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Abstract

In this paper, we investigate the beam domain statistical channel state information (CSI) estimation

for the two dimensional (2D) beam based statistical channel model (BSCM) in massive MIMO systems.

The problem is to estimate the beam domain channel power matrices (BDCPMs) based on multiple

receive pilot signals. A receive model shows the relation between the statistical property of the receive

pilot signals and the BDCPMs is derived from the 2D-BSCM. On the basis of the receive model,

we formulate an optimization problem with the Kullback-Leibler (KL) divergence. By solving the

optimization problem, a novel method to estimate the statistical CSI without involving instantaneous CSI

is proposed. The proposed method has much lower complexity than the MMV focal underdetermined

system solver (M-FOCUSS) algorithm. We further reduce the complexity of the proposed method by

utilizing the circulant structures of particular matrices in the algorithm. We also showed the generality

of the proposed method by introducing another application. Simulations results show that the proposed

method works well and bring significant performance gain when used in channel estimation.
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) [1]–[5] has been one of the key enabling tech-

nologies of the fifth generation (5G) wireless communications networks. It provides enormous

capacity gains and achieves high energy efficiency by employing a large number of antennas at the

base station (BS). In massive MIMO systems, multi-user MIMO (MU-MIMO) [6] transmissions

on the same time and frequency resource are enhanced significantly. Furthermore, massive MIMO

also brings many new applications and services [7], [8]. For the antenna array equipped in the

BS, the uniform planar array (UPA) is widely used in practical massive MIMO systems since

it has compact size. In this paper, we investigate the three dimensional (3D) massive MIMO

systems equipped with UPA.

For massive MIMO systems, the beam based statistical channel model (BSCM) [9]–[12] is used

in the literature for robust linear precoder design and system performance analysis. The BSCM

is extended from the unitary–independent–unitary (UIU) model [13] or the jointly correlated

channel model [14]–[16] with the eigen-matrices being replaced by the oversampled discrete

Fourier transform (DFT) matrix. It is more accurate than the beam domain channel model based

on the DFT based beams. Thus, the linear precoder design based on the BSCM can achieve

significant performance gain compared with that based on the beam domain channel model

as shown in [11], [12]. The model can also be extended to the angle-delay domain as a two

dimensional (2D) BSCM, which also brings performance gain in the channel estimation [17].

To achieve these performance gains in massive MIMO systems, the statistical parameters in the

channel model need to be known in advance. Although the statistical parameters for the BSCM

is very important, the problem of estimating them is not mentioned in those works. Due to its

importance, we consider the problem of estimating the statistical CSI for the 2D-BSCM based

on the receive pilot signals in this paper.

In the literature, the statistical CSI is often obtained based on the estimated instantaneous CSI

[16], or obtained through the expectation–maximization (EM) algorithms [18] which iteratively

estimate the instantaneous and statistical CSI. There also exists works [19] that obtain the

covariance matrix directly without instantaneous CSI being involved. For the 2D-BSCM, the

problem becomes to obtain the channel power matrices in the beam domain, which has not been

addressed in the literature. In the 2D-BSCM, the angle-delay domain or the beam domain channel

coefficient is sparse due to the limit number of resolvable multi-pathes. When there exists no
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noise, the considered problem can also be viewed as a multiple measurement vectors (MMV)

problem [20], which is a classic compressive sensing problem. The MMV focal underdetermined

system solver (M-FOCUSS) algorithm [20] can be applied to solve the problem and obtain the

instantaneous CSI, which are then used to compute the statistical CSI.

However, the noise can not be ignored in the practical massive MIMO systems. Furthermore,

the computational complexity of the M-FOCUSS method is not satisfied since it needs to compute

the instantaneous CSI first and the dimension for the MMV problem in the considered massive

MIMO is very high. Furthermore, the statistical CSI of the 2D-BSCM can also be utilized to

improve the estimating performance of instantaneous CSI in practical massive MIMO systems.

Thus, it is better to obtain the statistical CSI for the considered problem before estimating the

instantaneous CSI. In conclusion, we need a new method with lower complexity to estimate the

statistical CSI for the 2D-BSCM.

To achieve this goal, we first derive a theorem which gives the relation between the statis-

tical property of the consider channel matrices and the beam domain channel power matrices

(BDCPMs). Then, we derive a receive model for the BDCPMs based on this relation. Based on

the derived model, the statistical parameters of the 2D-BSCM can be estimated directly without

involving the instantaneous CSI. To estimate the BDCPM, we then formulate a new optimization

problem based on the Kullback-Leibler (KL) divergence. By solving the problem, we propose a

novel method to obtain the BDCPM for the 2D-BSCM. The proposed algorithm has much lower

complexity than that of the M-FOCUSS method. Furthermore, we further reduce the complexity

of the proposed method by utilizing the circulant structures of certain matrices in the algorithm.

We also show the generality of the proposed method by presenting another application.

The main contributions of this paper are summarized as follows:

1) We derive a receive model for the BDCPM of the 2D-BSCM. The receive model can be

used to estimate the statistical CSI directly without involving the instantaneous CSI.

2) We propose a novel method to obtain the BDCPMs based on the receive model and the

KL divergence. Compared with the M-FOCUSS method, the proposed method has much

lower complexity.

3) We further reduce the complexity of the proposed method by utilizing the circulant structure

of certain matrices in the algorithm.

The rest of this article is organized as follows. Section II introduces the system model and

formulates the problem. Section III presents the estimation of beam domain power matrices.
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Section IV provides simulation results. Section V draws the conclusion. The proofs of the

theorems and corollary are provided in the Appendices.

A. Notations

Throughout this paper, uppercase boldface letters and lowercase boldface letters are used for

matrices and vectors, respectively. The superscripts (·)∗, (·)T and (·)H denote the conjugate,

transpose and conjugate transpose operations, respectively. The operator E{·} denotes the math-

ematical expectation operator. In some cases, where it is not clear, we will employ subscript to

emphasize the definition. The operators ⊙ and ⊗ represent the Hadamard and Kronecker product,

respectively. We use 0N×M and 1N,M to denote N ×M matrices or vectors of all zeros and all

ones, respectively. The N × N identity matrix is denoted by IN , and IN×M is used to denote

[IN 0N×(M−N)] when N < M and [IM 0M×(N−M)]
T when N > M . The subscripts of I, 0 and

1 can sometimes be omitted for convenience. We use [A]ij to denote the (i, j)-th entry of the

matrix A. The operators tr(·) and det(·) represent the matrix trace and determinant, respectively.

