
ar
X

iv
:2

30
1.

03
43

6v
1 

 [
cs

.I
T

] 
 9

 J
an

 2
02

3
1

STARS-ISAC: How Many Sensors Do We

Need?

Zheng Zhang, Student Member, IEEE, Yuanwei Liu, Senior Member, IEEE,

Zhaolin Wang, Graduate Student Member, IEEE, Jian Chen, Member, IEEE,

Abstract

A simultaneously transmitting and reflecting surface (STARS) enabled integrated sensing and com-

munications (ISAC) framework is proposed, where a novel bi-directional sensing-STARS architecture

is devised to facilitate the full-space communication and sensing. Based on the proposed framework,

a joint optimization problem is formulated, where the Cramér-Rao bound (CRB) for estimating the 2-

dimension direction-of-arrival of the sensing target is minimized. Two cases are considered for sensing

performance enhancement. 1) For the two-user case, an alternating optimization algorithm is proposed.

In particular, the maximum number of deployable sensors is obtained in the closed-form expressions.

2) For the multi-user case, an extended CRB (ECRB) metric is proposed to characterize the impact

of the number of sensors on the sensing performance. Based on the proposed metric, a novel penalty-

based double-loop (PDL) algorithm is proposed to solve the ECRB minimization problem. To tackle the

coupling of the ECRB, a general decoupling approach is proposed to convert it to a tractable weighted

linear summation form. Simulation results reveal that 1) the proposed PDL algorithm can achieve a near-

optimal performance with consideration of sensor deployment; 2) without violating the communication

under the quality of service requirements, reducing the receive antennas at the BS does not deteriorate

the sensing performance; and 3) it is preferable to deploy more passive elements than sensors in terms

of achieving optimal sensing performance.
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I. INTRODUCTION

With the commercialization of the fifth generation (5G) wireless networks, the 2030-oriented

sixth generation (6G) wireless communication systems drew growing attention in both academia

[1] and industry [2], [3]. 6G seeks a fundamental paradigm shift in wireless network architecture,

which breaks the physical boundaries of sensing and communications to support more emerging

applications, such as extended reality (XR), auto-driving, and Metaverse. To realize this vision,

a key enabling technique, integrated sensing and communication (ISAC), has been proposed to

unify the two functions via the same hardware platform and signal processing module [4], [5].

To elaborate, through the dedicated co-designed framework, ISAC is capable of significantly

enhancing the utilization efficiency of the network resources, thereby resulting in low imple-

mentation overheads. Furthermore, through deep integration, ISAC is also envisioned to realize

mutual assistance and win-win benefit between the two functions [6].

To provide ubiquitous wireless connection with low energy consumption, reconfigurable in-

telligent surface (RIS) has emerged as another promising and cost-effective technique for future

wireless networks [7], [8]. Technically, RIS can be regarded as a metasurface-based planar array,

which is composed of lots of passive tunable elements. The electromagnetic response at each

element can be proactively adjusted via an external smart controller, which aims to reconfigure

the amplitude and phase shifts of the incident signal and thus realize a smart radio environment.

However, since the conventional RIS can merely reflect the incident signals and provide half-

space coverage, the design flexibility is stringently limited by its geographical location and panel

orientation. As a remedy, a new RIS paradigm, namely simultaneously transmitting and reflecting

surface (STARS), has been proposed [9], [10]. Compared to the conventional reflecting-only RIS,

STARS can provide full-space electromagnetic environment reconfiguration [11].

A. Prior Works

There have been lots of efforts devoted to the ISAC networks [12]–[16]. More specifically,

the authors of [12] devised a pair of antenna setups for multi-antenna ISAC systems, where

a high-accuracy beampattern strategy is proposed to improve the sensing performance while

guaranteeing the communication requirements. As a further advance, the authors of [13] proposed

the optimal sensing waveform strategies, where the performance tradeoff between communication

and sensing was investigated. To introduce more degrees-of-freedom (DoFs) for target sensing,

a sophisticated ISAC framework was proposed in [14], where the independent radar waveforms
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and communication symbols were exploited to form the multiple beams for high-quality sensing.

However, the aforementioned works only focused on the waveform design at the transmitter

while neglecting the sensing performance imposed by the received echo at the receiver. To

provide a comprehensive evaluation of the sensing performance, the authors of [15] introduced

the Cramér-Rao bound (CRB) as the sensing performance metric of an unbiased estimation

at the receiver. Furthermore, the authors of [16] developed a fairness-oriented unified resource

allocation framework, where the BS was employed to carry out the device-free sensing services

while satisfying communication QoS demands.

More recently, it is claimed that the proper exploitation of RISs in ISAC systems can further

boost the sensing performance [17]–[21]. In [17], the authors proposed a RIS-assisted ISAC

framework, in which a RIS is employed to establish reliable line-of-sight (LoS) links for distance

and velocity estimation. To support scenarios with multiple point-like targets, the authors of [18]

developed a majorization-minimization algorithm for target tracking by collaboratively designing

the transmit beampattern and RIS coefficients. In [19], the authors conceived a joint optimization

scheme regarding the sensing waveform and the RIS coefficients from the perspective of sensing

mutual information. Considering the practical restriction of discrete phase shifts, a constant-

modulus sensing waveform was designed in [20], in which the multi-user interference was

minimized under the sensing CRB constraint. In [21], the authors considered utilizing the RIS to

provide sensing services to the blind-zone target, where the CRB minimization problems were

investigated in the cases of point target and extended target, respectively.

However, the direct combination of RIS and ISAC in the aforementioned works inevitably

increased the number of reflections experienced by the echo signals, which restricted the sensing

performance. To address this issue, the authors of [22] pioneered a RIS-self-sensing architecture,

where the dedicated sensors are deployed at the RIS to carrying out the sensing functionality.

Shortly thereafter, the authors of [23] proposed a two-phase semi-passive RIS-assisted ISAC

scheme, where the RIS supported the uplink communications in the first phase while carrying

out the multi-user location sensing in the second one. Exploiting the same semi-passive sensing-

at-RIS architecture, the authors of [24] studied the effect of sensing functionality on the commu-

nications, where the RIS was employed to sense the user location to facilitate the communication

beamforming design. Most recently, there was a preliminary exploration of STARS-enabled ISAC

networks in [25], where a sensing-at-STARS structure was proposed to achieve the 2-dimension

direction-of-arrivals (DOAs) estimation.
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B. Motivations and Contributions

Based on the aforementioned RIS-enabled ISAC works [17]–[25], we can obtain following

two observations.

• Although there have been a few works focusing on the RIS/STARS-enabled ISAC systems,

the communication users and/or targets are only considered to be located on one side of

the RIS/STARS1. Whereas in the practical networks, the users and targets are probably in

different geographical positions at different times, even on both sides of the RIS/STARS.

Apparently, such a problem cannot be coped with by the existing schemes, which thus calls

for a more general strategy for the RIS/STARS-enabled ISAC systems.

• For the sensor-at-RIS/STARS architecture [22]–[25], a critical endogenous problem has

not been answered yet, i.e., should we deploy more sensors or passive elements (PEs) at

the RIS/STARS? Given the fixed number of total elements of the RIS/STARS, deploying

more sensors can increase the echo sampling resolution. Whereas deploying more PEs can

introduce more spatial DoFs to favor both communication and sensing performance. Hence,

there may exist a tradeoff between the number of sensors and PEs, which requires further

investigation.

