

IRS is a uniform planar array with M reflecting elements. For

1Although we consider a single target in this work, the algorithms proposed
for the single-target case are applicable to the multi-target case with only slight
modifications.
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Fig. 1. An IRS-aided secure ISAC system.

convenience, we denote the sets of users, BS transmit antennas,

and IRS reflecting elements as K, N , and M, respectively.

We assume that both information signals and radar signals

are simultaneously transmitted for communication and sensing.

The transmitted signals at the BS can be expressed as

s =

K
∑

k=1

wc,kxc,k +

N
∑

n=1

wr,nxr,n, (1)

where xc,k denotes the information signal for user k assumed

to satisfy xc,k ∼ CN (0, 1) and wc,k ∈ CN×1 represents

its corresponding communication beamformer. Similarly, xr,n

denotes the nth radar signal satisfying E {xr,n} = 0 and

E

{

|xr,n|
2
}

= 1, and wr,n ∈ C
N×1 represents the corre-

sponding radar beamformer. We assume that communication and

radar signals are statistically independent and uncorrelated, i.e.,

E

{

xr,nx
H
c,k

}

= 0, ∀k, n.

1) Communication Model: We consider quasi-static block-

fading channels and focus on a given fading block during which

all the channels involved are assumed to remain unchanged. Let

G ∈ CM×N denote the complex equivalent baseband channel

from the BS to the IRS, hH
r,k ∈ C1×M denote that from the IRS

to user k, and hH
d,k ∈ C1×N denote that from the BS to user k,

k ∈ K. We assume that the CSI of all involved channels, i.e.,

G, diag
(

hH
r,k

)

G, and hH
d,k, is available at the BS by applying

channel estimation methods, e.g., [37]. The signal received at

user k is given by

yk =
(

hH
r,kΘG+ hH

d,k

)

s+ nk, k ∈ K, (2)

where Θ = diag (v1, . . . , vM ) represents the IRS reflection

phase shift matrix and nk ∼ CN
(

0, σ2
k

)

denotes the noise

received at user k. Accordingly, the received SINR at user k
is given by

γk =

∣

∣hH
k wc,k

∣

∣

2

K
∑

i6=k

∣

∣hH
k wc,i

∣

∣

2
+

N
∑

n=1

∣

∣hH
k wr,n

∣

∣

2
+ σ2

k

, k ∈ K, (3)

where hH
k = hH

r,kΘG+ hH
d,k.

2) Radar Sensing and Interception Model: We consider the

scenario where the direct link between the BS and the potential

target is not available due to the blockages. To tackle this issue,

the IRS is leveraged to create a virtual LoS link between the

IRS and the target, thereby establishing an effective BS-IRS-

target link for sensing. Let θ and ϕ denote the azimuth and

elevation angle-of-departure (AoD) from the IRS to the target,

respectively. Accordingly, the steering vector from the IRS to

the target at direction (θ, ϕ) can be expressed as

gH
r = αr

[

1, e−j 2πd
λ

sin θ cosϕ, . . . e−j
2π(Mx−1)d

λ
sin θ cosϕ

]

⊗
[

1, e−j 2πd
λ

sin θ sinϕ, . . . e−j
2π(Mz−1)d

λ
sin θ sinϕ

]

, (4)

where Mx and Mz denote the numbers of reflecting elements

along x-axis and z-axis, respectively, αr represents the large-

scale fading coefficient, λ denotes the wavelength, and d denotes

the spacing between two adjacent reflecting elements. The

received signal at the target is given by

yt = gH
r ΘG

(

K
∑

k=1

wc,kxc,k +

N
∑

n=1

wr,nxr,n

)

+ nt, (5)

where nt ∼ CN
(

0, σ2
t

)

represents the noise received at the

target. As a result, the beampattern gain towards the target is

given by

P = E







∣

∣

∣

∣

∣

gH

(

K
∑

k=1

wc,kxc,k +

N
∑

n=1

wr,nxr,n

)∣

∣

∣

∣

∣

2






= gH

(

K
∑

k=1

wc,kw
H
c,k +

N
∑

n=1

wr,nw
H
r,n

)

g, (6)

where gH = gH
r ΘG.

Since the target is a potential eavesdropper, it tries to decode

information from its received signals. The SINR received at the

target for intercepting user k’s information is given by

γe,k =

∣

∣gHwc,k

∣

∣

2

K
∑

i6=k

|gHwc,i|
2
+

N
∑

n=1
|gHwr,n|

2
+ σ2

t

, k ∈ K. (7)

B. Problem Formulation

The objective of this paper is to maximize the beampattern

gain at the target by jointly optimizing the transmit beamformers

and IRS phase shifts, subject to the minimum SINR required

by users and the maximum tolerable information leakage to the

target. Depending on whether perfect CSI of the communication

channels and the target location are available at the BS, we

consider two scenarios elaborated as below.

1) Perfect CSI and Known Target Location Scenario: In this

scenario, perfect CSI of the communication channels and the

target location are known at the BS. Accordingly, the problem

is formulated as

max
{wc,k,wr,n,vm}

gH

(

K
∑

k=1

wc,kw
H
c,k +

N
∑

n=1

wr,nw
H
r,n

)

g (8a)

s.t. γk ≥ rk,th, k ∈ K, (8b)

γe,k ≤ re,k,th, k ∈ K, (8c)

K
∑

k=1

‖wc,k‖
2
+

N
∑

n=1

‖wr,n‖
2 ≤ Pmax, (8d)

|vm| = 1,m ∈ M, (8e)

where rk,th in (8b) denotes the minimum SINR required by

user k, re,k,th in (8c) represents the maximum tolerable leakage

of user k’s information to the target, Pmax in (8d) stands for

the maximum allowed transmit power at the BS, and constraint

(8e) denotes the unit-modulus constraint imposed on each IRS

phase shift. Note that with constraints (8b) and (8c), the level of

physical layer security of the ISAC system is guaranteed [38].
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2) Imperfect CSI and Uncertain Target Location Scenario:

In this scenario, perfect CSI of the communication channels is

not available at the BS, and the precise location of the target

is unknown but the region of interest for sensing is available,

i.e., Φh = [θ −∆θ, θ +∆θ] and Φv = [ϕ−∆ϕ, ϕ+∆ϕ] are

known, where ∆θ and ∆ϕ represent the azimuth and verti-

cal sensing range, respectively. Defining Fk= diag
(

hH
r,k

)

G

and Fr= diag
(

gH
r

)

G, we can rewrite hH
k = hH

r,kΘG +

hH
d,k=vHFk + hH

d,k and gH = gH
r ΘG = vHFr, where

vH = [v1, . . . , vM ]. The bounded CSI error models for channels

Fk, Fr, and hd,k are respectively given by [39]2

Fk=F̂k+∆Fk, with Fk={∆Fk :‖∆Fk‖F ≤εk} , ∀k, (9)

Fr=F̂r +∆Fr, with Fr = {∆Fr : ‖∆Fr‖F ≤ εr} , (10)

hd,k = ĥd,k +∆hd,k, with Hd,k = {∆hd,k : ‖∆hd,k‖

≤ εd,k} , ∀k, (11)

where Ĝ represents the estimated channel for the BS-IRS

link, F̂k denotes the estimated cascaded channel for user k,

F̂r= diag
(

gH
r

)

Ĝ stands for the estimated cascaded channel

for the target. Accordingly, the problem is formulated as3

max
{wc,k,wr,n,vm}

min
θh∈Φh,
ϕv∈Φv

gH

(

K
∑

k=1

wc,kw
H
c,k +

N
∑

n=1

wr,nw
H
r,n

)

g

(12a)

s.t. γk ≥ rk,th,∆hd,k ∈ Hd,k,∆Fk ∈ Fk, k ∈ K, (12b)

γe,k ≤ re,k,th, θh ∈ Φh, ϕv ∈ Φv,∆Fr ∈ Fr, k ∈ K, (12c)

K
∑

k=1

‖wc,k‖
2
+

N
∑

n=1

‖wr,n‖
2 ≤ Pmax, (12d)

|vm| = 1,m ∈ M. (12e)

The above two problems (8) and (12) are both non-convex due

to the fact that the IRS reflection coefficients are constrained

to be unit modulus, and because the optimization variables

are coupled in both the objective functions and constraints. In

general, there are no standard methods for solving such non-

convex optimization problems optimally. In particular, (12b) and

(12c) involve an infinite number of inequalities, which makes

problem (12) even more difficult to address. In the following,

we first propose a penalty-based algorithm for solving problem

(8) in Section III and then propose an AO algorithm based on

the S-procedure and sign-definiteness approaches for solving

problem (12) in Section IV.

III. PROPOSED SOLUTION FOR PERFECT CSI AND KNOWN

TARGET LOCATION

In this section, we consider the case where perfect CSI

and target location are known at the BS, which pro-

vides a performance upper bound for the case with imper-

fect CSI and uncertain target location. To obtain a high-

quality solution for problem (8), a penalty-based algorithm

is proposed to decouple constraint coupling between the

optimization variables in different blocks. Define auxiliary

variables {yc,k, yr,n, zc,k,i, zr,k,n, i ∈ K, k ∈ K, n ∈ N} and let

2The bounded CSI error models for Fr and G are equivalent since gH
r is a

deterministic LoS channel. For notational simplicity, we use the bounded CSI
error model for Fr in the sequel.