We use diag (X) to denote a column vector composed of the main diagonal elements of a square

matrix X, and diag (x) to denote the diagonal matrix with x along its main diagonal. A N-

dimensional normalized DFT matrix is denoted as FN . We further define the permutation matrix

as

Πn
N =





0 IN−n

In 0



 , (1)

where 0 ≤ n ≤ N .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a 3D massive MIMO system with frequency selective fading channels. The

system consists of one BS equipped with a UPA array and K user terminals (UTs) with single

antennas. The number of the antennas at the BS is Mr, where the numbers of antennas at each

vertical column and horizontal row are Mr,z and Mr,x, respectively. The orthogonal frequency

division multiplexing (OFDM) [21] modulation is used to transform the frequency selective

fading channel into multiple of parallel channels. Thus, the considered system is a massive

MIMO-OFDM system. The number of subcarriers in the massive MIMO-OFDM system is Mc,
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and Mp subcarriers are used for uplink pilot signal transmission. The length of the cyclic prefix

(CP) and the sampling interval are denoted as Mg and Ts.

We restrict our considerations to stationary channels and use the BSCM to describe the spatial-

temporal correlations of each channel. We denote the polar and azimuthal angles of arrival at

the BS by θr, φr. Let dz and dx be the antenna spacing of each row and each column of the

UPA. Let ∆z = dz
λ

, ∆x = dx
λ

, and ur and vr denote the directional cosines with respect to the

z axis and x axis, respectively. Then, we have ur = cos θr and vr = sin θr cosφr. The steering

vector at the BS side is given by

ar(ur, vr) = vz(ur)⊗ vx(vr), (2)

where

vz(ur) = [1 e−j2π∆zur · · · e−(Mz−1)j2π∆zur ]T , (3)

vx(vr) = [1 e−j2π∆xvr · · · e−(Mx−1)j2π∆xvr ]T . (4)

In this paper, both dz and dx are assumed equal to 1
2
λ. Then, we obtain that ∆z = ∆x = 1

2
. Let

V be the matrix of sampled steering vectors defined as

V = Vz ⊗Vx ∈ C
Mr×Nr , (5)

where

Vz = [vz(ur,1) vz(ur,2) · · · vz(ur,Nz
)] ∈ C

Mr,z×Nr,z , (6)

Vx = [vx(vr,1) vx(vr,2) · · · vx(vr,Nx
)] ∈ C

Mr,x×Nr,x . (7)

We define Na,z = Nz

Mz
and Na,x = Nx

Mx
as the vertical and horizontal angle domain fine factors

(FFs), respectively. The matrices Vz and Vx are oversampled DFT matrices when Na,z and Na,x

are integers, and the directional cosines are uniformly sampled in the range of -1 to 1. Then,

Vz and Vx can be represented as Vz = IMz,Nz
FNz

and Vx = IMx,Nx
FNx

, respectively.

The frequency basis vector br(τr) ∈ CMp×1 is given by

br(τr) = [1 e−j2π∆fτr · · · e−(Mp−1)j2π∆f τr ]T , (8)

where ∆f = 1
McTs

is the frequency spacing between neighboring carriers and τr is the delay. We

define the matrix of sampled frequency basis vectors as

U = [br(τr,1) br(τr,2) · · · br(τr,Np
)] ∈ C

Mp×Np. (9)
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The delay domain fine factor is defined as Na,p =
Np

Mp
. Similarly, U is an oversampled DFT matrix

when Na,p is an integer and τr is uniformly sampled as τr,ℓ =
ℓ−1

Np∆f
. In this case, we have that

U = IMp,Np
FNp

. We assume that the delay is within the guard interval, i.e., τr ≤ MgTs. We define

Mf = ⌈MpMg

Mc
⌉ and Nf = Na,pMf , where the notation ⌈·⌉ represents rounding upwards. Then,

the vector set
{

br(τr,1),br(τr,2), ...,br(τr,Nf
)
}

is enough to contain all the sampled frequency

basis vectors since
Nf

Np∆f
≥ MgTs. Thus, we further define Uf ∈ CMp×Nf as

Uf = UINp,Nf
= [br(τr,1) br(τr,2) · · · br(τr,Nf

)]. (10)

By using the 2D-BSCM, the space-frequency domain channel matrix between the k-th UE

and the BS for the t-th OFDM symbol can be modeled as [9]–[12]

Hk,t = V(Mk ⊙Wk,t)U
T
f , (11)

where the matrix Mk is an Nr × Nf deterministic matrix and remains unchanged in different

OFDM symbols, and Wk,t is a complex Gaussian random vector consisting of independent and

identically distributed (i.i.d.) elements with zero mean and unit variance. We also assume that

Wk,t and Wk′,t are independent of each other when k 6= k′. We define Gk,t = Mk⊙Wk,t, which

is the angle-delay domain channel matrix and also called the two dimensional beam domain

channel matrix (2D-BDCM). The 2D-BDCPM of the k-th user is defined as Ωk = Mk ⊙Mk,

which is a sparse matrix since most of the channel power is distributed in a limited number of

resolvable spatial directions and time delays.

B. Problem Formulation

In the two dimensional channel model (11), the matrix Uf and V are deterministic matrices.

The unknown statistical parameter is the matrix Mk or equivalently the 2D-BPCMs Ωk. The

statistical CSI or the matrix Ωk can be exploited to schedule UTs and improve the estimation

performance of instantaneous CSI, which will bring significant system performance gain. Thus,

it is very important obtain the statistical CSI or the matrix Ωk.