Motivated by the above observations, we propose a STARS-enabled ISAC framework, where

the communication users and the targets are located on both sides of the STARS, with a particular

focus on the tradeoff between the number of sensors and PEs. Our main contributions are

summarized below.

• We propose a novel bi-directional sensing-STARS architecture, where the micro-sized sen-

sors with encapsulated antennas are integrated into the transparent substrate of STARS to

provide full-space communication and sensing service. To tackle the energy/signal leakage

issue in uplink STARS transmissions, a time switching (TS) protocol based two-phase

scheme is proposed, where the STARS periodically switches between the reflection and

transmission modes to support different users/targets. With this transmission framework, the

closed-form CRB expression is derived as the sensing performance metric for estimating

the 2-dimension DOAs.

1In the work [25], STARS is employed to divide the whole space into the communication region and sensing region, where

the communication users and target are only situated on the corresponding half-space region.
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• We first consider a two-user network. A CRB minimization problem is formulated subject

to the communication quality of service (QoS) constraint of the ergodic achievable rate.

To facilitate the optimization, the approximated ergodic rate is derived in the closed-form

expression. Then, we propose an alternating optimization (AO) algorithm, where the optimal

sensing waveform, transmit power, and reflection/transmission coefficients are alternately

obtained by utilizing the standard semidefinite program (SDP) method. To provide further

insights, the maximum number of sensors that can be deployed is derived in the closed-form

expression, which unveils that the maximum number of sensors is only relevant to the QoS

requirements of communications.

• We further consider a multi-user network, where a new metric of extended CRB (ECRB)

is proposed to transform the impact of the number of sensors on the sensing accuracy

into an explicit form. We aim to minimize the proposed ECRB under the communication

QoS requirements. To efficiently solve the formulated mixed integer non-linear program

(MINLP), a generic decomposing method is devised to transform the non-convex objective

function of the ECRB into a weighted linear summation form of the constant ECRB matrices.

Based on the transformation, a penalty-based double-loop (PDL) algorithm is proposed to

solve the resultant non-convex optimization problem.

• Numerical results demonstrate the effectiveness and convergence of the proposed algorithms.

It is also verified that the proposed PDL can enable a near-optimal allocation of the number

of sensors. Besides, two insights are observed: 1) with the proposed bi-directional sensing-

STARS architecture, reducing the number of receive antennas at the BS does not deteriorate

the sensing performance provided that QoS requirements are satisfied; and 2) given a fixed

total number of STARS elements, deploying more PEs at the STARS is more attractive than

sensors in terms of sensing performance enhancement.

The organization of this paper is as follows. In Section II, we present the system model and

performance metrics. In Section III, we conceive an AO algorithm to minimize CRB under the

given number of sensors. Section IV develops a PDL algorithm for the joint optimization of

beamforming and the number of sensors. The numerical results are illustrated in Section V.

Finally, the conclusion is presented in Section VI

Notations: we use the boldface capital X and lower-case letter x to represent matrix and

vector, respectively. For any N ×M-dimensional matrix X ∈ CN×M , XT and XH denote the

transpose and Hermitian conjugate operations. Similarly, rank(X), Tr(X), ‖X‖, ‖X‖F represent
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Fig. 1. The bi-directional sensing-STARS enabled uplink ISAC network.

the rank value, trace value, spectral norm operation and Frobenius norm operation. X � 0

denotes that X is a positive semidefinite matrix, while x ∼ CN (0,X) denotes that x is a

circularly symmetric complex Gaussian (CSCG) vector with zero mean and covariance matrix

X. For a matrix X, vec(X) and X−1 denote the vectorizing and inverse matrix operation. For

any vector x, diag(x) denotes a diagonal matrix whose main diagonal elements equal to the

elements of x. |x| and ‖x‖ denote the modulus of x and the Euclidean norm of the vector x,

respectively. E(·) is the statistical expectation operation. IN is a N-dimensional identity matrix,

and 0N is a N-dimensional zero matrix. ℜ(·) and ℑ(·) denote the real component and imaginary

component of the complex value. For any complex scalar z, z̃ denotes the conjugate of z. For

any real scalar x,⌊x⌋ and ⌈x⌉ denote the round-down and round-up operations. ⊙ denotes the

Hadamard product.

II. SYSTEM MODEL

A. Network Description

As shown in Fig. 1, we consider a STARS-enabled uplink ISAC network, where a STARS is

deployed to establish reliable LoS links for K blind-zone users {U1, · · · ,UK} to communicate

with a BS while relaying the probing signal intended for the targets {T1,T2}. The whole space

is divided by the STARS into two separate region, each of which contains a target requiring

estimation. It is assumed that the direct links of BS-users, users-targets, and BS-targets channels

are blocked due to the obstacles. To mitigate the full-duplex self-interference at the BS, the

BS is assumed to be equipped with an Mt-antenna transmit uniform linear array (ULA) and

an Mr-antenna receive ULA [15], and all the users are single-antenna nodes. The STARS is
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composed of a uniform planar array (UPA) with N = NvNh sub-wavelength elements, where

Nv and Nh denote the number of elements located vertically and horizontally in the x-o-z plane,

respectively.

To support the full-space communication and sensing, we propose a bi-directional sensing-

STARS architecture, which divides the N STARS elements into two parts. The former N1 PEs

are employed to support the uplink communication, and the latter N2 = N − N1 elements

(referred to as sensing elements) are equipped with the sensors for targets estimation. More

specifically, the PEs operate in the reflection or transmission mode for information transmission

[10]. For each sensing element, a micro-sized low-cost sensor with antennas in packages is

integrated inside the transparent substrate of STARS, where the adjacent tunable element op-

erates in the full transmission mode, with the unit amplitude coefficient and zero phase-shift

manipulation for the dual-sided incident signals [26]. Thus, the sensor is cable of receiving

full-space echo waves without suffering penetration attenuation caused by STARS element. All

the inter-antenna/element distances are assumed to be sub-wavelength, so the adjacent channel

reflected/transmitted by the STARS element can be deemed to be independent channels [27].

The considered network is assumed to be a narrow-band system, where the BS and users

transmit probing signal and communication signal in one coherence block of T consecutive

sample frames [15]. All the channels are assumed to be static at one coherence block, but vary

over different coherence blocks [23]. The channel coefficients from PEs to the BS and Uk are

respectively denoted as Gr ∈ CN1×Mr , Gt ∈ CN1×Mt and hk,S ∈ CN1×1. All the channels are

assumed to follow Rician fading model since STARS can be flexibly deployed to favor the LoS

links. Hence, the communication channels Hc ∈ {Gr,Gt,hk,S} are modeled as

Hc = Lc

(√
κ

1 + κ
Ĥc +

√

1

1 + κ
H̃c

)

, (1)

where κ denotes the Rician factor, Ĥc represents the LoS component, and H̃c denotes the non-

LoS component. Lc=
√

L0d
−αc
c ∈{Lr, Lt, Lk,S} denotes the corresponding path loss, where dc is

the communication distance, αc represents the path-loss exponent, and L0 denotes the path loss

at the reference distance of 1 meter (m). For the sensing process, the probing signal and echo

wave undergoes the PEs→target→sensors channels, which is modeled as

H[ı],s = α[ı]b(ϕ[ı], φ[ı])a
T (ϕ[ı], φ[ı]), 1 ≤ ı ≤ 2, (2)
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where α[ı] ∈ C is the reflection coefficient containing the radar cross section (RCS) of Tı and the

round-trip path-loss, ϕ[ı] denotes the azimuth angle of arrival/departure from the STARS to the

target Tı, and φ[ı] denote the elevation angle of arrival/departure from the STARS to the target