3In this scenario, we drop the direction indices, i.e., θh and ϕv , and use the
notation g to represent g (θh, ϕv) for the brevity.

gHwc,k=yc,k,g
Hwr,n = yr,n,h

H
k wc,i = zc,k,i, and hH

k wr,n =
zr,k,n. Problem (8) can be equivalently transformed as

max
{wc,k},{wr,n},{vm},Ω

∑K

k=1
|yc,k|

2
+
∑N

n=1
|yr,n|

2
(13a)

s.t.
|zc,k,k|

2

K
∑

i6=k

|zc,k,i|
2
+

N
∑

n=1
|zr,k,n|

2
+ σ2

k

≥ rk,th, k ∈ K, (13b)

|yc,k|
2

K
∑

i6=k

|yc,i|
2
+

N
∑

n=1
|yr,n|

2
+ σ2

t

≤ re,k,th, k ∈ K, (13c)

gHwc,k=yc,k,g
Hwr,n = yr,n,h

H
k wc,k = zc,k,i,

hH
k wr,n = zr,k,n, i ∈ K, k ∈ K, n ∈ N , (13d)

(8d), (8e), (13e)

where Ω = {yc,k, yr,n, zc,k,i, zr,k,n}. We then reformulate (13d)

as penalty terms that are added to the objective function (13a)

yielding the following optimization problem

max
{wc,k,wr,n,vm},Ω

∑K

k=1
|yc,k|

2
+
∑N

n=1
|yr,n|

2 −
1

2ρ
×

(

∑K

k=1

∣

∣gHwc,k − yc,k
∣

∣

2
+
∑N

n=1

∣

∣gHwr,n − yr,n
∣

∣

2
+

K
∑

k=1

K
∑

i=1

∣

∣hH
k wc,i−zc,k,i

∣

∣

2
+

K
∑

k=1

N
∑

n=1

∣

∣hH
k wr,n−zr,k,n

∣

∣

2

)

(14a)

s.t. (8d), (8e), (13b), (13c), (14b)

where ρ > 0 represents the parameter that penalizes the

violations of the equality constraints in (13d). To address

problem (14), a penalty-based algorithm comprising two layers

is proposed, where in the outer layer, we gradually update

the penalty parameter, while in the inner loop, we alternately

optimize the variables in different blocks.

A. Inner Layer Optimization

In the inner layer, we divide all the optimization variables

into three blocks: 1) auxiliary variable set Ω, 2) transmit

beamformers {wc,k,wr,n}, and 3) IRS phase shifts {vm}.
1) Optimizing Ω for given {wc,k,wr,n} and {vm}: This

subproblem can be written as

max
Ω

∑K

k=1
|yc,k|

2
+
∑N

n=1
|yr,n|

2 −
1

2ρ
×

(

∑K

k=1

∣

∣gHwc,k − yc,k
∣

∣

2
+
∑N

n=1

∣

∣gHwr,n − yr,n
∣

∣

2
+

K
∑

k=1

K
∑

i=1

∣

∣hH
k wc,i−zc,k,i

∣

∣

2
+

K
∑

k=1

N
∑

n=1

∣

∣hH
k wr,n−zr,k,n

∣

∣

2

)

(15a)

s.t. (13b), (13c). (15b)

Since the optimization variables with respect to (w.r.t.) different

blocks {yc,k, yr,n, ∀k, ∀n} and {zc,k,i, zr,k,n, ∀i, ∀n} for k ∈ K
are separable in both the objective function and constraints,

we can independently solve K + 1 subproblems in parallel.

Specifically, the subproblem corresponding to the kth block

{zc,k,i, zr,k,n, ∀i, ∀n} is given by

min
{

zc,k,i,
zr,k,n

}

K
∑

i=1

∣

∣hH
k wc,i−zc,k,i

∣

∣

2
+

N
∑

n=1

∣

∣hH
k wr,n−zr,k,n

∣

∣

2
(16a)

s.t.
|zc,k,k|

2

K
∑

i6=k

|zc,k,i|
2
+

N
∑

n=1
|zr,k,n|

2
+ σ2

k

≥ rk,th. (16b)
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It is not difficult to see that problem (16) is a quadratically

constrained quadratic program (QCQP) with a convex objective

function and non-convex constraint (16b). Fortunately, it was

shown in [40, Appendix B.1] that strong duality holds for

any optimization problem with a quadratic objective and one

quadratic inequality constraint, provided that the Slater’s condi-

tion holds. Therefore, we can solve problem (16) by solving its

dual problem. Specifically, by introducing dual variable µ1 ≥ 0
associated with constraint (16b), the Lagrangian function of

problem (16) is given by

L1 (zc,k,i, zr,k,n, µ1) =
K
∑

i=1

∣

∣hH
k wc,k − zc,k,i

∣

∣

2
+

N
∑

n=1

∣

∣hH
k wr,n − zr,k,n

∣

∣

2
+ µ1×



rk,th





K
∑

i6=k

|zc,k,i|
2 +

N
∑

n=1

|zr,k,n|
2 + σ2

k



− |zc,k,k|
2



 . (17)

Accordingly, the corresponding dual function is given by

min
zc,k,i,zr,k,n

L1 (zc,k,i, zr,k,n, µ1). It can be readily checked that

to make the dual function bounded, we must have 0 ≤ µ1 < 1.

Taking the first-order derivative of L1 (zc,k,i, zr,k,n, µ1) w.r.t.

zc,k,i and zr,k,n and setting both to zero, we obtain the optimal

solution as

zoptc,k,i (µ1) =







hH
k wc,i

1+µ1rk,th
, i 6= k, i ∈ K,

hH
k wc,k

1−µ1
, i = k,

(18)

zoptr,k,n (µ1) =
hH
k wr,n

1 + µ1rk,th
, n ∈ N . (19)

If constraint (16b) is not met with equality at the optimal

solution, i.e., µopt
1 = 0, then the optimal solutions to problem

(16) are given by zoptc,k,i (0) and zoptr,k,n (0). Otherwise, the optimal

µopt
1 is a positive value (0 < µopt

1 < 1) that satisfies the equality

constraint (16b), i.e.,

rk,th





K
∑

i6=k

∣

∣

∣z
opt
c,k,i

(

µopt
1

)

∣

∣

∣

2

+

N
∑

n=1

∣

∣

∣z
opt
r,k,n

(

µopt
1

)

∣

∣

∣

2

+ σ2
k





−
∣

∣

∣z
opt
c,k,k

(

µopt
1

)

∣

∣

∣

2

= 0. (20)

It can be readily verified that

∣

∣

∣
zoptc,k,i (µ1)

∣

∣

∣

2

for i 6= k and

zoptr,k,n (µ1) are both monotonically decreasing with µ1, while

zoptc,k,k (µ1) is monotonically increasing with µ1 for 0 < µ1 < 1.

As such, the optimal µopt
1 can be obtained by applying a simple

bisection search method between 0 and 1.

The subproblem corresponding to block {yc,k, yr,n, ∀k, ∀n}
is given by

max
{yc,k,yr,n}

K
∑

k=1

|yc,k|
2
+

N
∑

n=1

|yr,n|
2 −

1

2ρ

(

K
∑

k=1

∣

∣gHwc,k − yc,k
∣

∣

2

+
∑N

n=1

∣

∣gHwr,n − yr,n
∣

∣

2
)

(21a)

s.t. (13c). (21b)

It is observed that the objective function (21a) is a difference of

two convex (DC) functions, which is non-convex. To solve it, the

successive convex approximation (SCA) technique is applied.

Specifically, for any given points yrc,k and yrr,n, we have

|yc,k|
2 ≥ −

∣

∣yrc,k
∣

∣

2
+ 2Re

{

yHc,ky
r
c,k

} △
= f lb

1 (yc,k) , ∀k, (22)

|yr,n|
2 ≥ −

∣

∣yrr,n
∣

∣

2
+ 2Re

{

yHr,ny
r
r,n

} △
= f lb

2 (yr,n) , ∀n. (23)

As a result, problem (21) can be approximated as

max
{yc,k,yr,n}

∑K

k=1
f lb
1 (yc,k) +

∑N

n=1
f lb
2 (yr,n)−

1

2ρ
×

∑K

k=1

∣

∣gHwc,k − yc,k
∣

∣

2
+
∑N

n=1

∣

∣gHwr,n − yr,n
∣

∣

2
(24a)

s.t. |yc,k|
2 ≤ re,k,th





K
∑

i6=k

f lb
1 (yc,i)+

N
∑

n=1

f lb
2 (yr,n)+σ2

t



 , ∀k.

(24b)

It can be readily seen that problem (24) is a QCQP, which can

be optimally solved by the interior-point method [40].

2) Optimizing {wc,k,wr,n} for given {vm} and Ω: This

subproblem is given by (dropping irrelevant constants w.r.t.