To estimate the matrices Ωk, we can use the received pilot signals. We now consider the

statistical CSI estimation based on the uplink pilot transmission. We use the pilot signal sequence

in [22] as

xq,p = x̃q ⊙ br(τr,pNf
), (12)
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where q and p denote the root coefficient and cyclic shift, respectively. The sequence x̃q is the

Zadoff-Chu (ZC) sequence with root coefficient q, which is specifically represented as [22]

[x̃q]n = exp

{

−j
πqn(n+ 1)

Nl

}

, n = 0, ...,Mp − 1, (13)

where Nl is the largest prime number such that Nl < Mp. In particular, the pilots degenerate

into orthogonal pilots (OPs) when there is only one root. However, the overhead of orthogonal

pilots is relatively large. There might not be enough pilot resource for the orthogonal pilots as

the number of the users increase in the massive MIMO systems. Thus, we use the nonorthogonal

pilots in [22] to schedule more UTs in a OFDM symbol. We denote the number of roots and

the number of UTs on the q-th root as Q and Pq. Let the matrices Xq,p, X̃q and Br(τ) denote

diag (xq,p) , diag (x̃q) and diag (br(τ)), respectively. We use the subscript q, p to replace k for

convenience. The received pilot signal Yt ∈ C
Mr×Mp at the BS for the t-th OFDM symbol is

given by

Yt =
K
∑

k=1

Hk,tXk + Zt =

Q
∑

q=1

(

Pq
∑

p=1

Hq,p,tBr(τr,pNf
)

)

X̃q + Zt, (14)

where Zt is a complex Gaussian noise matrix consisting of independent and identically distributed

(i.i.d.) elements with zero mean and variance σ2
z . Substituting the channel model (11) into (14),

we can obtain that

Yt =

Q
∑

q=1

(

Pq
∑

p=1

VGq.p,tU
T
f Br(τr,pNf

)

)

X̃q + Zt

=

Q
∑

q=1

(

Pq
∑

p=1

VGq,p,tINf ,Np
UTBr(τr,pNf

)

)

X̃q + Zt

(a)
=

Q
∑

q=1

V

(

Pq
∑

p=1

Gq,p,tINf ,Np
Π

(p−1)Nf

Np

)

UT X̃q + Zt, (15)

where the proof of step (a) can be performed in a similar way as in [23]. Let the matrix G̃q,t

be defined as

G̃q,t =

Pq
∑

p=1

Gq,p,tINf ,Np
Π

(p−1)Nf

Np
. (16)

The receive model becomes

Yt =

Q
∑

q=1

VG̃q,tU
T X̃q + Zt, (17)
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and we can also obtain that

G̃q,t =
[

Gq,1,t Gq,2,t · · · Gq,Pq,t 0
]

∈ C
Nr×Np . (18)

Let the matrices Gt and P be defined as

Gt = [G̃1,t G̃2,t · · · G̃Q,t], (19)

P = [X̃T
1U X̃T

2U · · · X̃T
QU]T . (20)

We can rewrite the receive model as

Yt = VGtP+ Zt. (21)

For convenience, we also define

M̃q =
[

Mq,1 Mq,2 · · · Mq,Pq
0
]

∈ C
Nr×Np , (22)

Ω̃q =
[

Ωq,1 Ωq,2 · · · Ωq,Pq
0
]

∈ C
Nr×Np, (23)

M =
[

M̃1 M̃2 · · · M̃Q

]

, (24)

Ω =
[

Ω̃1 Ω̃2 · · · Ω̃Q

]

. (25)

In the receive model (21), the matrix V and P are deterministic matrices. The unknown

statistical parameter is the matrix M or equivalently the matrix Ω. Since the statistical CSI

varies slowly and remains the same over a short period of time, we can use multiple received

pilot signals to estimate it. Thus, the problem is to estimate Ω base on multiple receive pilot

signals Yt. When there is no noise, the problem can also be viewed as a MMV problem [20].

Multiple instantaneous beam domain channel coefficients Gt can be obtained by using the M-

FOCUSS method [20] and then be used to obtain the statistical Ω. However, we need to consider

the noise here. Furthermore, the complexity of the M-FOCUSS method is also not satisfied

because it needs to estimate a large number of instantaneous channel matrices simultaneously

and the dimension of the MMV problem becomes extremely large as the number of antennas and

frequency carriers increases. Thus, we need a new method to estimate the statistical Ω directly.

III. ESTIMATION OF BEAM DOMAIN POWER MATRICES

A. 2D-BDCPM acquisition algorithm based on KL divergence minimization

Since the statistical parameters to be estimated are on the two dimensional angle-delay domain,

it is natural to convert the received pilot signals into signals on the angle-delay domain. By left
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9

multiplying Yt with VH and right multiplying it with PH , we obtain the received pilot signal

on the angle-delay domain as

VHYtP
H = VHVGtPPH +VHZtP

H . (26)

The relation between the received pilot signal and the 2D-BDCPM is not clear yet. To figure

out their relation, we present the following theorem that shows one important property of the

2D-BDCM Gt.

Theorem 1. The 2D-BDCM Gt satisfies

E{(C1GtC2)⊙ (C1GtC2)
∗} = T1ΩT2, (27)

where C1 and C2 are constant matrices, T1 = C1 ⊙C∗

1 and T2 = C2 ⊙C∗

2.

Proof. The proof is provided in Appendix A.

Theorem 1 provides an important property of the product of one random matrix with indepen-

dent entries and two deterministic matrices. Let Φ denote the expectation of the receive power

matrix on the angle-delay domain as

E{[(VHYPH)⊙ (VHYPH)∗]}.

From Theorem 1, we can obtain the receive model of the statistical parameter Ω as

Φ = TaΩTf +N, (28)

where Ta, Tf and N are deterministic matrices defined as

Ta = (VHV)⊙ (VHV)∗, (29)

Tf = (PPH)⊙ (PPH)∗

=











(

UT X̃1X̃
H
1 U

∗

)

⊙
(

UT X̃1X̃
H
1 U

∗

)∗

· · ·
(

UT X̃1X̃
H
QU

∗

)

⊙
(

UT X̃1X̃
H
QU

∗

)∗

...
. . .

...
(

UT X̃QX̃
H
1 U

∗

)

⊙
(

UT X̃QX̃
H
1 U

∗

)∗

· · ·
(

UT X̃QX̃
H
QU

∗

)

⊙
(

UT X̃QX̃
H
QU

∗

)∗











,

(30)

N = (VH ⊙VT )E{Z⊙ Z∗}(PH ⊙PT ) = MtMpσ
2
z1. (31)

To estimate the 2D-BDCPM, i.e., the matrix Ω, from Φ, we can solve (28) directly to obtain

an exact solution. However, it is not an easy task since the elements of Ω need be nonnegative.
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Even more, (28) might not have an exact solution. Thus, we propose to construct an optimization

problem to obtain approximate solution. To achieve this goal, we need an objective function first.

This means that we need to choose a type of divergence or distance between the matrix Φ and

the sum TaΩTf +N according to (28). Since both the matrices are matrices with positive real

elements, the Kullback–Leibler (KL) divergence between sequences of positive real elements is

a natural option and used as the objective function.