Tı. Note that a(ϕ[ı], φ[ı]) and b(ϕ[ı], φ[ı]) denote the steering vectors of PEs and sensors, where

the n-th elements of a(ϕ[ı], φ[ı]) and b(ϕ[ı], φ[ı]) are given by [23]

a(ϕ[ı], φ[ı])[n] = e[n̄π cosφ[ı] sinϕ[ı]+(n−1−Nhn̄)π sinφ[ı]], 1 ≤ n ≤ N1, (3)

b(ϕ[ı], φ[ı])[n] = e[n̄π cosφ[ı] sinϕ[ı]+(n−1−Nhn̄)π sinφ[ı]], N1 + 1 ≤ n ≤ N, (4)

where n̄ = ⌊n−1
Nh

⌋. To investigate the fundamental performance limit of the considered network,

the perfect channel information state (CSI) is assumed for all the channels.

B. Signal Model

Without loss of generality, we focus on the transmission at the t-th time frame and propose

a TS-based framework, which equally divides the each time frame into following two phases.

1) Phase I: The PEs operates in the reflection mode and users K1 , {U1, · · · ,UK1} transmit

the communication signal c[1](t) =
∑

k∈K1

√
Pkck(t) with E{|ck(t)|2} = 1 to the PEs. Meanwhile,

the BS exploits the multiple beams to send the dedicated probing signal s[1](t) =
∑I[1]

j=1 šj(t) ∈
CM×1 with a general-rank covariance matrix R[1],s = E{s[1](t)sH[1](t)}. On receiving the omnidi-

rectional signal, the PEs reflects the communication signal to the BS while combining the c[1](t)

and s[1](t) as a new probing signal to perform estimation.

2) Phase II: The PEs operates in the transmission mode. The users K2 , {UK1+1, · · · ,UK}
send the communication signal c[2](t) =

∑

k∈K2

√
Pkck(t) to the PEs. Meanwhile, the BS

transmits probing signal s[2](t) =
∑I[2]

j=1 šj(t) ∈ CM×1 (R[2],s = E{s[2](t)sH[2](t)}) to the PEs.

At the STARS, the PEs is exploited to transmit the c[2](t) to the BS while reconfiguring the

probing signal to detect T2.

Accordingly, the received signal at the BS in the ı-th phase is given by

y[ı](t) = hH
k,SΘr/tGr

∑

k∈Kı

√

Pkck(t) + n[ı](t), (5)

where n[ı](t) ∼ CN (0, σ2IMr
) denotes the ı-th phase additive white Gaussian noise (AWGN)

at the BS, and Θr/t = Θr in case of ı = 1 while denoting Θt in case of ı = 2. There-

into, the reflection/transmission coefficient matrix is defined as Θr/t = diag(ur/t) with ur/t =
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[
√

βr/t,1e
θr/t,1, . . . ,

√
βr/t,Ne

θr/t,N ]T . To recover ck(t), we assume that a unit-norm linear com-

bination vector v[ı],k ∈ CMr×1 is employed at the BS. The extracted signal for Uk is given

by

y[ı](t)v[ı],k = hH
k,SΘr/tGrv[ı],k

√

Pkck(t)
︸ ︷︷ ︸

desired signal

+hH
j,SΘr/tGrv[ı],k

∑

j 6=k,j∈Kı

√

Pjcj(t)

︸ ︷︷ ︸

interference

+n[ı](t)v[ı],k. (6)

While for the sensing, the equivalent probing signal from PEs at the t-th time frame of the ı-th

phase is given by

x[ı](t) =







HU,S

√
P̄c(t) +Gts[1](t), if ı = 1,

Gts[2](t), if ı = 2,
(7)

where HU,S = [h1,S, · · · ,hK1,S], P̄ = diag[P1, · · · , PK1], and c(t) = [c1, · · · , cK1]
T . Accordingly,

the covariance matrix of x[ı](t) is given by

R[ı],x = E[x[ı](t)x[ı](t)
H ] =







HU,SP̄HH
U,S +GtR[1],sG

H
t , if ı = 1,

GtR[2],sG
H
t , if ı = 2,

(8)

Thus, the received echo wave at the sensors over T consecutive time frames of the ı-th phase

is given by

Y[ı],s = H[ı],sΘr/tX[ı] +N[ı], (9)

where X[ı] = [x[ı](1), · · · ,x[ı](T )] and N[ı] = [n[ı](1), · · · ,n[ı](T )].

C. Performance Metric

As stated above, the achievable rate at the BS in the ı-th phase to decode ck(t) is expressed

as

R[ı],k =
1

2
log2




1 +

Pk|hH
k,SΘr/tGrv[ı],k|2

∑

j 6=k,j∈Kı

Pj |hH
j,SΘr/tGrv[ı],k|2 + σ2




 , 1 ≤ ı ≤ 2, (10)

For the sensing, we focus on the CRB performance with unknown parameters ς[ı] = [ϕ[ı], φ[ı],

ℜ(α[ı]),ℑ(α[ı])] ∈ R4×1. To facilitate deriving CRB expression, we vectorize equation (9), which

can be rewritten as

y[ı],s = vec(Y[ı],s) = vec
(
H[ı],sΘr/tX[ı]

)
+ n[ı], (11)
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where n[ı] = vec(N[ı]) ∼ CN (0, σ2IMT ). Let q[ı] = vec
(
H[ı],sΘr/tX[ı]

)
, the Fisher information

matrix (FIM) F[ı] ∈ R4×4 for estimating ς[ı] can be expressed as a Jacobian matrix with the h-th

row and v-th column element being given by [28]

F[ı][h, v] = 2ℜ
(

∂qH
[ı]

∂ς[ı],h
R−1

n[ı]

∂q[ı]

∂ς[ı],v

)

+ Tr

(

R−1
n[ı]

∂Rn[ı]

∂ς[ı],h
R−1

n[ı]

∂Rn[ı]

∂ς[ı],v

)

=
2

σ2
ℜ
(

∂qH
[ı]

∂ς[ı],h

∂q[ı]

∂ς[ı],v

)

, 1 ≤ h, v ≤ 4, (12)

where Rn[ı]
= σ2IMT . Accordingly, we can repartition F[ı] as

F[ı] =




JΨ[ı]Ψ[ı]

JΨ[ı]α[ı]

JT
Ψ[ı]α[ı]

Jα[ı]α[ı]



 , (13)

where Ψ[ı] = [ϕ[ı], φ[ı]], α[ı] = [ℜ(αı),ℑ(αı)], while the specific expressions of JΨ[ı]Ψ[ı]
, JΨ[ı]α[ı]

and Jα[ı]α[ı]
are given in Appendix A. Then, with the inverse formula of the second order matrix,

we can derive the CRB expression of the ı-th phase with regard to Ψ[ı] [29] as

CRB(Ψ[ı]) =
[

JΨ[ı]Ψ[ı]
− JΨ[ı]α[ı]

J−1
α[ı]α[ı]

JT
Ψ[ı]α[ı]

]−1

. (14)

III. BEAMFORMING OPTIMIZATION UNDER FIXED SENSOR NUMBER

In this section, we concentrate on joint sensing waveform and communication beamforming

optimization with the fixed number of sensors. To draw instructive insights for practical system

design, we consider a special network setup of two users, and utilize the ergodic rate as the

average communication performance metric. The the closed-form approximation expression of

ergodic achievable rate is derived. Accordingly, an AO algorithm to efficiently solve the non-

convex problem.