{wc,k,wr,n})

min
{wc,k},{wr,n}

K
∑

k=1

∣

∣gHwc,k − yc,k
∣

∣

2
+

N
∑

n=1

∣

∣gHwr,n − yr,n
∣

∣

2
+

K
∑

k=1

K
∑

i=1

∣

∣hH
k wc,i−zc,k,i

∣

∣

2
+

K
∑

k=1

N
∑

n=1

∣

∣hH
k wr,n−zr,k,n

∣

∣

2
(25a)

s.t. (8d). (25b)

Note that problem (25) is also a QCQP, which can be solved

by the interior point method but with a high computational

complexity [40]. To reduce the computational complexity, we

obtain a semi-closed-form yet optimal solution for the transmit

beamformers by using the Lagrange duality method. By intro-

ducing the dual variable µ2 ≥ 0 associated with constraint (8d),

the Lagrangian function of problem (25) is given by

L2 (wc,k,wr,n, µ2)=

K
∑

k=1

∣

∣gHwc,k−yc,k
∣

∣

2
+

N
∑

n=1

∣

∣gHwr,n−yr,n
∣

∣

2

+

K
∑

k=1

K
∑

i=1

∣

∣hH
k wc,i − zc,k,i

∣

∣

2
+

K
∑

k=1

N
∑

n=1

∣

∣hH
k wr,n − zr,k,n

∣

∣

2
+

µ2

(

K
∑

k=1

‖wc,k‖
2
+

N
∑

n=1

‖wr,n‖
2 − Pmax

)

. (26)

By taking the first-order derivative of L2 (wc,k,wr,n, µ2) w.r.t.

wc,k and wr,n and setting both to zero, we obtain the optimal

solutions as

w
opt
c,k (µ2) =

(

ggH +
∑K

i=1
hih

H
i + µ2IN

)−1

×

(

yc,kg +
∑K

i=1
zc,i,khi

)

, k ∈ K, (27)

wopt
r,n (µ2) =

(

ggH +
∑K

i=1
hih

H
i + µ2IN

)−1

×

(

yr,ng+
∑K

i=1
zr,i,nhi

)

, n ∈ N . (28)

Note that the optimal solution must be satisfied with the follow-

ing complementary slackness condition [40]

µopt
2

(

P
(

µopt
2

)

− Pmax

)

= 0, (29)

where P
(

µopt
1

)

=
K
∑

k=1

∥

∥

∥w
opt
c,k

(

µopt
2

)

∥

∥

∥

2

+
N
∑

n=1

∥

∥wopt
r,n

(

µopt
2

)∥

∥

2
.

We first check whether µopt
2 = 0 is the optimal solution or not.

If P (0) − Pmax < 0, it means that the optimal dual variable

µopt
2 equals 0; otherwise, the optimal µopt

2 is a positive value

that satisfies P
(

µopt
2

)

− Pmax = 0, and can be obtained as
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follows. Let S = ggH +
K
∑

i=1

hih
H
i , tc,k = yc,kg +

K
∑

i=1

zc,i,khi,

and tr,n = yr,ng +
K
∑

i=1

zr,i,nhi, which implies

∥

∥

∥w
opt
c,k (µ2)

∥

∥

∥

2

= tr
(

(S+ µ2IN )
−2

tc,kt
H
c,k

)

,

∥

∥wopt
r,n (µ2)

∥

∥

2
= tr

(

(S+ µ2IN )−2
tr,nt

H
r,n

)

. (30)

Since S is a positive semi-definite matrix, its eigendecomposi-

tion can be expressed as S = UΣUH . Substituting it into (30)

yields

P (µ2) =

N
∑

i=1

(

UH

(

K
∑

k=1

tc,kt
H
c,k +

N
∑

n=1
tr,nt

H
r,n

)

U

)

i,i

(Σi,i + µ2)
2 . (31)

It can be readily seen that P (µ2) is monotonically decreasing

w.r.t. µ2, which motivates us to apply the bisection method

to search for µ2 satisfying P
(

µopt
2

)

= Pmax. To reduce

the search space, an upper bound of µ2 can be derived as

µup
2 =

√

N
∑

i=1

(

UH

(

K
∑

k=1

tc,kt
H
c,k +

N
∑

n=1
tr,ntHr,n

)

U

)

i,i

/Pmax

by setting Σi,i in (31) to zero.

3) Optimizing {vm} for given {wc,k,wr,n} and Ω: This

subproblem is given by (ignoring the constant terms w.r.t. {vm})

min
{vm}

K
∑

k=1

∣

∣gHwc,k − yc,k
∣

∣

2
+

N
∑

n=1

∣

∣gHwr,n − yr,n
∣

∣

2
+

K
∑

k=1

K
∑

i=1

∣

∣hH
k wc,i−zc,k,i

∣

∣

2
+

K
∑

k=1

N
∑

n=1

∣

∣hH
k wr,n−zr,k,n

∣

∣

2
(32a)

s.t. (8e). (32b)

Although the objective function (32a) is a quadratic function

of v, the unit-modulus constraint imposed on each IRS phase

shift in (8e) is non-convex. Here, we construct an upper-

bounded convex surrogate function for (32a) by applying the

MM algorithm [41], based on which a closed-form solution

for the IRS phase shifts is derived. Specifically, the surrogate

function at any given point vr, denoted by ̟ (v|vr), for a

quadratic function vHAv can be expressed as

̟ (v|vr) = λmaxv
Hv − 2Re

{

vH (λmaxIM −A)vr
}

+ vr,H (λmaxIM −A)vr , (33)

where A ∈ CM×M is positive semi-definite, and λmax is the

maximum eigenvalue of A. As a result, based on vHv = M ,

we can solve the following approximate optimization problem

(ignoring constant terms w.r.t. {vm})

max
vm

Re
{

vHqr
}

(34a)

s.t. (8e), (34b)

where qr =
K
∑

k=1

(

(λmax,1,kIM −Υr,c,k)v
r + yHc,kFrwc,k

)

+
N
∑

n=1

(

(λmax,2,nIM −Υr,r,n)v
r + yHr,nFrwr,n

)

+
K
∑

k=1

K
∑

i=1

((λmax,3,kIM −Υc,k,i)v
r−Ψc,k,i)

+
∑K

k=1

∑N
n=1 ((λmax,4,k,nIM−Υr,k,n)v

r−Ψr,n,k),

Ψc,k,i = Fkwc,i

(

wH
c,ihd,k − zHc,k,i

)

, Ψr,n,k =

Fkwr,n

(

wH
r,nhd,k − zHr,k,n

)

, Υr,c,k = Frwc,kw
H
c,kF

H
r ,

Algorithm 1 Penalty-based algorithm for solving problem (8).

1: Initialize v, {wc,k,wr,n}, {yc,k, yr,n}, c, ρ, εin, and εout.
2: repeat: outer layer

3: repeat: inner layer

4: Update auxiliary variables {zc,k,i, zr,k,n} by solving

problem (16).

5: Update auxiliary variables {yc,k, yr,n} by solving

problem (24).

6: Update transmit beamformers {wc,k,wr,n} by solving

problem (25).

7: Update IRS phase shifts {vm} based on (35).

8: until the fractional increase of the objective value of (14)

is below a threshold εin.

9: Update penalty parameter ρ based on (36).

10: until termination indicator ξ defined in (37) is below a

threshold εout.

Υr,r,n = Frwr,nw
H
r,nF

H
r , Υc,k,i = Fkwc,iw

H
c,iF

H
k ,

Υr,k,n = Fkwr,nw
H
r,nF

H
k , and λmax,1,k, λmax,2,n, λmax,3,k,i,

and λmax,4,k,n represent the maximum eigenvalues of Υr,c,k,

Υr,r,n, Υc,k,i, and Υr,k,n, respectively. The optimal solution v

to problem (34) is then given by

vopt = ej arg(q
r). (35)

B. Outer Layer Optimization

In the outer layer, the penalty parameter in the rth iteration

is updated as follows

ρr = cρr−1, 0 < c < 1, (36)

where c is a constant scaling factor that is used to control the

convergence behavior.

C. Overall Algorithm and Computational Complexity

The termination indicator for the penalty-based algorithm is

given by

ξ = max
∀i,k,n

{

∣

∣gHwc,k − yc,k
∣

∣

2
,
∣

∣gHwr,n − yr,n
∣

∣

2
,

∣

∣hH
k wc,i − zc,k,i

∣

∣

2
,
∣

∣hH
k wr,n − zr,k,n

∣

∣

2
}

. (37)

If ξ is smaller than a predefined value, constraint (13d) is

considered to be met with equality for a given accuracy. The

proposed algorithm is summarized in Algorithm 1, whose com-

putational complexity is given by O
(

IoutIin
(

Klog2
(

1
ε

)

N3+

log2

(

µ
up
2

ε

)

N3 + (K +N)
3.5

+M3
))

, where ε represents the

iteration accuracy, and Iin and Iout denote the numbers of

iterations required for reaching convergence in the inner layer

and outer layer, respectively.