Meanwhile, optimizing Ω directly is still complicate since it has the constraint that its elements

are nonnegative. From the relation Ω = M ⊙ M, we know that estimating the matrix M is

equivalent to estimating the matrix Ω. Thus, we choose to optimize M instead of Ω because it

has no constraint. We define the function f(M) as the KL divergence between the matrices Φ

and TaΩTf +N, i.e., [24]

f(M) =
∑

ij

[Φ]ij log
[Φ]ij

[TaΩTf +N]ij
+
∑

ij

[TaΩTf +N]ij −
∑

ij

[Φ]ij . (32)

Using the KL divergence f(M), we are now able to formulate an unconstrained optimization

problem as

M⋆ = argmin
M

f(M). (33)

To solve the optimization problem in (33), the gradient method [25] can be used. Thus, we

calculate the gradient of f(M) with respect to M first. In the following theorem, we provide

the gradients of two items in f(M).

Theorem 2. The gradients of two items in f(M) can be obtained as

∂
∑

ij [Ta(M⊙M)Tf ]ij

∂M
= 2 (Ta1Tf)⊙M, (34)

∂
∑

ij [Φ]ij log [Ta(M⊙M)Tf +N]
ij

∂M
= 2 (TaQTf)⊙M, (35)

where the matrix Q is the Hadmard division of two matrices with the elements being defined as

[Q]ij =
[Φ]ij

[TaΩTf +N]ij
. (36)

Proof. The proof is provided in Appendix B.
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From Theorem 2 and the gradients of other items in f(M) with respect to M are zeros, we

obtain the gradient of the function f(M) as

∂f(M)

∂M
= 2(Ta1Tf )⊙M− 2(TaQTf)⊙M

= 2(Ta(1−Q)Tf)⊙M. (37)

With the obtained gradient, we can apply the gradient method to obtain the optimal M as

Md+1 = Md − δd
∂f(Md)

∂Md
, (38)

where the superscript d represents the iteration number and δd is the step size which can be

obtained by the line search method [26]. Recall that Φ denotes E{[(VHYPH)⊙ (VHYPH)∗]}.

Thus, it is not possible to obtain the matrix Φ directly in practice. Instead, we use the sample

average
∑T

t=1
1
T
{[(VHYtP

H)⊙(VHYtP
H)∗]}, where T is the number of samples. The obtained

algorithm is summarized as Algorithm 1.

Algorithm 1 2D-BDCPM acquisition algorithm based on KL divergence minimization

1: Use T received pilot signals to calculate Φ as 1
T

∑T

t=1 (V
HYtP

H)⊙ (VHYtP
H)∗

2: Initialization: set d = 0 and the maximum number of iterations as D, select appropriate δ0,

δmin < δ0 and α ∈ (0, 1), and initialize Ω0 = 1
QNrNp

Φ and M0 =
√
Ω

3: Repeat

4: Calculate the gradient of f(Md) as
∂f(Md)
∂Md = 2(Ta(1−Q)Tf )⊙Md

5: while δd > δmin

6: Update Md+1 = Md − δd
∂f(Md)
∂Md

7: if f(Md+1) ≥ f(Md) then δd = αδd and Md+1 = Md

8: else break

9: Set d = d+ 1.

10: until δd ≤ δmin or d = D

11: Calculate Ωd = Md ⊙Md

Since the computational complexity of products is much higher than that of additions, we

use the number of the complex products as the computational complexity. Then, the complex-

ity of Algorithm 1 is dominate by the matrix product TaQTf in (37), whose complexity is

O (QNrNp(Nr +QNp)). The complexity is much lower than that of the M-FOCUSS algorithm,

which is of order O((QNrNp)
3). However, the complexity of Algorithm 1 is still not satisfied
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for the 2D-BSCM since QNrNp(Nr +QNp) is still very large. Thus, we need to further reduce

the complexity of the proposed algorithm.

B. Low-complexity 2D-BDCPM acquisition algorithm

In the previous subsection, we provide a receive model that can be utilized to estimate the

beam domain channel power matrix Ω. However, the dimensions of Ta and Tf are too large

such that the matrix product TaΩTf will cause high computational complexity. To reduce the

computational complexity of Algorithm 1, the structure of Ta and Tf provided in the following

theorem and corollary can be utilized.

Theorem 3. Let the matrix A = IM,NFN be an oversampled DFT matrix and D = diag (d) be

an M-dimensional diagonal matrix. Then, (AHDA) ⊙ (AHDA)∗ is a circulant matrix, given

by

(AHDA)⊙ (AHDA)∗ = FH
NΛFN , (39)

where Λ is diagonal matrix defined as

Λ =
1

N
diag

(

FN

(

(FH
N d̃)⊙ (FH

N d̃)
∗

))

, (40)

d̃ = [dT 0T
N−M,1]

T . (41)

Proof. The proof is provided in Appendix C

Theorem 3 is obtained based on the properties of the circulant matrices [27]. From Theorem

3, we then obtain the following corollary.

Corollary 1. The matrices Ta and Tf can be written as

Ta = (FNz
⊗ FNx

)H(Λz ⊗Λx)(FNz
⊗ FNx

), (42)

Tf = (IQ ⊗ FNp
)HΣ(IQ ⊗ FNp

), (43)

where Λv and Λh are diagonal matrices, defined as

Λv =
1

Nz

diag
(

FNz

(

(FH
Nz
dz)⊙ (FH

Nz
dz)

∗
))

, (44)

Λx =
1

Nx

diag
(

FNx

(

(FH
Nx

dx)⊙ (FH
Nx

dx)
∗
))

, (45)

dz =
[

1T
Mz ,1 0T

Nz−Mz,1

]T
, (46)

dx =
[

1T
Mx,1 0T

Nx−Mx,1

]T
, (47)
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and Σ is a block matrix with diagonal matrices being its elements, defined as

Σ =











Σ1,1 · · · Σ1,Q

...
. . .

...,

ΣQ,1 · · · ΣQ,Q











, (48)

Σq1,q2 =
1

Np

diag
(

FNp

(

(FH
Np
dq1,q2)⊙ (FH

Np
dq1,q2)

∗

))

, (49)

dq1,q2 =
[

(

x̃q1 ⊙ x̃∗

q2

)T
0T
Np−Mp,1

]T

. (50)

Proof. The proof is provided in Appendix D.

Based on the structures of Ta and Tf provided in Corollary 1, we can reduce the complexity

of the proposed algorithm. In the following, we analyze the complexity of the proposed algorithm

after utilizing the structure provided in Corollary 1.