A. Problem Formulation

Since inter-user interference is non-existent in the two-user case, the achievable rate at the BS

in the ı-th phase to decode ck(t) is rewritten to

R[ı],k =
1

2
log2

(

1 +
Pk|hH

k,SΘr/tGrv[ı],k|2
σ2

)

. (15)

To provide the generalised insights to the CRB optimization, we employ the ergodic achievable

rate as the average performance metric for the communication. Accordingly, we target at minimiz-

ing the CRB performance for DOA Ψ[ı] at each phase. Subject to the average QoS requirements of
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users, the joint optimization of the transmit power at the users, reflection/transmission coefficients

of the PEs, the receive beamforming and the sensing waveform at the BS is considered. The

optimization problem in the ı-th phase is formulated as follows.

min
P[ı],Θr/t,R[ı],s,v[ı],k

Tr(CRB(Ψ[ı])) (16a)

s.t. Tr(R[ı],s) ≤ PBS,max, (16b)

Pk ≤ PU,max, 1 ≤ k ≤ K, (16c)

E{Rk} ≥ Rer,t, (16d)

‖v[ı],k‖2 = 1, 1 ≤ k ≤ K, (16e)

θr,n, θt,n ∈ [0, 2π], 1 ≤ n ≤ N, (16f)

βr,n, βt,n ∈ [0, 1], 1 ≤ n ≤ N, (16g)

where P[1] = [P1, · · · , PK1], P[2] = [PK1+1, · · · , PK ], Rer,t denotes the ergodic QoS rate of

users, PU,max denotes the maximal transmit power at the users, and PBS,max denotes the transmit

power budget at the BS. (16b) and (16c) denote the transmit power constraint at the BS and

users’ sides, respectively; (16d) represents the ergodic QoS constraint of users; (16e) denotes

the normalization constraint of the receive beamforming; (16f) and (16g) are the phase-shift

and amplitude constraints of the PEs. Notably, the intractable expression of CRB and the non-

convex constraints (16d) and (16e) make problem (16) non-convex and challenging to solve. In

the following, we consider optimizing the sensing waveform and communication beamforming

in an alternating manner.

B. Problem Reformulation

Before handling the challenging problem, we can observe that v[ı],k only exists in the constraint

(16d) and has no direct influence on the CRB performance, which indicates that only the

feasible v[ı],k are required. For maximum compliance with QoS constraint, the optimal receive

beamforming is given by v[ı],k =
(hH

k,SΘr/tGr)H

‖hH
k,SΘr/tGr‖

, to obtain the best communication performance.

Hence, (15) can be transformed into R[ı],k = 1
2
log2

(

1 +
Pk‖h

H
k,SΘr/tGr‖2

σ2

)

. With this in mind,

we further rewrite ‖ĥH
k,SΘr/tĜr‖2 as Tr(Ĥk,SĤ

H
k,SUr/t), with definition of Ur/t = ur/tu

H
r/t and

Ĥk,S = diag(ĥH
k,S)Ĝr. Then, we resort Lemma 1 to obtain the approximation expression of

E{Rk}.
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Lemma 1: The ergodic achievable rate in (16d) can be approximated as

E{R[ı],k} ≈ 1

2
log2

(

1+
PkL

2
k,SL

2
r

σ2(1+κ)2

[

κ2Tr(Ĥk,SĤ
H
k,SUr/t)+κTr(ĜrĜ

H
r Ur/t)+

κMrTr
(

diag(ĥH
k,S)Ur/tdiag(ĥk,S)

)

+MrTr(Ur/t)

])

. (17)

Proof: See Appendix B.

The approximation accuracy can be verified in Fig. 3. To proceed, we further introduce Lemma

2 to convexify the non-convex objective function (16a).

Lemma 2: According to [30], we have that for any X � 0 and Y � 0, if X � Y is guaranteed,

the inequality of Tr(X−1) ≤ Tr(Y−1) holds.

As such, with the fact that FIM matrix
[

JΨ[ı]Ψ[ı]
− JΨ[ı]α[ı]

J−1
α[ı]α[ı]

JT
Ψ[ı]α[ı]

]

is positive semidefi-

nite, we can introduce an auxiliary variable E[ı] � 0 to equivalently transform (16a) into Tr(E−1
[ı] ),

with satisfying following linear matrix inequality (LMI) constraint.



JΨ[ı]Ψ[ı]

−E[ı] JΨ[ı]α[ı]

JT
Ψ[ı]α[ı]

Jα[ı]α[ı]



 � 0. (18)

With the transformations above, problem (16) can be reformulated as follows.

min
E[ı],Ur/t,R[ı],s,P[ı]

Tr(E−1
[ı] ) (19a)

s.t. (16b), (16c), (18), (19b)

PkL
2
k,SL

2
r

(1 + κ)2

[

κ2Tr(Ĥk,SĤ
H
k,SUr/t)+κMrTr

(

diag(ĥH
k,S)Ur/tdiag(ĥk,S)

)

+ κTr(ĜrĜ
H
r Ur/t) +MrTr(Ur/t)

]

≥ σ2(22Rer,t − 1), (19c)

E[ı] � 0, Ur/t � 0, (19d)

Ur/t[n, n] ≤ 1, 1 ≤ n ≤ N, (19e)

rank(Ur/t) = 1. (19f)

C. Joint Beamforming Optimization

1) Transmit power and sensing waveform optimization: With the fixed Ur/t, the problem (19)

is reduced to the following subproblem.

min
R[ı],s,E[ı],P[ı]

Tr(E−1
[ı] ) (20a)
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s.t. (16b), (16c), (18), (19c), (20b)

E[ı] � 0, (20c)

which is a SDP and can be optimally solved by the convex toolbox, e.g., CVX.

2) Reflection/Transmission coefficients optimization: With fixed {R[ı],s,P[ı]}, problem (19) is

rewritten as

min
E[ı],Ur/t

Tr(E−1
[ı] ) (21a)

s.t. (18), (19c) − (19f). (21b)

To handle the non-convex LMI constraint (18), we adopt the singular value decomposition (SVD)

to equivalently convert the quadratic terms {JΨ[ı]Ψ[ı]
,JΨ[ı]α[ı]

,Jα[ı]α[ı]
} to the tractable forms.

Specifically, by decomposing Rx[ı]
into

∑

q sqdq , we have

Θr/tRx[ı]
ΘH

r/t =
∑

q

diag(sq)ur/tu
H
r/tdiag(dq)

=
∑

q

Squr/tu
H
r/tDq =

∑

q

SqUr/tDq. (22)

Then, we substitute (22) into FIM matrix, the constraint (18) becomes convex with respect to

Ur/t. While for the non-convex constraint (19f), we employ the penalty-based rank-one relaxation

approach [31], which exploits the successive convex approximation (SCA) technique to relax

the equivalent rank-one constraint Tr(Ur/t)− ‖Ur/t‖2 = 0 as a convex penalty term in objective

function (21a). Accordingly, the problem (21) is reformulated as

min
E[ı],Ur/t

Tr(E−1
[ı] )−

1

2ρ1

[

Tr(Ur/t)− ‖U[n−1]
r/t

‖2 − Tr(ū
[n−1]
r/t

(ū
[n−1]
r/t

)H(Ur/t −U
[n−1]
r/t

))
]

, (23a)

s.t. (18), (19c) − (19e), (23b)

where U
[n−1]
r/t

denotes the optimized result in the (n− 1)-th iteration, ū
[n−1]
r/t

denotes the leading

eigenvector of U
[n−1]
r/t

, and ρ1 represents the penalty factor. The resultant problem (23) is a convex

program, where the rank-one solution can be optimally obtained when p is sufficiently small

[31, Proposition 2]. The specific SCA algorithm to optimize Ur/t is summarized in Algorithm

1.