IV. PROPOSED SOLUTION FOR IMPERFECT CSI AND

UNCERTAIN TARGET LOCATION

In this section, we consider the case with imperfect CSI

and uncertain target location. Since problem (12) involves an

infinite number of inequalities in constraints (12b) and (12c),

the previous penalty-based algorithm is no longer applicable

for solving problem (12), which thus calls for new algorithm

design. By introducing auxiliary variables {βc,k ≥ 0} satisfying
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βc,k =
K
∑

i6=k

∣

∣hH
k wc,i

∣

∣

2
+

N
∑

n=1

∣

∣hH
k wr,n

∣

∣

2
+ σ2

k, k ∈ K, constraint

(12b) can be equivalently transformed as

∣

∣hH
k wc,k

∣

∣

2
≥ βc,krk,th,∆hd,k ∈ Hd,k,∆Fk ∈ Fk, k ∈ K, (38)

K
∑

i6=k

∣

∣hH
k wc,i

∣

∣

2
+

N
∑

n=1

∣

∣hH
k wr,n

∣

∣

2
+ σ2

k ≤ βc,k,∆hd,k ∈ Hd,k,

∆Fk ∈ Fk, k ∈ K. (39)

Although the left-hand side of (38) is convex w.r.t v (recall that

hH
k = vHFk +hH

d,k), the resulting set is not a convex set since

the superlevel set of a convex quadratic function is not convex

in general. To address this non-convex constraint, we take the

first-order Taylor expansion of
∣

∣hH
k wc,k

∣

∣

2
at any given feasible

point vr to obtain the following lower bound

∣

∣hH
k wc,k

∣

∣

2
≥ f lb

k (v)
△
= −

∣

∣vr,HFkw
r
c,k + hH

d,kw
r
c,k

∣

∣

2
+ 2Re

{

(

vHFkwc,k + hH
d,kwc,k

)H (

vr,HFkw
r
c,k + hH

d,kw
r
c,k

)

}

(40)

which is linear and convex w.r.t. v.

Substituting Fk=F̂k + ∆Fk and hd,k = ĥd,k + ∆hd,k into

term

∣

∣

∣vr,HFkw
r
c,k + hH

d,kw
r
c,k

∣

∣

∣

2

in (40), we can rewrite it as

∣

∣vr,HFkw
r
c,k + hH

d,kw
r
c,k

∣

∣

2
=
∣

∣

∣ĥ
r,H
k wr

c,k

∣

∣

∣

2

+

2Re

{

(

ĥ
r,H
k wr

c,k

)H
(

vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

)

}

+

∣

∣vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

∣

∣

2
, (41)

where ĥ
r,H
k = vr,HF̂k + ĥH

d,k. Below, we rewrite terms in

(41) into a compact form that facilitates the algorithm design.

Specifically, we first expand

∣

∣

∣vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

∣

∣

∣

2

as

∣

∣vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

∣

∣

2
= vr,H∆Fkw

r
c,kw

r,H
c,k ∆FH

k vr+

∆hH
d,kw

r
c,kw

r,H
c,k ∆hd,k + vr,H∆Fkw

r
c,kw

r,H
c,k ∆hd,k+

∆hH
d,kw

r
c,kw

r,H
c,k ∆FH

k vr, (42)

where

vr,H∆Fkw
r
c,kw

r,H
c,k ∆FH

k vr =

vecH (∆F∗
k)
(

wr
c,kw

r,H
c,k

)

⊗
(

vr,∗vr,T
)

vec (∆F∗
k) , (43)

vr,H∆Fkw
r
c,kw

r,H
c,k ∆hd,k =

vecH (∆F∗
k)
((

wr
c,kw

r,H
c,k

)

⊗ vr,∗
)

∆hd,k, (44)

∆hH
d,kw

r
c,kw

r,H
c,k ∆FH

k vr =

∆hH
d,k

((

wr
c,kw

r,H
c,k

)

⊗ vr,T
)

vec (∆F∗
k) . (45)

Thus, we can rewrite

∣

∣

∣vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

∣

∣

∣

2

in a more

compact form given by

∣

∣vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

∣

∣

2
= ∆hH

k,effH
r
c,k∆hk,eff , (46)

where ∆hH
k,eff =

[

∆hH
d,k vecH (∆F∗

k)
]

, Hr
c,k =





wr
c,kw

r,H
c,k

(

wr
c,kw

r,H
c,k

)

⊗ vr,T

(

wr
c,kw

r,H
c,k

)

⊗ vr,∗
(

wr
c,kw

r,H
c,k

)

⊗
(

vr,∗vr,T
)



. Then,

(

ĥ
r,H
k wr

c,k

)H (

vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

)

can be expressed

as
(

ĥ
r,H
k wr

c,k

)H
(

vr,H∆Fkw
r
c,k +∆hH

d,kw
r
c,k

)

=
(

ĥ
r,H
k wr

c,k

)H

∆hH
k,effh

r
c,k, (47)

where hr
c,k =

[

w
r,T
c,k

(

w
r,T
c,k ⊗ vr,H

)]T

.

Based on (41), (46), and (47), we can compactly rewrite
∣

∣

∣vr,HFkw
r
c,k + hH

d,kw
r
c,k

∣

∣

∣

2

in (41) as

∣

∣vr,HFkw
r
c,k + hH

d,kw
r
c,k

∣

∣

2
= ∆hH

k,effH
r
c,k∆hk,eff+

2Re

{

(

ĥ
r,H
k wr

c,k

)H

∆hH
k,effh

r
c,k

}

+
∣

∣

∣ĥ
r,H
k wr

c,k

∣

∣

∣

2

. (48)

In addition, we can expand
(

vHFkwc,k + hH
d,kwc,k

)H

×
(

vr,HFkw
r
c,k + hH

d,kw
r
c,k

)

in (40) as

(

vHFkwc,k + hH
d,kwc,k

)H (

vr,HFkw
r
c,k + hH

d,kw
r
c,k

)

=

wH
c,kĥkĥ

r,H
k wr

c,k +wH
c,kĥkv

r,H∆Fkw
r
c,k +wH

c,kĥk∆hH
d,kw

r
c,k

+wH
c,k∆FH

k vĥ
r,H

k wr
c,k +wH

c,k∆FH
k vvr,H∆Fkw

r
c,k+

wH
c,k∆FH

k v∆hH
d,kw

r
c,k +wH

c,k∆hd,kĥ
r,H
k wr

c,k+

wH
c,k∆hd,kv

r,H∆Fkw
r
c,k +wH

c,k∆hd,k∆hH
d,kw

r
c,k, (49)

where ĥH
k = vH F̂k + ĥH

d,k. Similarly, we can transform terms

in (49) as

wH
c,kĥkv

r,H∆Fkw
r
c,k = vecH (∆F∗

k)
(

w
r,T
c,k ⊗ vr,H

)T

wH
c,kĥk,

(50)

wH
c,k∆FH

k vĥ
r,H

k wr
c,k = ĥ

r,H
k wr

c,k

(

wH
c,k ⊗ vT

)

vec (∆F∗
k) ,

(51)

wH
c,k∆FH

k vvr,H∆Fkw
r
c,k =

vecH (∆F∗
k)
(

(

wr
c,kw

H
c,k

)T
⊗
(

vvr,H
)

)T

vec (∆F∗
k) , (52)

wH
c,k∆FH

k v∆hH
d,kw

r
c,k =

∆hH
d,k

(

(

wr
c,kw

H
c,k

)T
⊗ v

)T

vec (∆F∗
k) . (53)

Thus,
(

vHFkwc,k + hH
d,kwc,k

)H (

vr,HFkw
r
c,k + hH

d,kw
r
c,k

)

can be written in a more compact form given by

(

vHFkwc,k + hH
d,kwc,k

)H (

vr,HFkw
r
c,k + hH

d,kw
r
c,k

)

=

∆hH
k,effHc,k∆hk,eff +∆hH

k,effh
r
c,kw

H
c,kĥk+

ĥ
r,H
k wr

c,kh
H
c,k∆hk,eff +wH

c,kĥkĥ
r,H
k wr

c,k, (54)

where hc,k =
[

wT
c,k

(

wT
c,k ⊗ vH

)]T

and Hc,k =




wr
c,kw

H
c,k

(

wr
c,kw

H
c,k

)

⊗ vT

(

wr
c,kw

H
c,k

)

⊗ vr,∗
(

wr
c,kw

H
c,k

)

⊗
(

vr,∗vT
)



.

As a result, based on (40), (48), and (54), constraint (38) can

be approximated as

∆hH
k,eff

(

Hc,k +HH
c,k −Hr

c,k

)

∆hk,eff + 2Re
{

ĥH
c,k∆hk,eff

}

+ h̄c,k ≥ βc,krk,th,∆hd,k ∈ Hd,k,∆Fk ∈ Fk, k ∈ K, (55)

where ĥH
c,k = ĥH

k wc,kh
r,H
c,k +ĥ

r,H
k wr

c,kh
H
c,k−ĥ

r,H
k wr

c,kh
r,H
c,k and

h̄c,k = 2Re
{

wH
c,kĥkĥ

r,H
k wr

c,k

}

−
∣

∣

∣ĥ
r,H
k wr

c,k

∣

∣

∣

2

. We note that

(55) still involves an infinite number of inequality constraints.
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To circumvent this difficulty, we convert the infinite number of

constraints in (55) into an equivalent form with only a finite

number of LMIs by applying the following lemma.