We write the matrix Q as [Q1 Q2 · · · QQ] for convenience, where Qq ∈ CNr×Np , ∀q. Ac-

cording to Corollary 1, the matrix product TaQTf can be written as

TaQTf = (FNv
⊗ FNh

)H(Λv ⊗Λh)(FNv
⊗ FNh

)Q(IQ ⊗ FNp
)HΣ(IQ ⊗ FNp

)

=











∑Q

q=1(FNv
⊗ FNh

)H(Λv ⊗Λh)(FNv
⊗ FNh

)QqF
H
Np
Σq,1FNp

...
∑Q

q=1(FNv
⊗ FNh

)H(Λv ⊗Λh)(FNv
⊗ FNh

)QqF
H
Np
Σq,QFNp











. (51)

There are three kinds of matrix products in (51). For convenience, we analyze their complexities

after utilizing the structure as follows.

1) The first kind of product is the product between an M ×N matrix and an N-dimensional

diagonal matrix. Its complexity is O(NM).

2) The second kind of product is the product between an M×N matrix and an N-dimensional

DFT matrix, which can be implemented by using the fast Fourier transform (FFT) and has

complexity of O(NM log2N).

3) The third kind product is the product between a matrix and the Kronecker product of two

DFT matrices. For example, we consider the matrix product (FN1
⊗ FN2

)A, where

A = [vec(A1) vec(A2) · · · vec(AM)] ∈ C
N×M

and An ∈ CN2×N1 , ∀n. It can be calculated in the following way as

(FN1
⊗ FN2)A =

[

vec(FN2A1F
T
N1) vec(FN2A2F

T
N1) · · · vec(FN2AMFT

N1)
]

.
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Its complexity after using FFT is O(NM log2N).

By utilizing the structure provided in Corollary 1, we can obtain a low complexity version

of Algorithm 1, the details of which is omitted for brevity. Base on the complexity analysis of

all three kinds of products provided on the above, the computational complexity of the low-

complexity method after utilizing the structure is calculated as O(QNrNp log2(NrNp)), which

is much lower than that of using the direct matrix product.

C. Angle domain BDCPM acquisition method in frequency-flat fading channels

In the previous subsections, we have introduced the method of obtaining 2D-BDCPM based

on the model in (21). In fact, the proposed method is applicable as long as the received signal

model satisfies the following form

Y = AGB+ Z, (52)

where A and B are deterministic matrices, G is a random matrix with independent entries, Y

is the receive matrix, and Z is a noise matrix. The matrix Ω = E {G⊙G∗} is the statistical

parameter to be estimated.

In this subsection, we present another application of the proposed method. We consider massive

MIMO transmission over frequency-flat fading channels which can be seen as a narrow-band sub-

carrier of the considered massive MIMO-OFDM system. In this system, K UTs equipped with

Mt antennas sending pilot signals to a base station equipped with Mr antennas. Let Xk ∈ CMt×T

denote the uplink pilot signal transmitted by the k-th user. We assume the pilot signals of different

users are orthogonal to each other for simplicity.

The received channel matrix Hk,m ∈ CMr×Mt on the m-th slot at the BS can be written as

Hk,m = VrGk,mV
T
t , (53)

where Gk,m denotes the angle domain channel matrix, Vr and Vt are the conversion matrices

from the angle domain to the space domain at the transmitter and receiver, respectively. Similarly

to the 2D-BSCM, Vr and Vt need not be unitary matrices.

The received pilot signal Ym ∈ CMr×T on the m-th slot at the BS can be written as

Ym =
K
∑

k=1

Hk,mXk + Zm =
K
∑

k=1

VrGk,mV
T
t Xk + Zm, (54)

where Zm is the noise matrix whose elements are independent and identically distributed (i.i.d.)

complex Gaussian random variables with zero mean and variance σ2
z .
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Under the assumption that the pilot matrices of different UTs are orthogonal to each other, it

is easy to obtain that

VH
r YmX

H
k V

∗

t = VH
r VrGk,mV

T
t XkX

H
k V

∗

t +VH
r ZmX

H
k V

∗

t , (55)

By defining Tr, Tt and N as

Tr = (VH
r Vr)⊙ (VH

r Vr)
∗, (56)

Tt = (VT
t XkX

H
k V

∗

t )⊙ (VT
t XkX

H
k V

∗

t )
∗, (57)

N = σ2
z(V

T
r ⊙VH

r )1((X
T
kVt)⊙ (XH

k V
∗

t )), (58)

we can obtain from Theorem 1 that

Epn

{

(VH
r YmXkV

∗

t )⊙ (VH
r YmXkV

∗

t )
}

= TrΩkTt +N, (59)

where the matrix Ωk is the angle domain channel power matrix of the k-th user, which is

defined as E
{

Gk,m ⊙G∗

k,m

}

. It is obviously that the receive model has the same structure as

(28). Therefore, the proposed method can also be used here to estimate the angle domain channel

power matrix.

IV. SIMULATION RESULTS

In this section, we provide simulation results to show the performance of the proposed

algorithm. We adopt both the widely used QuaDRiGa [28] and the 2D BSCM in (11) to generate

channels for simulation. In the simulation, a massive MIMO system with Mr,z ×Mr,x = 8× 16

is used in most simulations, and an extra-large scale massive MIMO system with Mr,z×Mr,x =

16× 64 is also considered in the simulations of channel estimation. The antenna spacing on the

base station side is set to half wavelength and all UTs are equipped with single antennas. In

QuaDRiGa, the scenario is set to “3GPP 3D UMa NLOS”. The shadow fading and path loss

are not considered and the UTs in the cell are random uniformly distributed.

The major parameters of OFDM system are summarized in Table I. According to these

parameters, we can obtain Mf = ⌈MpMg

Mc
⌉ = 9. Therefore, the maximum number of UTs that can

be scheduled by orthogonal pilots in an OFDM symbol is ⌊Mp

Mf
⌋ = 13. In the simulations, we

select two scenarios with different numbers of UTs, one of which is K = Q× P = 1× 12 and

the other is K = Q× P = 2 × 12, where Q and P are the number of roots and the number of

UTs per root, respectively. We set the fine factors as Na,z = Na,x = Na,f = 2, which is enough
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to obtain good performance. Furthermore, the power of the transmitted pilots is set to 1. The

signal-to-noise ratio (SNR) is given by SNR = 1
σ2
z
.