Remark 1: (MLE Validation) In this paper, we consider employing the maximum likelihood

estimation (MLE) approach in [21, Appendix E] to obtain the estimated DoA Ψes
[ı] under the
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Algorithm 1 SCA algorithm for rank-one solution.

1: Initialize initial U
[n−1]
r/t

and p1 with n = 1. Set a convergence accuracy ǫ1 and calculate the

leading eigenvector ū
[n−1]
r/t

.

2: repeat

3: update U
[n]
r/t

by solving problem (23).

4: update the leading eigenvector ū
[n]
r/t

.

5: set n = n+ 1 and ρ1 =
ρ1
c1

(c1 > 1).

6: until the penalty term in objective function (23a) drops below ǫ1.

Algorithm 2 AO algorithm.

1: Initialize initial U
[l−1]
r/t

and Tr(CRB(Ψ[ı]))
[l−1] with l = 1. Set a convergence accuracy ǫ2.

2: repeat

3: update the optimal receive beamforming v
opt

[ı],k =
(hH

k,SΘr/tGr)H

‖hH
k,SΘr/tGr‖

.

4: update optimal {R[l]
[ı],s,P

[l]
[ı]} by solving problem (20).

5: update optimal U
[l]
r/t

by carrying out Algorithm 1.

6: set l = l + 1 and calculate Tr(CRB(Ψ[ı]))
[l].

7: until |Tr(CRB(Ψ[ı]))
[l] − Tr(CRB(Ψ[ı]))

[l−1]| ≤ ǫ2.

optimized waveform, where the the correctness of the proposed CRB optimization framework

is demonstrated in Fig. 5.

Corollary 1: (Maximal Number of Sensor Deployment) For the special case of single receive

antenna, i.e., Mr = 1, the optimal reflection/transmission coefficients and the maximal number

of sensors to be deployed can be derived as following closed-form expressions.






θopt
r,n = ∠ĥ1,S[n]− ∠ĝr[n], βopt

r,n = 1

θopt
t,n = ∠ĥ2,S[n]− ∠ĝr[n], βopt

t,n = 1,
(24)

Nmax
2 = N −

⌈

1

2κ2

[√

(2κ+ 1)2 + 4κ2
σ2(22Rer,t − 1)(1 + κ)2

PU,maxL2
k,SL

2
r

− (2κ+ 1)

]⌉

, (25)

where ĝr is the degenerated channel of Ĝr.

Proof: See Appendix C.

D. Overall Algorithm
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The overall algorithm is summarized in Algorithm 2, which optimizes the sensing waveform

and reflection/transmission coefficients alternatively. By denoting the CRB value at l-th iteration

as a function of R[ı],s and Ur/t, i.e., g(R[ı],s,P[ı],Ur/t), the following inequality always holds

g(R
[l−1]
[ı],s ,P

[l−1]
[ı] ,U

[l−1]
r/t

)
(a)

≥ g(R
[l]
[ı],s,P

[l]
[ı],U

[l−1]
r/t

)
(b)

≥ g(R
[l]
[ı],s,P

[l]
[ı],U

[l]
r/t
), (26)

where inequality signs (a) and (b) hold because the optimal sensing waveform and optimal

reflection/transmission coefficients are both guaranteed in the step 4 and step 5 at the same

AO iteration. Meanwhile, since g(R[ı],s,P[ı],Ur/t) is continuous over the compact feasible set

of problem, there exists a finite positive number that serves as a lower bound on the objective

value. This proves that our proposed AO algorithm remains non-increasing over the iterations.

On the other hand, the computational complexity of AO algorithm mainly relies on solving SDP

problems (20) and (23). The overall complexity based on the interior-point method is given by

O
(

log( 1
ǫ2
)
(

(M2
t + 5)3.5 + log( 1

ǫ1
)(N2

1 + 4)3.5
))

[32].

IV. HOW MANY SENSORS DO WE NEED?

In this section, we consider the general multi-user system with the joint optimization of

beamforming design and the number of sensors. By modifying the traditional CRB expression,

a new metric of ECRB is proposed, which can evaluate the sensing performance while taking

the sensors’ deployment into the consideration. Based on the proposed ECRB, a PDL algorithm

is devised to jointly optimize the ISAC waveform, reflection/transmission coefficients and the

number of PEs/sensors.

A. Extended CRB Derivation

To facilitate the optimization of sensor number, we define two N-dimensional matrices A =

diag[IN1, 0N2 ] and B = diag[0N1 , IN2], where A and B are the element selection matrices for

PEs and sensors, respectively. With the definition above, we can rewrite the steering vector

a(ϕ[ı], φ[ı]) and b(ϕ[ı], φ[ı]) as the extended form.

a(ϕ[ı], φ[ı]) = Aε(ϕ[ı], φ[ı]) b(ϕ[ı], φ[ı]) = Bε(ϕ[ı], φ[ı]). (27)

Here, ε(ϕ[ı], φ[ı]) ∈ CN×1 denotes the steering vector of the STARS, n-th element of which is

defined in (3) with 1 ≤ n ≤ N . For convenience of denotation, we abbreviate ε(ϕ[ı], φ[ı]) as ε[ı]

in the following. Then, we introduce Proposition 1 to derive the expression of the extended FIM

matrix.
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Proposition 1: The h-th row and v-th column element of extended FIM matrix is given by

F[ı][h, v] =
2TC

(h,v)
[ı]

σ2
Tr
(

BC̄ς[ı][v]AΘr/tRX[ı]
ΘH

r/tAC̄H
ς[ı][h]

B
)

, 1 ≤ h, v ≤ 4, (28)

where

C
(i,j)
[ı] =







|α[ı]|2, if 1 ≤ i, j ≤ 2,

α̃[ı], if ι = 3, ι ≤ 2,

α̃[ı], if ι = 4, ι ≤ 2,

1, if 3 ≤ i, j ≤ 4,

C̄ς[ı][i] =







∂ε[ı]
∂Ψ[ı][i]

ε
T
[ı] + ε[ı]

∂εT
[ı]

∂Ψ[ı][i]
if 1 ≤ i ≤ 2,

ε[ı]ε
T
[ı], if 3 ≤ i ≤ 4,

(29)

where ι = max{i, j} and ι = min{i, j}, and Θr/t ∈ CN×N is the reflection/transmission

coefficient matrix of STARS.

Proof: See Appendix D.

Therefore, the ECRB expression can be derived by substituting the extended FIM matrix expres-

sion into (14). Similarly, the extended achievable rate expression can be expressed as R[ı],k =

1
2
log2

(

1 +
Pk|h

H
k,SΘr/tAGrv[ı],k|

2

∑
j 6=k,j∈Kı

Pj |hH
k,SΘr/tAGrv[ı],k|2+σ2

)

with hk,S ∈ CN×1 and Gr ∈ CN×Mr.