Lemma 1: (General S-Procedure [42]) Let fi (z) = zHAiz+
2Re

{

bH
i z
}

+ ci, i ∈ {0, 1, . . . , I}, where z ∈ CN×1 and Ai =

AH
i ∈ CN×N . The condition {f1 (z) ≥ 0}Ii=1 ⇒ f0 (z) ≥ 0

holds if and only if there exist λi ≥ 0, i ∈ {1, . . . , I} such that

[

A0 b0

bH
0 c0

]

−
I
∑

i=1

λi

[

Ai bi

bH
i ci

]

� 0N+1. (56)

Before applying Lemma 1, we first re-express uncertainties

∆hd,k ∈ Hd,k and ∆Fk ∈ Fk as

∆hd,k ∈ Hd,k ⇒

∆hH
k,eff

[

IN 0N×MN

0MN×N 0MN

]

∆hk,eff ≤ ε2d,k, k ∈ K, (57)

∆Fk ∈ Fk ⇒

∆hH
k,eff

[

0N 0N×MN

0MN×N IMN

]

∆hk,eff ≤ ε2k, k ∈ K. (58)

Then, based on Lemma 1, (55) can be transformed as





Hc,k +HH
c,k −Hr

c,k +

[

λ1,kIN 0N×MN

0MN×N λ2,kIMN

]

ĥc,k

ĥH
c,k ck





� 0N+MN+1, k ∈ K, (59)

where ck = h̄c,k − βc,krk,th − λ1,kε
2
d,k − λ2,kε

2
k, λ1,k ≥ 0 and

λ1,k ≥ 0 represents the auxiliary variables corresponding to (57)

and (58), respectively. It can be observed that (59) involves a

finite number of LMIs, which thus can be handled using convex

optimization techniques.

To tackle constraint (39), we first equivalently transform it

into LMIs based on the Schur’s complement given by

[

βc,k − σ2
k hH

k W−k

WH
−khk IK−1+N

]

� 0K+N ,∆hd,k ∈ Hd,k,

∆Fk ∈ Fk, k ∈ K, (60)

where W−k = [wc,1, . . . ,wc,k−1,wc,k+1, . . . ,wc,K ,wr,1,
. . . ,wr,N ]. Substituting Fk=F̂k + ∆Fk and hd,k = ĥd,k +
∆hd,k into (60), this can then be expanded as





βc,k − σ2
k

(

vH F̂k + ĥH
d,k

)

W−k

WH
−k

(

F̂H
k v + ĥd,k

)

IK−1+N



+

[

01×N

WH
−k

]

×∆hd,k

[

1 01×(K−1+N)

]

+

[

1
0(K−1+N)×1

]

∆hH
d,k×

[

0N×1 W−k

]

+

[

01×N

WH
−k

]

∆FH
k

[

v 0M×(K−1+N)

]

+

[

vH

0(K−1+N)×M

]

∆Fk

[

0N×1 W−k

]

� 0K+N ,

∆hd,k ∈ Hd,k,∆Fk ∈ Fk, k ∈ K. (61)

To address the infinite number of LMIs in (61), we transform

(61) into an equivalent form with only a finite number of LMIs

by applying the following lemma:

Lemma 2: (General sign-definiteness [43]) Let Q �
I
∑

i=1

(

AH
i XiBi +BH

i XH
i Ai

)

and ‖Xi‖F ≤ εi, where

Q = QH . The condition {‖Xi‖F ≤ εi}
I
i=1 ⇒ Q �

I
∑

i=1

(

AH
i XiBi +BH

i XH
i Ai

)

holds if and only if there exist

λ̄i ≥ 0, i ∈ {1, . . . , I} such that














Q−
I
∑

i=1

λ̄iB
H
i Bi −ε1A

H
1 · · · −εIA

H
I

−ε1A1 λ̄1I · · · 0
...

...
. . .

...

−εIAI 0 · · · λ̄II















� 0. (62)

Based on Lemma 2, (61) can be written as (63) (at the top of the

next page), where λ̄1,k ≥ 0 and λ̄2,k ≥ 0 denote the correspond-

ing auxiliary variables. To handle the uncertainty ∆Fr ∈ Fr

in constraint (12c), we introduce auxiliary variables {βr,k ≥ 0}

satisfying βr,k =
K
∑

i6=k

∣

∣gHwc,i

∣

∣

2
+

N
∑

n=1

∣

∣gHwr,n

∣

∣

2
+ σ2

t , k ∈ K,

and constraint (12c) can be then equivalently transformed as
∣

∣gHwc,k

∣

∣

2
≤ βr,kre,k,th, θh ∈ Φh, ϕv ∈ Φv,

∆Fr ∈ Fr, k ∈ K, (64)

K
∑

i6=k

∣

∣gHwc,i

∣

∣

2
+

N
∑

n=1

∣

∣gHwr,n

∣

∣

2
+ σ2

t ≥ βr,k,

θh ∈ Φh, ϕv ∈ Φv,∆Fr ∈ Fr, k ∈ K. (65)

Similar to the constraint (39), we first transform the inequalities

in (64) into LMIs by applying Schur’s complement, which yields
[

βr,kre,k,th gHwc,k

wH
c,kg 1

]

� 02, θh ∈ Φh, ϕv ∈ Φv,

∆Fr ∈ Fr, k ∈ K. (66)

Recalling that gH = vHFr and substituting Fr=F̂r+∆Fr into

(66), the following inequalities are obtained
[

βr,kre,k,th vHF̂rwc,k

wH
c,kF̂

H
r v 1

]

+

[

vH

01×M

]

∆Fr

[

0N×1 wc,k

]

+

[

01×N

wH
c,k

]

∆FH
r

[

v 0M×1

]

� 02, θh ∈ Φh, ϕv ∈ Φv,

∆Fr ∈ Fr. (67)

Based on Lemma 2, constraint (67) involving an infinite number

of inequalities can be recast as a finite number of LMIs given

by




βr,kre,k,th − λ̄kM vH F̂rwc,k 01×N

wH
c,kF̂

H
r v 1 −εrw

H
c,k

0N×1 −εrwc,k λ̄kIN



 � 0N+2,

θh ∈ Φh, ϕv ∈ Φv, k ∈ K, (68)

where λ̄k ≥ 0 represents the corresponding auxiliary variables.

Although constraint (65) is not convex w.r.t v, the left-hand

side of (65) is a quadratic function of v. Thus, we can obtain

the following lower bound for
∣

∣gHwp,i

∣

∣

2
, p ∈ {c, r} , i ∈ K∪N

at any point vr

∣

∣gHwp,i

∣

∣

2
≥ −

∣

∣vr,HFrw
r
p,i

∣

∣

2

+ 2Re
{

(

vHFrwp,i

)H (

vr,HFrw
r
p,i

)

}

. (69)

Substituting Fr = F̂r +∆Fr into
∣

∣vr,HFrw
r
p,i

∣

∣

2
, we have

∣

∣

∣v
r,HF̂rw

r
p,i + vr,H∆Frw

r
p,i

∣

∣

∣

2

=
∣

∣

∣v
r,H F̂rw

r
p,i

∣

∣

∣

2

+

vecH (∆F∗
r)

(

(

wr
p,iw

r,H
p,i

)T

⊗
(

vrvr,H
)

)T

vec (∆F∗
r)+

2Re
{

vr,HF̂rw
r
p,i

(

w
r,H
p,i ⊗ vr,T

)

vec (∆F∗
r)
}

. (70)
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











βc,k − σ2
k − λ̄1,k − λ̄2,kM

(

vH F̂k + ĥH
d,k

)

W−k 01×N 01×N

WH
−k

(

F̂H
k v + ĥd,k

)

IK−1+N −εd,kW
H
−k −εkW

H
−k

0N×1 −εd,kW−k λ̄1,kIN 0N

0N×1 −εkW−k 0N λ̄2,kIN













≻ 0K+3N , k ∈ K, (63)

In addition, substituting Fr = F̂r + ∆Fr into
(

vHFrwp,i

)H (

vr,HFrw
r
p,i

)

, we have

(

vHFrwp,i

)H (

vr,HFrw
r
p,i

)

=wH
p,iF̂

H
r vvr,H F̂rw

r
p,i +wH

p,i×

F̂H
r vvecH (∆F∗

r)
(

wr
p,i ⊗ vr,∗

)

+ vr,H F̂rw
r
p,i

(

wH
p,i ⊗ vT

)

×

vec (∆F∗
r)+vecH (∆F∗

r)
((

wr
p,iw

H
p,i

)

⊗
(

vr,∗vT
))

vec (∆F∗
r) .
(71)

Based on (69), (70), and (71), a lower bound for constraint (65)

is given by

vecH (∆F∗
r)Htempvec (∆F∗

r) +





K
∑

i6=k

cc,i +

N
∑

n=1

cr,n



 + σ2
t+

2Re











K
∑

i6=k

ĝH
c,i +

N
∑

n=1

ĝH
r,i



 vec (∆F∗
r)







≥ βr,k, θh ∈ Φh,

ϕv ∈ Φv,∆Fr ∈ Fr, k ∈ K, (72)

where H−k =
∑K

i6=k

(

H̄c,i + H̄H
c,i − H̄r

c,i

)