TABLE I

OFDM PARAMETERS

Parameters Value

Carrier frequency fc 4.8 GHz

Subcarrier spacing ∆f 30 kHz

Guard interval Mg 144

Subcarriers number Mc 2048

Transmitting subcarriers number Mp 120

0 10 20 30 40 50 60 70 80 90 100

Number of iterations

0

1

2

3

4
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7

K
L 

di
ve

rg
en

ce
 fu

nc
tio

n

105

SNR = 30dB, K = 12
SNR = -10dB, K = 12
SNR = 30dB, K = 24
SNR = -10dB, K = 24

Fig. 1. The objective function value under different iteration times in massive MIMO system with Mr,z = 8,Mr,x = 16, where

the channel is generated from QuaDRiGa.

First, we use massive MIMO channels generated from QuaDRiGa for simulation. The aim is

mainly to verify the convergence of the proposed algorithm and analyze the influence of noise

and pilot interference on the estimated BDCPM through the angle domain power spectrum,

i.e., the mesh graph of the BDCPM. In Fig. 1, the convergence performance of the proposed

algorithm in four scenarios in massive MIMO system with Mr,z = 8,Mr,x = 16 are showed.

The SNRs under consideration are −10dB and 30dB, and the numbers of UTs are 12 and 24. It

can be observed that, the proposed algorithm can approach convergence within 20 iterations in
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all the scenarios. Furthermore, the algorithm converges faster with fewer UTs than with more

UTs.

(a) (b)

(c) (d)

Fig. 2. Estimated angle delay domain power spectrum of the first user in a massive MIMO system with Mr,z = 8,Mr,x = 16

and (a)SNR = 30dB, K = 12, (b)SNR=−10dB, K = 12, (c)SNR = 30dB, K = 24, (d)SNR = −10dB, K = 24. The channel

is generated from QuaDRiGa.

In Fig. 2, we give the estimated angle delay domain power spectrum of the first user under

different SNRs and numbers of UTs for the considered massive MIMO. The first user is the

same user for K = 12 and K = 24. By comparing Fig. 2(a) with Fig. 2(b) or Fig. 2(c) with

Fig. 2(d), it can be found that reducing the SNR has little effect on the obtained BDCPM. This

indicates that the proposed algorithm has a prominent anti-noise effect. Similarly, by comparing

Fig. 2(a) with Fig. 2(c) or Fig. 2(b) with Fig. 2(d), we can find that the BDCPM in Fig. 2(c)

or Fig. 2(d) has more non-zero beams, which is mainly caused by the interference of the pilot

signals on another root. Therefore, the pilot interference on other roots will reduce the accuracy

of the BDCPM to some extent.
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Fig. 3. NMSE of the estimated BDCPM versus SNRs for four scenarios in a massive MIMO system with Mr,z = 8,Mr,x =

16, T = 80, where the channel is generated from the 2D BSCM, the number of UTs is 12 and 24, and the methods are the

M-FOCUSS algorithm and the proposed algorithm.

Then, we evaluate the accuracy of the estimated BDCPM using the channels generated from

the 2D BSCM with given BDCPM. The results of the proposed algorithm are used to compare

with that of the M-FOCUSS algorithm, which has been verified to have high accuracy under

high SNR among a series of compressed sensing algorithms. Due to the high implementation

complexity of M-FOCUSS in extra-large scale massive MIMO, we only compare the accuracy

performance in massive MIMO simulation. Since the accurate BDCPM is known, we can use

the normalized mean squared error (NMSE) between the estimated BDCPM Ω̂k and the accurate

BDCPM Ωk to evaluate the accuracy of the BDCPM. The NMSE in dB is defined as

NMSE(dB) , 10 log2







1

K

K
∑

k=1

w

w

w
Ω̂k −Ωk

w

w

w

2

F

‖Ωk‖2F






(60)

The simulation results of NMSE performance of the estimated BDCPM are shown in Fig. 3,

where the massive MIMO system is also with Mr,z = 8,Mr,x = 16, T = 80. It can be observed

that the accuracy of the BDCPM obtained by the proposed algorithm is not less than that obtained

by the M-FOCUSS method, no matter orthogonal pilots with K = 12 or non-orthogonal pilots

with K = 24 are used. Meanwhile, it can also be found that the proposed algorithm has strong

anti-noise performance, while the accuracy of the M-FOCUSS algorithm drops sharply when
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Fig. 4. NMSE of the estimated BDCPM versus SNRs for four different numbers of samples in a massive MIMO system with

Mr,z = 8,Mr,x = 16, K = 12, where the channel is generated from the 2D BSCM and the methods are the M-FOCUSS

algorithm and the proposed algorithm.

the SNR is less than 0 dB.

The accuracy of the estimated BDCPM also depends on the number of received pilot signals,

which has been set as T = 80 in the simulations for Fig. 3. To show the relation between

the NMSE performance of the estimated BDCPM and the number of samples used in the

estimation, we simulate the NMSE of the estimated BDCPM for different numbers of samples in

the considered massive MIMO system with Mr,z = 8,Mr,x = 16. The numbers of samples are set

as T = 10, 20, 40, 80. The simulation results of K = 12 and K = 24 for all cases are provided

in Fig. 4 and Fig. 5, respectively. We observe that the NMSE of the estimated BDCPM for both

the M-FOCUSS algorithm and the proposed algorithm can achieve close to −10dB performance

with only 10 samples of receive pilot signals. Furthermore, the NMSE performances of the two

algorithms in high SNR regime decreases almost linearly as the number of received pilot signals

increases. Thus, we do not need too many samples of receive pilot signals in practical massive

MIMO systems to obtain the statistical channel information with good accuracy. Finally, the

proposed algorithm greatly outperforms the M-FOCUSS algorithm in the low SNR regime, and

achieves nearly the same performance as that of the latter in the high SNR regime for all cases.

It indicates that the proposed algorithm is robust to the noise, whereas the M-FOCUSS method

need a larger SNR to work.
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Fig. 5. NMSE of the estimated BDCPM versus SNRs for different numbers of samples in a massive MIMO system with

Mr,z = 8,Mr,x = 16, K = 24, where the channel is generated from the 2D BSCM and the methods are the M-FOCUSS

algorithm and the proposed algorithm.