B. Problem Formulation

With the derivations above, we aim to minimize the ECRB value for estimating Ψ[ı] of each

phase under the QoS constraints, by jointly optimizing the transmit power at the users, the

reflection/transmission coefficients of the PEs, the number of PEs/sensors at the STARS, the

receive beamforming and sensing waveform at the BS. Based on the definitions of Ur/t = ur/tu
H
r/t

and Hk,S = diag(hH
k,S)Gr, the problem formulation in the ı-th phase is given by

min
E[ı],P[ı],Ur/t,

V[ı],k,A,B,R[ı],s

Tr(E−1
[ı] ) (30a)

s.t. (16b), (16c), (18), (19d) − (19f), (30b)

PkTr(AHk,SV[ı],kH
H
k,SAUr/t)≥γt

( ∑

j 6=k,j∈Kı

PjTr(AHj,SV[ı],kH
H
j,SAUr/t)+σ2

)

, (30c)

A[n, n] ∈ {0, 1} ,B[n, n] ∈ {0, 1}, 1 ≤ n ≤ N, (30d)

A+B = IN , (30e)

Tr(V[ı],k) = 1, V[ı],k � 0, (30f)
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where γt = (22Rt − 1) with Rt representing the QoS requirements of users, and V[ı],k =

v[ı],k(v[ı],k)
H . (30d) and (30e) denote the integer variable constraints for selection matrices.

Note the problem (30) is a MINLP that cannot be optimally solved by conventional convex

optimization methods, except for exhaustive search. To strike a balance between optimality and

complexity, we propose a PDL algorithm obtain the near-optimal solution of problem (30), which

optimizes the constructed augmented Lagrangian (AL) problem in the inner loop while updating

the penalty factor in the outer loop.

C. Augmented Lagrangian Problem Construction

To convert problem (30) to a tractable form, we introduce the auxiliary variables [p1, · · · , pN−1],

which satisfies pn ∈ {0, 1} and
∑N−1

n=1 pn = 1. Then, we can equivalently rewrite (28) as

F[ı][h, v] =
2TC

(h,v)
[ı]

σ2

N−1∑

n=1

pnTr
(

F̄n,vΘ
r/tRX[ı]

ΘH
r/tF̄

H
n,h

)

, (31)

where the constant matrix F̄n,v = C̄ς[ı][v]An − AnC̄ς[ı][v]An with An = [In, 0N−n]. Also, the

QoS constraint (30c) can be transformed into

PkH
k,k
[ı],n ≥ γt

(
∑

j 6=k,j∈Kı

PjH
k,j
[ı],n + σ2

)

, (32)

where Hk,j
[ı],n =

∑N−1
n=1 pnTr(AnHj,SV[ı],kH

H
j,SAnUr/t). Note that when pn = 1 and pm = 0

(m 6= n) hold, the selection matrix A can be exactly determined, i.e., A = An. Thus, the

problem (30) can be converted to the following AL form without selection matrices.

min
E[ı],P[ı],Ur/t,V[ı],k,R[ı],s,pn,ρ2

Tr(E−1
[ı] ) +

1

2ρ2

N−1∑

n=1

(pn − p2n) (33a)

s.t. (16b), (16c), (18), (19d) − (19f), (30f), (32), (33b)

N−1∑

n=1

pn = 1. (33c)

Thereinto, when ρ2 → ∞, the penalty term pn − p2n approaches 0, which would be equivalent

to integer constraint pn ∈ {0, 1}. In the inner loop, we adopt the AO framework to optimize the

transmit power P[ı], the ISAC waveform R[ı],s, the reflection/transmission coefficients Ur/t and

the weight coefficient pn.
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D. Joint Beamforming and Elements Optimization

1) Receive beamforming optimization: With fixed {P[ı],Ur/t,R[ı],s, pn}, problem (33) is equiv-

alent to the following feasible detection problem with respect to {V[ı],k}.

find V[ı],k (34a)

s.t. rank(V[ı],k) = 1, (34b)

(30f), (32), (34c)

which can be efficiently handled by using penalty-based rank-one relaxation method [31]. The

converted problem is given by

min
V[ı],k

1

2ρ1

[

Tr(V[ı],k)− ‖V[n−1]
[ı],k ‖2 − Tr(v̄

[n−1]
[ı],k (v̄

[n−1]
[ı],k )H(V[ı],kV

[n−1]
[ı],k ))

]

(35a)

s.t. (30f), (32), (35b)

where V
[n−1]
[ı],k is the given point determined by (n − 1)-th iteration and v̄

[n−1]
[ı],k is the leading

eigenvector of V
[n−1]
[ı],k . Note that the optimal v[ı],k can be obtained by carrying out SCA iterations

with the accuracy ǫv.

2) Transmit power and sensing waveform optimization: With fixed {Ur/t,v[ı],k, pn}, problem

(33) is reduced to

min
R[ı],s,E[ı],P[ı]

Tr(E−1
[ı] ) (36a)

s.t. (16b), (18), (20c), (32), (36b)

The optimal solutions {R[ı],s,P[ı]} can be easily obtained by solving the SDP problem (36).

3) Reflection/transmission coefficient optimization: With fixed {R[ı],s,P[ı],v[ı],k, pn} and the

transformation of (22), problem (33) can be re-expressed as

min
E[ı],Ur/t

Tr(E−1
[ı] ) (37a)

s.t. (18), (19d) − (19f), (32), (37b)

which can be optimally solved by Algorithm 1.
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Algorithm 3 SCA algorithm for weight coefficient optimization.

1: Initialize p
[m−1]
n and Tr(CRB(Ψ[ı]))

[m−1] with m = 1. Set a convergence accuracy ǫ3.

2: repeat

3: update p
[m]
n by solving problem (38).

4: calculate the Tr(CRB(Ψ[ı]))
[m] and set m = m+ 1.

5: until |Tr(CRB(Ψ[ı]))
[m] − Tr(CRB(Ψ[ı]))

[m−1]| ≤ ǫ3.

4) Weight coefficient optimization: With the fixed {R[ı],s,P[ı],v[ı],k,Ur/t}, the following AL

problem is obtained.

min
E[ı],pn

Tr(E−1
[ı] ) +

1

2ρ2

N−1∑

n=1

(pn − p2n) (38a)

s.t. (18), (20c), (32), (33c). (38b)

To handle the non-convex penalty term pn − p2n, we adopt the first-order Taylor expansion to

construct the linear upper bound approximation expression at m-th iteration, i.e.,

pn − p2n ≤ pn − (p[m−1]
n )2 − 2p[m−1]

n (pn − p[m−1]
n ), (39)

where p
[m−1]
n denotes the optimized value of pn at (m − 1)-th iteration. By substituting the

right-hand side of (39) into the penalty term of the objective function (38a), the problem (38)

becomes convex with respect to pn and can be solved over the SCA iterations. The details of

the SCA algorithm to optimize weight coefficient is summarized in Algorithm 3.

In the outer loop, we consider initializing ρ2 as a large value to make the integer constraint

trivial at the beginning, so that we can find a good starting point for original problem. Then, we

gradually decrease ρ2 over the outer loop iterations to obtain the feasible solution.