+
∑N

n=1

(

H̄r,n + H̄H
r,n − H̄r

r,n

)

, H̄p,i =
(

wr
p,iw

H
p,i

)

⊗
(

vr,∗vT
)

,

H̄r
p,i =

(

wr
p,iw

r,H
p,i

)

⊗
(

vrvr,H
)T

, ĝH
p,i =

vH F̂rwp,i

(

w
r,H
p,i ⊗ vr,T

)

+ vr,HF̂rw
r
p,i

(

wH
p,i ⊗ vT

)

−

vr,HF̂rw
r
p,i

(

w
r,H
p,i ⊗ vr,T

)

, and cp,i =

2Re
{

wH
p,iF̂

H
r vvr,H F̂rw

r
p,i

}

−
∣

∣

∣
vr,H F̂rw

r
p,i

∣

∣

∣

2

. Thus, based on

Lemma 1, constraint (72) can be transformed to a finite number

of LMIs given by




H−k + λr,kIMN

(

∑K

i6=k ĝ
H
c,i +

∑N

n=1 ĝ
H
r,i

)H

∑K
i6=k ĝ

H
c,i +

∑N
n=1 ĝ

H
r,i

(

∑K
i6=k cc,i +

∑N
n=1 cr,n

)

+ c0,k





� 0MN+1, θh ∈ Φh, ϕv ∈ Φv, k ∈ K, (73)

where c0,k = σ2
t − βr,k − λr,kε

2
r and λr,k ≥ 0 denote the

corresponding auxiliary variables.

As a result, problem (12) can be recast as

max
{wc,k},{wr,n},{vm},{βc,k},λ̄,{λ̄1,k,λ̄2,k,λ1,k,λ2,k,λr,k},χ

χ (74a)

s.t. gH

(

K
∑

k=1

wc,kw
H
c,k +

N
∑

n=1

wr,nw
H
r,n

)

g ≥ χ, θh ∈ Φh,

ϕv ∈ Φv,∆Fr ∈ Fr, (74b)

(12d), (12e), (59), (63), (68), (73). (74c)

Similarly, by applying Lemma 1, constraint (74b) can be recast

as










H̄temp + λ̃rIMN

(

K
∑

i=1

ĝH
c,i +

N
∑

n=1
ĝH
r,i

)H

K
∑

i=1

ĝH
c,i +

N
∑

n=1
ĝH
r,i

(

K
∑

i6=k

cc,i +
N
∑

n=1
cr,i

)

−χ− λ̃rε
2
r











� 0MN+1, θh ∈ Φh, ϕv ∈ Φv, (75)

Algorithm 2 The AO algorithm for solving problem (12).

1: Initialize vm and ε.

2: repeat

3: Update BS beamformers by solving problem (76).

4: Update IRS phase shifts by solving problem (80).

5: until the fractional increase of the objective value is less

than ε.

where H̄temp =
∑K

i=1

(

H̄c,i + H̄H
c,i − H̄r

c,i

)

+
∑N

n=1

(

H̄r,n + H̄H
r,n − H̄r

r,n

)

and λ̃r is the auxiliary variable.

To solve problem (74), an AO algorithm is proposed to

alternatively optimize transformers and IRS phase shifts until

convergence is reached. Below, we elaborate on how to solve

these two subproblems.

1) Optimizing BS beamformers with fixed IRS phase shifts:

This subproblem is given by

max
{wc,k,wr,n,βc,k,λ̄k,λ̄1,k,λ̄2,k,λ1,k,λ2,k,λr,k},χ

χ (76a)

s.t. (12d), (59), (63), (68), (73), (75). (76b)

It can be readily verified that problem (76) is a semi-definite

program (SDP), which can be efficiently tackled by standard

convex optimization solvers.

2) Optimizing IRS phase shifts with fixed BS beamformers:

This subproblem is written as

max
{vm,βc,k,λ̄k,λ̄1,k,λ̄2,k,λ1,k,λ2,k,λr,k},χ

χ (77a)

s.t. (12e), (59), (63), (68), (73), (75). (77b)

It can be observed that all constraints are convex except (12e)

due to the unit-modulus constraint, which is in general difficult

to tackle. Fortunately, by applying the square penalty approach

[44], problem (77) is equivalent to

max
{vm,βc,kλ̄k,λ̄1,k,λ̄2,k,λ1,k,λ2,k,λr,k},χ

χ+ ρ̄‖v‖2 (78a)

s.t. |vm| ≤ 1,m ∈ M, (78b)

(59), (63), (68), (73), (75), (78c)

where ρ̄ represents a sufficiently large positive penalty parameter

used to make constraint (78b) met with equality at the optimal

solution. Note that this equivalence does not require gradually

adjusting ρ̄ as a large ρ̄ suffices. The rigorous proof can be

found in [44, Theorem 1] for details. To tackle the non-convex

objective function in (78), a lower bound for ‖v‖2 is obtained

by applying the SCA. Specifically, for any given vr, we have

‖v‖2 ≥ −‖vr‖2 + 2Re
{

vHvr
}

, (79)

which is linear w.r.t. v.

As a result, based on (79) and dropping irrelevant terms,

problem (78) can be approximated as

max
{vm,βc,k,λ̄k,λ̄1,k,λ̄2,k,λ1,k,λ2,k,λr,k},χ

χ+2ρ̄Re
{

vHvr
}

(80a)

s.t. (59), (63), (68), (73), (75), (78b), (80b)
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Fig. 2. Convergence behaviour of Algorithm 1 under Pmax = 40 dBm,
rc,th = 10 dB, and re,th = 0 dB.

which is convex and can be solved by convex optimization

solvers.

Finally, we alternately optimize the above two

subproblems, and the details are summarized in

Algorithm 2. Since problems (76) and (80) are

SDPs, the complexity of Algorithm 2 is given by

O
(

L
(

K
(

(N +MN + 1)
6.5

+ (K + 3N)
6.5
)

+K̄(N + 2)
6.5

+
(

K̄ + 1
)

(MN + 1)6.5
))

, where L stands for the number

of iterations required for reaching convergence and K̄ denotes

the number of LMIs in (68) and (73).

V. NUMERICAL RESULTS

In this section, we provide numerical results to validate the

secure transmission performance in the IRS-aided ISAC system.

A three dimensional coordinate setup measured in meters (m)

is considered, where the BS is located at (0, 0, 2.5) m and the

users are uniformly and randomly distributed in a circle of a

radius 2 m centered at (20, 5, 0) m, while the IRS is deployed at

(20, 0, 2.5) m. The distance-dependent path loss model is given

by L
(

d̂
)

= c0

(

d̂/d0

)−α̂

, where c0 = −30 dB is the path

loss at the reference distance d0 = 1 m, d̂ is the link distance,

and α̂ is the path loss exponent. The target is located at azimuth

direction θ = −30◦ and elevation direction ϕ = 40◦. We assume

that the distance between the IRS and the target is 10 m with a

path loss exponent of 2, and assume that the BS-IRS link and the

IRS-user link follow Rician fading with a Rician factor of 3 dB
and a path loss exponent of 2.2, while the BS-user link follows

Rayleigh fading with a path loss exponent of 3.6. The minimum

communication SINR and the maximum tolerable intercepting

SINR are assumed to be the same for all users, i.e., rc,th =
rk,th, re,th=re,k,th, k ∈ K. Unless otherwise specified, we set

N = 4, K = 3, θ = −30◦, ϕ = 40◦, σ2
t = σ2

k= −90 dBm, ∀k,

ρ = 0.1, c = 0.85, εin = 10−2, and ε = εout = 10−4.

A. Perfect CSI and Known Target Location

In this subsection, we consider the ideal case where the CSI

and the target location are known at the BS, and the penalty-

based algorithm, i.e., Algorithm 1, is employed.

1) Convergence Behavior of Algorithm 1: We first study the

convergence behavior of Algorithm 1 for different numbers of

IRS reflecting elements, namely M = 50, M = 100, and

M = 150, as shown in Fig. 2. It is observed from Fig. 2(a)

that the constraint violation parameter ξ converges very rapidly

Transmit power, P
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Fig. 3. Beampattern gain versus Pmax under M = 100, rc,th = 10 dB, and
re,th = 0 dB.

to a predefined accuracy 10−4 after about 75-80 iterations for all

values of M . Note that the predefined accuracy value of 10−4 is

sufficiently small for ensuring that constraint (13d) is essentially

met with equality at the optimal solution, since we normalize

the channel coefficients by the noise power so that the auxiliary

variables are inherently large to guarantee sufficient numerical

accuracy. To see it more clearly, we can observe from Fig. 2(b)

that the objective value of problem (14) converges quickly for

different M , which demonstrates the efficiency of Algorithm 1.

To show the superiority of the proposed approach, we con-

sider the following approaches for comparison.

• Proposed approach: This is our proposed approach de-

scribed in Algorithm 1 in Section III.

• Communication signal only: Similar to the proposed

approach, but without dedicated radar waveforms.