Next, we use the estimated BDCPM for the estimation of instantaneous CSI. To show the

performance of channel estimation in a more realistic scenario, the channels are generated by

QuaDRiGa rather than the 2D BSCM. We consider both the massive MIMO and extra-large

scale MIMO case. Due to its high complexity, the M-FOCUSS method is only used in massive

MIMO scenarios. The MMSE algorithm is used for channel estimation. We define the mean

square error of space-frequency domain channel in dB as

MSE(dB) , 10 log2

(

1

KT

K
∑

k=1

T
∑

t=1

w

w

w
Ĥk,t −Hk,t

w

w

w

2

F

)

, (61)

where ‖·‖F represents the Frobenius norm and the space-frequency domain channel Hk,t has been

normalized as ‖Hk,t‖2F = MrMp. The simulation results of the channel estimation performance

of the considered massive MIMO and extra-large scale MIMO are shown in Fig. 6 and Fig.

7, respectively. It can be observed in Fig. 6 that when the SNR is less than 10 dB, the

proposed algorithm can bring significant channel estimation performance gain compared to

the M-FOCUSS algorithm. When the SNR is greater than 10 dB, the proposed algorithm can

also obtain comparable performance to the M-FOCUSS algorithm. Since the complexity of the

proposed algorithm is much lower than that of the M-FOCUSS algorithm, it is superior to the
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Fig. 6. MSE versus SNR in a massive MIMO system with Mr,z = 8,Mr,x = 16, where the channel is generated from

QuaDRiGa. Four scenarios are compared where the number of UTs is 12 and 24 and the methods are M-FOCUSS and the

proposed algorithm, respectively.
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Fig. 7. MSE versus SNR in an extra-large scale massive MIMO system with Mr,z = 16,Mr,x = 64, where the channel is

generated from QuaDRiGa. Two scenarios are compared where the number of UTs is 12 and 24, respectively.

M-FOCUSS algorithm in estimating the statistical channel information. Finally, the effectiveness

of the proposed algorithm at an extra-large scale massive MIMO is also verified in Fig. 7.
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V. CONCLUSION

In this paper, the beam domain statistical CSI estimation for the 2D-BSCM in massive MIMO

systems was investigated. We considered the problem of estimating the BDCPMs based on

multiple receive pilot signals. From the 2D-BSCM, we derived a receive model, which shows

the relation between the statistical property of the receive pilot signals and the BDCPMs. Then,

we formulated an optimization problem based on the Kullback-Leibler (KL) divergence and the

receive model. A novel method that estimates the BDCPMs without involving instantaneous

CSI was proposed by solving the optimization problem. The proposed method has much lower

complexity than that of the M-FOCUSS algorithm. The complexity of the proposed method was

then further reduced by utilizing the circulant structures. Simulations results showed the proposed

method works well and bring significant performance gain when used in channel estimation.

APPENDIX A

PROOF OF THEOREM 1

We define the matrix Γ as Γ = E{(C1GtC2) ⊙ (C1GtC2)
∗} for convenience. Then, the

entires [Γ]ij can be specifically represented as

[Γ]ij = E{[C1GtC2]ij ⊙ [C1GtC2]
∗

ij}

= E

{(

∑

p,q

[C1]ip[Gt]pq[C]qj

)(

∑

p′,q′

[C1]ip′ [Gt]p′q′ [C]q′j

)∗}

=
∑

p,q,p′,q′

[C1]ip[C1]
∗

ip′E
{

[Gt]pq[Gt]
∗

p′q′

}

[C2]qj[C2]
∗

q′j. (62)

Based on the assumption that each element of Gt has zero mean and is independent of each

other, i.e., E
{

[Gt]pq[Gt]
∗

p′q′

}

= δ(p− p′)δ(q − q′)[Ω]pq, we can simplify the expression of [Γ]ij

to

[Γ]ij =
∑

p,q

|[C1]ip|2 [Ω]pq |[C2]qj|2 . (63)

This can be organized in a matrix form as

Γ = (C1 ⊙C∗

1)Ω(C2 ⊙C∗

2). (64)

By defining T1 = C1 ⊙C∗

1 and T2 = C2 ⊙C∗

2, we then obtain

E{(C1GtC2)⊙ (C1GtC2)
∗} = T1ΩT2, (65)

Thus, we conclude the proof.
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APPENDIX B

PROOF OF THEOREM 2

We calculate the gradient
∂[Ta(M⊙M)Tf ]ij

∂M
first. The entries [Ta(M⊙M)Tf ]ij can be written

as

[Ta(M⊙M)Tf ]ij =
∑

p,q

[Ta]ip[M⊙M]pq[Tf ]qj (66)

We define ei as the column vector whose only nonzero entry is its i-th element, which has value

of 1. From [Ta]ip[Tf ]qj =
[

TT
a eie

T
j T

T
f

]

pq
, we have that

[Ta(M⊙M)Tf ]ij =
∑

p,q

[

TT
a eie

T
j T

T
f

]

pq
[M⊙M]pq

=
∑

p,q

[(

TT
a eie

T
j T

T
f

)

⊙ (M⊙M)
]

pq
. (67)

Then, we can obtain

∂[Ta(M⊙M)Tf ]ij
∂[M]pq

= 2
[

TT
a eie

T
j T

T
f

]

pq
[M]pq, (68)

so the gradient
∂[Ta(M⊙M)Tf ]ij

∂M
is given by

∂[Ta(M⊙M)Tf ]ij
∂M

= 2
(

TT
a eie

T
j T

T
f

)

⊙M. (69)

Next, the first target gradient can be calculated as

∂
∑

ij [Ta(M⊙M)Tf ]ij

∂M
=2

(

∑

ij

TT
a eie

T
j T

T
f

)

⊙M

=2

(

TT
a

(

∑

ij

eie
T
j

)

TT
f

)

⊙M

=2
(

TT
a 1T

T
f

)

⊙M. (70)

Furthermore, the second target gradient can be calculated as

∂
∑

ij[Φ]ij log [Ta(M⊙M)Tf +N]
ij

∂M

=
∑

ij

[Φ]ij
[Ta(M⊙M)Tf +N]ij

∂[Ta(M⊙M)Tf ]ij
∂M

=2
∑

ij

[Φ]ij
[Ta(M⊙M)Tf +N]ij

(

TT
a eie

T
j T

T
f

)

⊙M. (71)
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By defining Q as [Q]ij =
[Φ]ij