E. Overall Algorithm

The overall algorithm is summarized in Algorithm 4. Similarly, since the optimal trans-

mit power, sensing waveform, reflection/transmission coefficients and weight coefficients are

guaranteed at each step, the proposed PDL algorithm theoretically converges to the stationary

point solution over the non-increasing iterations. For the computational complexity, the entire

complexity of Algorithm 4 relies on the complexity to solve the SDP problems (35), (36)

(37) and (38). By exploiting the interior-point method, the computational complexity of PDL

algorithm at the ı-th phase can be expressed as O
(

lout log(
1
ǫ2
)
(
log( 1

ǫv
)(M2

r )
3.5 + (M2

t + 4 +
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Algorithm 4 Penalty-based double-loop algorithm.

1: Initialize {U[m−1]
r/t

, p
[m−1]
n ,Tr(CRB(Ψ[ı]))

[m−1]} with m = 1 and ρ
[l−1]
2 with l = 1. Set the

convergence accuracy {ǫ2, ρth}.

2: repeat

3: repeat

4: update v
[m]
[ı],k by solving problem (35).

5: update {R[m]
[ı],s,P

[m]
[ı] } by solving problem (36).

6: update U
[m]
r/t

by carrying out Algorithm 1 to solve problem (37).

7: update p
[m]
n by carrying out Algorithm 3 to solve problem (38).

8: calculate the CRB value Tr(CRB(Ψ[ı]))
[m]and set m = m+ 1.

9: until |Tr(CRB(Ψ[ı]))
[m] − Tr(CRB(Ψ[ı]))

[m−1]| ≤ ρth.

10: ρ
[l]
2 =

ρ
[l]
2

c2
(c2 > 1) and set l = l + 1.

11: until The penalty term
∑N−1

n=1 (pn − p2n) drops below ǫ2.
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Fig. 2. Top view of the simulation setup.

Kı)
3.5 + log( 1

ǫ1
)(N2 + 4)3.5 + log( 1

ǫ3
)(N + 3)3.5

))

[32], where Kı = K1 in case of ı = 1,

Kı = K−K1 in case of ı = 2, and lout denotes the iteration number required in the outer loop.

V. NUMERICAL RESULTS

In this section, the numerical results are provided to demonstrate the effectiveness of the

proposed strategy. The top view of a three-dimensional coordinate network simulation setup is

illustrated in Fig. 2, where the BS is located at (0, 0, 0) m, and the STARS is located at a distance

of 50 m from the BS, i.e., (25
√
2, 25

√
2, 0) m. Uk is randomly distributed on a circle with a

radius of dk m centred on STARS, while T1 and T1 are located at a distance of 10 m from
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Fig. 3. Accuracy of the approximated ergodic rate versus

κ with Mr = 8, Mt = 16, d1 = 20 m, K = 2, d2 = 10

m, and PU,max = 15 dBm.
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Fig. 4. The maximum number of sensor deployment ver-

sus the transmit power budget at the users with N = 20,

Mr = 1, Mt = 4, K = 2, dk = 20 m, and PBS,max = 15

dBm.

the STARS with the directions of (342◦, 30◦) and (18◦, 30◦). The path loss at the unit reference

distance is set as L0 = −30 dB, the path-loss exponents for communication links are set as 2.2,

the path-loss exponents of sensing links are set as 2.5, the noise power is set as −115 dBm,

T = 10, Nv = 5, and Nh = N
Nv

. The other simulation parameters are listed in the caption of

each figure. Moreover, each figure is the average result over the 100 independent Monte-Carlo

experiments.

A. Verification of Lemma 1 and Corollary 1

The accuracy of the approximated ergodic rate expression derived in Lemma 1 is verified

in Fig. 3, where the identity reflection/transmission coefficients Ur/t = IN1 are adopted and the

numerical ergoric rate is calculated based on the 10000 independent channels. It is shown that the

approximated ergodic rate is accurate to the actual ergodic rate for different N1, and U2 achieves

higher ergodic rate. These observations are expected since 1) the average non-LoS components

follow the complex Gaussian distribution with unit variance due to the law of large numbers;

and 2) U1 suffers the severer large-scale path loss than U2. It is also observed that the achievable

ergodic rate firstly increases with the rise of κ and gradually turns into stable. This is since that

1) when the κ is relatively small, increasing κ can make the LoS components prodominate and

provide the stronger transmission links; and 2) when κ becomes large, the Rician channels tend

to be the constant pure LoS channels.
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Fig. 5. The estimated azimuth and elevation angles via

the MLE method with N = 20, N1 = 5, Mr = Mt = 8,

K = 2, dk = 20 m, Rer,t = 2.5 bps/Hz, and PU,max =

PBS,max = 35 dBm.
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Fig. 6. Convergence of the proposed algorithms with the

common parameters N = 20, Mr = 8, and dk = 20 m.

In Fig. 4, we evaluate the the maximum-number sensor deployment policy derived in Corollary

1 for both the transmission (T) and reflection (R) phases, where the actual maximum number of

sensors are obtained by solving the feasible detection problem with different number of sensors

for 100 independent channel realizations. Firstly, we can observe that the analytical maximum

number of sensors is exactly equal to the numerical results. Also can be seen, the maximum

number of sensors for T phase and R phase are equal. This is intuitive because the maximum-

number sensor deployment is only restricted by the corresponding QoS target rates, which are

the same for different phases in the considered network. Moreover, when PU,max increases and

Rer,t decreases, less PEs would be required to satisfy the QoS constraint, so a significant upward

trend in the number of sensors can be observed.

B. Effectiveness of Proposed Algorithms

To demonstrate the correctness of the proposed algorithms from the perspective of sensing

accuracy, the MLE spectrum lines under the two-user and fixed number of sensors are illustrated

in Fig. 5, where the estimated DOA angle can be determined by the exhaustive search of the

highest value point of the MLE spectrum [21, Appendix E]. As such, we can observe that the

MLE estimates angles are (−17.9904◦, 29.9999◦) and (17.9904◦, 29.9999◦), respectively, which

perfectly align with the presupposed DOA angles (342◦, 30◦) and (18◦, 30◦) and validate the

effectiveness of the optimized sensing waveform and reflection/transmission coefficients. Fig. 6

plots the convergence performance of the proposed algorithms, where Mt = 8, N1 = 15, K = 2,



23

1.5 2 2.5 3 3.5 4 4.5 5
10-2

10-1

100

R
oo

t C
R

B
 (

de
g)

R phase: STAR-RIS-AO
T phase: STAR-RIS-AO
R phase: C-RIS-AO
T phase: C-RIS-AO
R phase: STAR-RIS-COC
T phase: STAR-RIS-COC

Fig. 7. The root CRB versus the QoS target rate with

N = 20, N1 = 10, Mr = Mt = 8, K = 2, dk = 20 m,

PU,max = 15 dBm, and PBS,max = 30 dBm .
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Fig. 8. The root CRB versus the transmit power budget

at the BS with with N = 20, Mr = 8, Mr = 12, K = 4,

dk = 20 m, Rer,t = 1 bps/Hz, and PU,max = 45 dBm.

Rer,t = 2.5 bps/Hz, PU,max = 25 dBm, PBS,max = 35 dBm are adopted for AO algorithm, while

Mt = 12, K = 4, Rer,t = 0.5 bps/Hz, PU,max = PBS,max = 45 dBm are set for PDL algorithm.