• Separate beamforming: This approach optimizes the

transmit beamformers and IRS phase shifts separately. The

algorithm first obtains the IRS phase-shift matrix by max-

imizing the norm of the IRS’s cascaded channel towards

the desired sensing target, i.e, max
Θ

∥

∥gH
r ΘG

∥

∥. Then, with

the obtained Θ, the transmit beamformers are obtained by

solving problem (8).

• Communication-based zero-forcing (ZF): The IRS

phase-shift matrix is obtained in the same way as the

separate beamforming approach, while the communication

beamformers, wc,k, k ∈ K, are forced to lie in the null

space of the target’s channel, i.e., gHwc,k = 0, k ∈
K. The communication covariance matrices are given by

Wc,k =
(

IN − ggH/‖g‖2
)

Ŵc,k

(

IN − ggH/‖g‖2
)H

,

where rank
(

Ŵc,k

)

= 1,Ŵc,k � 0N . Then, Ŵc,k and

the radar covariance matrices are jointly optimized by using

the AO algorithm.

• Sensing-based ZF: Similar to the communication-based

ZF approach, the radar beamformers, i.e., wr,n, n ∈ N ,

are forced to lie in the null space of the users’ channels

i.e., hH
k wr,n = 0, k ∈ K, n ∈ N . The radar beamformers

are designed as Wr = VŴr, where V represents the

last N −K right singular vectors of H = [h1, . . . ,hK ]H .

Then, the communication beamformers and Ŵr are jointly

optimized by using the penalty-based algorithm.

• Random phase: The IRS phase shifts are generated ran-

domly following a uniform distribution over [0, 2π).
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Fig. 4. Beampattern gain versus M under Pmax = 40 dBm, rc,th = 10 dB,
and re,th = 0 dB.

2) Beampattern Gain Versus Transmit Power: In Fig. 3, we

compare the beampattern gain of the above approaches versus

Pmax. We see that the beampattern gain for all methods increases

monotonically with Pmax since the co-channel interference is

suppressed and increasing the available power improves the

beampattern gain. In addition, we observe that the proposed

approach outperforms the “Communication signal only” case,

which indicates the benefit of dedicated radar signals. This can

be explained as follows. The additional radar signals provide

more DoFs for algorithm optimization, which improves the

system performance, and to prevent the eavesdropping by the

target, more power must be allocated to the radar signals and the

beampattern gain is thus increased. Moreover, we observe that

the beampattern gain obtained by the approaches without IRS

phase shift optimization increases marginally as Pmax increases

since the signals reflected by the IRS in this case are propagated

in many random directions, thus results in a low received

power level. Furthermore, compared to the “Separate beam-

forming”, “Communication-based ZF”, and “Sensing-based ZF”

approaches, our proposed approach achieves significant beam-

pattern gains, which illustrates the benefit of joint design of the

transmit beamformers and IRS phase shifts.

3) Beampattern Gain Versus Number of IRS Reflecting El-

ements: In Fig. 4, we compare the beampattern gain for all

approaches versus M . It is observed that the proposed approach

outperforms the “Random phase” approach, and the system

performance gap is more pronounced for a larger M . This is be-

cause installing more passive reflecting elements provides more

DoFs for resource allocation, which is beneficial for achieving

higher beamforming gain, thereby improving the beampattern

gain when the IRS phase shifts are well adjusted. In addition, we

again observe that our proposed approach outperforms the use

of only communication signals, further amplifying the benefit of

using dedicated radar signals. Moreover, the performance gap

between our proposed approach and the “Separate beamform-

ing”, “Communication-based ZF”, and “Sensing-based ZF” ap-

proaches is magnified as M increases, which again demonstrates

the benefit of joint design of the transmit beamformers and IRS

phase shifts.

4) Beampattern Gain Versus Minimum SINR Required by

Communication Users: In Fig. 5, the achieved beampattern gain

is plotted versus the communication users’ SINR requirement

rc,th. As expected, a more stringent QoS requirement for the

users results in a lower beamforming gain to the target, since the
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BS and IRS must focus more energy towards the communication

users. In addition, we observe that the performance gap be-

tween our proposed approach and the “Separate beamforming”

approach becomes smaller as rc,th decreases. This is because in

this case the SINR at the users can be easily satisfied, and thus

extra radar and communication power can be used to improve

the beampatter gain. Moreover, we observe that the performance

of the “Communication-based ZF” approach degrades quickly

as rc,th increases. This is because communication signals are

forced to lie in the null space of target’s channel, which indicates

that no user information is leaked to the target and only the

radar signals can be used to increase the beampattern gain. On

the other hand, increasing the radar power potentially degrades

the user SINR, which limits the improvement of beampattern

gain.

5) Beampattern Gain Versus Maximum Information Leakage

SINR to Target: We further study the beampattern gain ver-

sus the leakage constraint re,th in Fig. 6. Interestingly, we

observe that the beampattern gain obtained by the proposed

approach remains nearly unchanged with re,th. To unveil the

reason behind this, the separate radar and communication power

contributions to the beampattern gain versus re,th are studied,

i.e.,
∑N

n=1

∣

∣wH
r,ng

∣

∣

2
and

∑K

k=1

∣

∣

∣wH
c,kg

∣

∣

∣

2

, which correspond to

the “Proposed, radar beampattern gain” and the “Proposed,

information beampattern gain” approaches, respectively. We
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Fig. 7. Convergence behaviour of Algorithm 2 for different M and N .

see that as the requirement on signal leakage to the target is

made less stringent (i.e., re,th increases), less transmit power

is allocated to radar signals to deteriorate the reception by

the eavesdropping target, while more power is allocated to the

information signals to improve the communication QoS. In the

end, these two trends offset each other, and the sum of the

two components results in a nearly constant beampattern gain.

In addition, we observe that the performance gain obtained by

the “Sensing-based ZF” approach increases marginally as re,th
increases due to the limited DoFs available for design of the

radar beamformers.

B. Imperfect CSI and Uncertain Target Location

In this subsection, we consider the case with imperfect CSI

and an unknown target location, and we propose Algorithm 2

to address the resulting problem. The azimuth and elevation

target location ranges are set to Φh = [−35◦,−25◦] and

Φv = [35◦, 45◦], respectively. We define the relative amount

of CSI errors as ε̂r = εr/‖∆Fr‖F , ε̂k = εk/‖∆Fk‖F , and

ε̂d,k = εd,k/ ‖∆hd,k‖ , ∀k, respectively. For ease of exposition,

we assume that all channels have the same level of CSI errors

and define εerror = ε̂r = ε̂k = ε̂d,k, ∀k.

1) Convergence Behavior of Algorithm 2: In Fig. 7, the

convergence behaviour of Algorithm 2 for different M and N
under εerror = 0.01, Pmax = 46 dBm, K = 2, rc,th = 10 dB,

and re,th = 5 dB is studied. It is observed that the obtained

beampattern gain is monotonically increasing with the number

of iterations and ultimately converges. Even for M = 20 and

N = 6, the proposed algorithm converges in about 20 iterations,

which demonstrates the effectiveness of Algorithm 2.

2) Beampattern Design: In Fig. 8, we study the normalized

beampattern obtained in the case with perfect CSI and the

known target location and with the case of imperfect CSI and

uncertain target location when M = 20, N = 3, εerror = 0.01,

Pmax = 46 dBm, K = 2, rc,th = 10 dB, and re,th = 5 dB.

Both beampatterns are normalized by the maximum value of

these two beampatterns. It is observed that both of the beam-

patterns obtained by our proposed algorithms correctly focus

their mainlobe towards the directions θ = −30◦ and ϕ = 40◦.

In addition, we observe that both beampatterns have sidelobe

regions due to the imposed SINR constraints for the users as

well as the information leakage to the eavesdropping target.

Furthermore, we observe that the mainlobe in the imperfect CSI

case is more flat and wide than that with perfect CSI case. This

Fig. 8. Beampattern design for different system setups.
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Fig. 9. Beampattern gain versus M for different N and εerror.

is expected since although the exact target location is unknown,

its range of possible locations is known, so that the probing

power should uniformly cover this area rather than focusing on

a point in one direction. Moreover, we observe that the peak

beampattern gain of the imperfect CSI case is lower than with

in the perfect CSI case due to the reduced available information.

3) Beampattern Gain Versus M : In Fig. 9, we study the

beampattern gain versus M for different N and εerror under

Pmax = 46 dBm, K = 2, re,th = 5 dB, and rc,th = 10 dB.

A large εerror indicates that the channel estimation error is

magnified and εerror = 0 corresponds to the perfect CSI case.

It is observed that the beampattern gain obtained by different

N and εerror monotonically increases with M . This observation

shows that by carefully designing the BS beamformers and the

IRS phase shifts, the system performance can still be improved

with imperfect CSI even with large channel estimation errors,

e.g., εerror = 0.05. Furthermore, we observe that for a fixed

M , the beampattern gain increases with N . This is due to the

fact that more DoFs can be exploited for resource allocation to

achieve higher array gain.