[TaΩTf+N]ij
, we then obtain

∂
∑

ij[Φ]ij log [Ta(M⊙M)Tf +N]
ij

∂M

=2

(

∑

ij

[Q]ijT
T
a eie

T
j T

T
f

)

⊙M

=2

(

TT
a

(

∑

ij

ei[Q]ije
T
j

)

TT
f

)

⊙M

=2
(

TT
aQTT

f

)

⊙M. (72)

Since Ta and Tf are symmetric matrices, then (70) and (72) can also be written as

∂
∑

ij [Ta(M⊙M)Tf ]ij

∂M
= 2 (Ta1Tf)⊙M, (73)

∂
∑

ij [Φ]ij log [Ta(M⊙M)Tf +N]
ij

∂M
= 2 (TaQTf)⊙M. (74)

APPENDIX C

PROOF OF THEOREM 3

From the properties of the circulant matrix [27], we can know that AHDA is a circulant

matrix when D = diag (d) is a diagonal matrix and A = IM,NFN is an oversampled DFT

matrix. Therefore, AHDA can be represented in the following form

AHDA =

N−1
∑

i=0

[c]iΠ
N−i
N , (75)

where c is the first column of the matrix AHDA, which can be calculated as

c = (AHDA)e1

= AHd

= FH
N d̃. (76)

The vector d̃ is defined as [dT 0T
N−M,1]

T . Then, we have

(AHDA)⊙ (AHDA)∗ =

(

N−1
∑

i=0

[c]iΠ
N−i
N

)

⊙
(

N−1
∑

j=0

[c]jΠ
N−j
N

)∗

=

N−1
∑

i=0

N−1
∑

j=0

[c]i[c]
∗

j

(

ΠN−i
N ⊙Π

N−j
N

)

(a)
=

N−1
∑

i=0

[c]i[c]
∗

iΠ
N−i
N . (77)

July 12, 2022 DRAFT



25

Equation (a) holds because Πi
N ⊙Π

j
N = δ(i− j)Πi

N . Obviously, (AHDA)⊙ (AHDA)∗ is also

a circulant matrix with c⊙ c∗ in the first column. Thus, it can be represented as

(AHDA)⊙ (AHDA)∗ = FH
NΛFN , (78)

where Λ = diag (λ) is a diagonal matrix and satisfies

c⊙ c∗ = FH
Nλ. (79)

Then, we obtain

Λ =
1

N
diag (FN (c⊙ c∗))

=
1

N
diag

(

FN

(

(FH
N d̃)⊙ (FH

N d̃)
∗

))

. (80)

Thus, we conclude the proof.

APPENDIX D

PROOF OF COROLLARY 1

Let us review the formulas of Ta and Tf from equation (29) and (30). First, we substitute

V = Vz ⊗Vx into (29), as following

Ta = (VHV)⊙ (VHV)∗

=
(

(Vz ⊗Vx)
H(Vz ⊗Vx)

)

⊙
(

(Vz ⊗Vx)
H(Vz ⊗Vx)

)∗

=
(

(VH
z Vz)⊗ (VH

x Vx)
)

⊙
(

(VH
z Vz)⊗ (VH

x Vx)
)∗

=
(

(VH
z Vz)⊙ (VH

z Vz)
∗
)

⊗
(

(VH
x Vx)⊙ (VH

x Vx)
∗
)

. (81)

From Theorem 3, and the fact that Vz = IMz,Nz
FNz

and Vx = IMx,Nx
FNx

are oversampled DFT

matrices, we obtain that (VH
z Vz)⊙ (VH

z Vz)
∗ and (VH

x Vx)⊙ (VH
x Vx)

∗ are circulant matrices,

written as

(VH
z Vz)⊙ (VH

z Vz)
∗ = FH

Nz
ΛzFNz

, (82)

(VH
x Vx)⊙ (VH

x Vx)
∗ = FH

Nx
ΛxFNx

, (83)
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where Λv and Λh are diagonal matrices, defined as

Λz =
1

Nz

diag
(

FNz

(

(FH
Nz
dz)⊙ (FH

Nz
dz)

∗
))

, (84)

Λx =
1

Nx

diag
(

FNx

(

(FH
Nx

dx)⊙ (FH
Nx

dx)
∗
))

, (85)

dz =
[

1T
Mz ,1 0T

Nz−Mz,1

]T
, (86)

dx =
[

1T
Mx,1 0T

Nx−Mx,1

]T
. (87)

Therefore, Ta can be represented as

Ta =
(

FH
Nz
ΛzFNz

)

⊗
(

FH
Nx

ΛxFNx

)

= (FNz
⊗ FNx

)H(Λz ⊗Λx)(FNz
⊗ FNx

). (88)

Next, we derive the DFT structure of Tf . Because Tf in (30) consists of a series of sub-

matrices, i.e.,

(

UT X̃q1X̃
H
q2
U∗

)

⊙
(

UT X̃q1X̃
H
q2
U∗

)∗

, q1, q2 = 1, .., Q.

Since U = IMp,Np
FNp

is an oversampled DFT matrix and X̃q1X̃
H
q2

= diag
(

x̃q1 ⊙ x̃∗

q2

)

is a

diagonal matrix, we obtain that each submatrix can be represented as

(

UT X̃q1X̃
H
q2
U∗

)

⊙
(

UT X̃q1X̃
H
q2
U∗

)∗

= FH
Np
Σq1,q2FNp

, (89)

where Σq1,q2 is a diagonal matrix, defined as

Σq1,q2 =
1

Np

diag
(

FNp

(

(FH
Np
dq1,q2)⊙ (FH

Np
dq1,q2)

∗

))

, (90)

dq1,q2 =
[

(

x̃q1 ⊙ x̃∗

q2

)T
0T
Np−Mp,1

]T

. (91)

Combining (30) and (89), we have

Tf =











FH
Np
Σ1,1FNp

· · · FH
Np
Σ1,QFNp

...
. . .

...

FH
Np
ΣQ,1FNp

· · · FH
Np
ΣQ,QFNp











= (IQ ⊗ FNp
)H











Σ1,1 · · · Σ1,Q

...
. . .

...

ΣQ,1 · · · ΣQ,Q











(IQ ⊗ FNp
). (92)
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By defining Σ as

Σ ,











Σ1,1 · · · Σ1,Q

...
. . .

...

ΣQ,1 · · · ΣQ,Q











, (93)

we then obtain

Tf = (IQ ⊗ FNp
)HΣ(IQ ⊗ FNp

). (94)

Thus, we conclude the proof.
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