VI. CONCLUSION

In this paper, we proposed the use of IRS to achieve simul-

taneous secure communication and sensing in the presence of

an eavesdropping target and multiple communication users. The

communication beamformers, the radar beamformers, and the

IRS phase shifts were jointly optimized to maximize the sensing

beampattern gain while satisfying the minimum SINR required

by the users and secrecy constraint for the eavesdropping

target. For the first scenario where the CSI of the user links
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and the target location are known, a penalty-based algorithm

was proposed to solve the formulated non-convex optimization

problem. In particular, the beamformers were obtained via a

semi-closed-form solution using the Lagrange duality method

and the IRS phase shifts were obtained in closed-form by

applying the MM method. For the second scenario where the

CSI and the target location are imprecisely unknown, an efficient

AO algorithm based on the S-procedure and sign-definiteness

approaches was proposed. Simulation results verified the effec-

tiveness of the proposed scheme in achieving a flexible trade-

off between the communication quality and the target sensing

quality and showed the capability of the IRS for use in sensing

and improving the physical layer security of ISAC systems. In

addition, simulation results also illustrated the benefits of using

dedicated sensing signals to improve the sensing quality.

REFERENCES

[1] A. Liu et al., “A survey on fundamental limits of integrated sensing and
communication,” IEEE Commun. Surveys Tuts., 2022, early access, doi:
10.1109/COMST.2022.3149272.

[2] L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communication
coexistence: An overview: A review of recent methods,” IEEE Signal

Process. Mag., vol. 36, no. 5, pp. 85–99, Sept. 2019.

[3] F. Liu et al., “Integrated sensing and communications: Towards dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas
Commun., 2022, early access, doi: 10.1109/JSAC.2022.3156632.

[4] J. A. Zhang et al., “Enabling joint communication and radar sensing in
mobile networks-A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1,
pp. 306–345, 4th Quat. 2022.

[5] C. Sturm and W. Wiesbeck, “Waveform design and signal processing
aspects for fusion of wireless communications and radar sensing,” Proc.
IEEE, vol. 99, no. 7, pp. 1236–1259, Jul. 2011.

[6] A. Hassanien et al., “Dual-function radar-communications: Information
embedding using sidelobe control and waveform diversity,” IEEE Tran.

Signal Process., vol. 64, no. 8, pp. 2168–2181, Apr. 2016.

[7] X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint
transmit beamforming for multiuser MIMO communications and MIMO
radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, Jun. 2020.

[8] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward
dual-functional radar-communication systems: Optimal waveform design,”
IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Aug. 2018.

[9] H. Hua, J. Xu, and T. X. Han, “Optimal transmit beamforming
for integrated sensing and communication,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.11871.

[10] K. Meng et al., “Throughput maximization for UAV-enabled integrated
periodic sensing and communication,” 2021. [Online]. Available:
https://arxiv.org/abs/2203.06358.

[11] Z. Lyu, G. Zhu, and J. Xu, “Joint maneuver and beamforming design
for UAV-enabled integrated sensing and communication,” 2021. [Online].
Available: https://arxiv.org/abs/2110.02857.

[12] K. Meng et al., “UAV trajectory and beamforming optimization for
integrated periodic sensing and communication,” IEEE Wireless Commun.

Lett., 2022, early access, doi: 10.1109/LWC.2022.3161338.

[13] Q. Wu et al., “A comprehensive overview on 5G-and-beyond networks
with UAVs: From communications to sensing and intelligence,” IEEE J.

Sel. Areas Commun., vol. 39, no. 10, pp. 2912–2945, Oct. 2021.

[14] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.

Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[15] C. Pan et al., “An overview of signal processing tech-
niques for RIS/IRS-aided wireless systems.” [Online]. Available:
https://arxiv.org/abs/2112.05989.

[16] Q. Wu and R. Zhang, “Beamforming optimization for wireless network
aided by intelligent reflecting surface with discrete phase shifts,” IEEE

Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.

[17] G. Chen, Q. Wu, W. Chen, D. W. K. Ng, and L. Hanzo, “IRS-aided
wireless powered MEC systems: TDMA or NOMA for computation
offloading?” 2021. [Online]. Available: https://arxiv.org/abs/2108.06120.

[18] T. Bai et al., “Latency minimization for intelligent reflecting surface aided
mobile edge computing,” IEEE J. Sel. Areas Commun., vol. 38, no. 11,
pp. 2666–2682, Nov. 2020.

[19] G. Chen, Q. Wu, C. He, W. Chen, J. Tang, and S. Jin, “Active IRS aided
multiple access for energy-constrained IoT systems,” 2022. [Online].
Available: https://arxiv.org/abs/2201.12565.

[20] Q. Wu and R. Zhang, “Joint active and passive beamforming optimization
for intelligent reflecting surface assisted SWIPT under QoS constraints,”
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1735–1748, Aug. 2020.

[21] Z. Chu et al., “A novel transmission policy for intelligent reflecting surface
assisted wireless powered sensor networks,” IEEE J. Sel. Areas Commun.,
vol. 15, no. 5, pp. 1143–1158, Aug. 2021.

[22] Q. Wu, X. Zhou, and R. Schober, “IRS-assisted wireless powered NOMA:
Do we really need different phase shifts in DL and UL?” IEEE Wireless

Commun. Lett., vol. 10, no. 7, pp. 1493–1497, Jul. 2021.
[23] M. Hua and Q. Wu, “Joint dynamic passive beamforming and resource

allocation for IRS-aided full-duplex WPCN,” IEEE Trans. Wireless Com-

mun., vol. 21, no. 7, pp. 4829–4843, Jul. 2022.
[24] C. Pan et al., “Multicell MIMO communications relying on intelligent

reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp.
5218–5233, Aug. 2020.

[25] H. Xie, J. Xu, and Y.-F. Liu, “Max-min fairness in IRS-aided multi-
cell MISO systems with joint transmit and reflective beamforming,” IEEE

Trans. Wireless Commun., vol. 20, no. 2, pp. 1379–1393, Feb. 2021.
[26] M. Hua, Q. Wu, D. W. K. Ng, J. Zhao, and L. Yang, “Intelligent reflecting

surface-aided joint processing coordinated multipoint transmission,” IEEE
Trans. Commun., vol. 69, no. 3, pp. 1650–1665, Mar. 2021.

[27] S. Buzzi, E. Grossi, M. Lops, and L. Venturino, “Foundations of MIMO
radar detection aided by reconfigurable intelligent surfaces,” IEEE Trans.
Signal Process., vol. 70, pp. 1749–1763, Mar. 2022.

[28] W. Lu et al., “Target detection in intelligent reflecting surface aided
distributed MIMO radar systems,” IEEE Sensors Lett., vol. 5, no. 3, pp.
1–4, Mar. 2021.

[29] X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing
with intelligent reflecting surface: Architecture and performance,” 2022.
[Online]. Available: https://arxiv.org/abs/2201.09091.

[30] Z.-M. Jiang et al., “Intelligent reflecting surface aided dual-function radar
and communication system,” IEEE Systems J., 2021, early access, doi:
10.1109/JSYST.2021.3057400.

[31] X. Song et al., “Joint transmit and reflective beamforming for
IRS-assisted integrated sensing and communication,” 2021. [Online].
Available: https://arxiv.org/abs/2111.13511.

[32] X. Wang et al., “Joint waveform design and passive beamforming for RIS-
assisted dual-functional radar-communication system,” IEEE Trans. Veh.

Technol.,, vol. 70, no. 5, pp. 5131–5136, May 2021.
[33] R. Liu, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Joint transmit waveform

and passive beamforming design for RIS-aided DFRC systems,” 2021.
[Online]. Available: https://arxiv.org/abs/2112.08861.

[34] R. Sankar and S. P. Chepuri, “Beamforming in hybrid RIS assisted
integrated sensing and communication systems,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.05902.

[35] N. Su et al., “Secure radar-communication systems with malicious targets:
Integrating radar, communications and jamming functionalities,” IEEE

Trans. Wireless Commun., vol. 20, no. 1, pp. 83–95, Jan. 2020.
[36] ——, “Secure dual-functional radar-communication transmission: Exploit-

ing interference for resilience against target eavesdropping,” IEEE Trans.

Wireless Commun., 2022, early access, doi: 10.1109/TWC.2022.3156893.
[37] C. Hu, L. Dai, S. Han, and X. Wang, “Two-timescale channel estimation

for reconfigurable intelligent surface aided wireless communications,”
IEEE Trans. Commun., vol. 69, no. 11, pp. 7736–7747, Nov. 2021.

[38] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure
wireless communications via intelligent reflecting surfaces,” IEEE J. Sel.

Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
[39] G. Zhou et al., “A framework of robust transmission design for IRS-aided

MISO communications with imperfect cascaded channels,” IEEE Trans.
Signal Process., vol. 68, pp. 5092–5106, Aug. 2020.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[41] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms
in signal processing, communications, and machine learning,” IEEE Trans.

Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.
[42] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix

inequalities in system and control theory. Philadelphia, PA, USA: SIAM,
1994.

[43] E. A. Gharavol and E. G. Larsson, “The sign-definiteness lemma and
its applications to robust transceiver optimization for multiuser MIMO
systems,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 238–252, Jan.
2013.

[44] M. Shao, Q. Li, W.-K. Ma, and A. M.-C. So, “A framework for one-bit
and constant-envelope precoding over multiuser massive MISO channels,”
IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5309–5324, Oct. 2019.