Note that for coinciding with the practical DOA angles, we transform the radian-based root CRB

into the degree unit in Fig. 6. As can be observed, both algorithms are capable of converging to

the stationary point solutions within the finite iterations. This is because the optimal solutions at

each step for solving the subproblem can be guaranteed in both two algorithms, which ensures

a non-increasing trend over the iterations. Meanwhile, we can observe that R phase achieves

smaller CRB compared to the T phase. It can be explained by the fact that in the R phase, the

STARS reconfigure the communication signal from the users and the sensing signal from the BS

as a new probing signal for estimation, which introduces more DoFs and enhance the received

echo energy, thus improving the sensing performance.

C. Performance Comparison

To verify the performance of the proposed scheme, we consider following benchmark schemes

for comparison:

• C-RIS-AO: In the “conventional-RIS-AO” (C-RIS-AO) scheme, we consider replacing the

STARS by a reflecting-only RIS and a transmitting-only RIS, where the proposed AO

algorithm is modified to jointly optimize the coefficients of PEs at conventional RIS, transmit

power at users and the receive beamforming at the BS under the two-user and fixed sensor
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number setup. For fairness comparison, each conventional RIS is assumed to possess N1

2

PEs and N2

2
sensors.

• STARS-COC: In the “STARS-communication-oriented coefficients (COC)” scheme, the re-

flection/transmission coefficients of PEs is determined by maximizing the minimum ergodic

rate of the user, i.e., ΘCOC
r/t = max

Θr/t

min
k

E{R[ı],k}.

• C-RIS-PDL: In the “C-RIS-PDL” scheme, we deploy an N
2

-element reflecting-only RIS and

an N
2

-element transmitting-only RIS at the same location of STARS, where the proposed

PDL algorithm is modified to jointly optimize the number of sensors, the coefficients of

PEs, transmit power at users and the receive beamforming at the BS.

• STARS-exhaustive-search: In the “STARS-exhaustive-search” scheme, we independently

optimize N−1 subproblems with respect to the reflection/transmission coefficients, transmit

power and the beamforming at the BS, where pn = 1 (
∑N−1

n pn = 1) is set for the n-th

subproblem. Then, we choose the smallest CRB as the final solution of this scheme.

As depicted in Fig. 7 and Fig. 8, the proposed scheme can always achieve better sens-

ing performance compared to the conventional RIS. This can be expected since the STARS

enables the double number of elements, which introduces more spatial DoFs for supporting

the communication and sensing. In Fig. 7, it is also observed that the sensing performance of

the considered network deteriorates with the increasing QoS target rate, and the STARS-COC

scheme achieves the worst performance. An intuitive explanation for the phenomenon is: 1) both

the sensing and communication relies on the coefficients setup of PEs, so when the QoS rate

increases, STARS has to prioritise support for communications to satisfy the QoS constraints,

which leads to a reduction in sensing performance; and 2) since the STARS-COC scheme only

focuses on the communication performance improvement, which would inevitably sacrifice the

accuracy of sensing. Moreover, we can observe that the CRB achieved by the STARS-COC

scheme does not vary with the QoS changes from Fig. 7. This is because the impact of QoS

target rate on the sensing performance can only be realized by affecting the coefficients of

PEs, which indicates that the sensing performance is independent of the QoS constraint under

any fixed reflection/transmission coefficients setup. For the Fig. 8, we can observe that the

proposed PDL algorithm can achieves the comparable performance of the optimal solution via the

exhaustive search, which significantly validates the equivalence of the derived ECRB expression

in Proposition 1.
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Fig. 9. The root CRB versus the number of STARS

elements with K = 4, dk = 20 m, Rer,t = 0.5 bps/Hz,

and PU,max = PBS,max = 45 dBm.
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Fig. 10. Benchmarks under 2-user setup with N = 20,

Mr = 8, Mt = 12, dk = 20 m, Rer,t = 0.5 bps/Hz,

PU,max = PBS,max = 45 dBm, and Nv = 10.

D. Impact of STARS Elements

Fig. 9 investigates the influence of STARS element number on the sensing performance. Firstly,

It can be observed that the root CRB monotonically decreases as N increases. This is because:1)a

larger N can provide a higher array gains; and 2) under the near-optimal allocation of number

of sensors, increasing N also increases the number of sensors, which improves the sensing

reception ability at the sensing array. We can also observe an interesting result that increasing

number of transmit antennas at the BS significantly reduces the root CRB, but increasing number

of receive antennas at the BS has almost no effect on the CRB. This is resulted from the bi-

directional sensing-STARS architecture. Specifically, by exploiting this architecture, the receive

antenna at the BS is only responsible for receiving the communication signal, which implies that

we only need the number of receive antennas that meets the QoS requirements in the considered

network. However, increasing transmit antenna can expand the DoFs of the sensing waveform,

which provides a more flexible design of the sensing waveform for supporting the sensing.

In Fig. 10, we illustrate the impact of the number of sensors under the fixed total number of

STARS elements. It can be seen that when the number of sensors is less than 7, deploying more

sensors than PEs are preferable, and when the number of sensors is larger than 7, increasing the

number of sensors can hardly bring the constructive impact to the network anymore. It reveals that

there exists a trade-off between the the number of sensors and PEs. In detail, with a small number

of sensors, it is required to deploy more sensors to obtain sufficient echo sampling resolution to

extract target information. Whereas, in the case of large number of sensors, the information loss
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of the sensing targets caused by insufficient echo sampling resolution is relatively small. Thus,

deploying more PEs to provide more DoFs for both communication and sensing becomes the

dominant factor in the sensing performance. Furthermore, we observe that increasing number

of users degrades the sensing performance, which is expected since the reflection/transmission

coefficients of PEs needs to be more oriented towards enhancing communications for satisfying

the QoS requirements of users.

VI. CONCLUSION

A new STARS-empowered ISAC scheme was proposed, where a bi-directional sensing-STARS

architecture was devised to support the full-space communication and sensing tasks. Two effi-

cient algorithms were developed to obtain the near-optimal solutions of the CRB minimization

problems. The correctness and effectiveness of proposed scheme was demonstrated by the

experiment results. It was also unveiled that: 1) STARS was capable of providing superior

performance compared to the conventional RIS; 2) under the unique design of bi-directional

sensing-STARS architecture, the number of receive antennas at the BS has little impact on the

sensing performance; 3) increasing number of PEs is more appealing than sensors for sensing

performance improvement. This work validated the potential of STARS in supporting full-space

dual-functional transmissions, and revealed an endogenous tradeoff that how do we determine

the number of sensors to be deployed. Both of them provided useful guidance for practical

system design.

APPENDIX A: DERIVATION OF FIM MATRIX

According (11), the element matrix in FIM matrix F[i] can be expressed as

JΨ[ı]Ψ[ı]
=

2

σ2







ℜ
(

∂qH
[ı]

∂ϕ[ı]

∂q[ı]

∂ϕ[ı]

)

ℜ
(

∂qH
[ı]

∂ϕ[ı]

∂q[ı]

∂φ[ı]

)

ℜ
(

∂qH
[ı]

∂φ[ı]

∂q[ı]

∂ϕ[ı]

)

ℜ
(

∂qH
[ı]

∂φ[ı]

∂q[ı]

∂φ[ı]

)






, (A-1)

where
∂q[ı]

∂Ψ[ı][h]
= vec

(

α[ı]

[
∂b(ϕ[ı],φ[ı])

∂Ψ[ı][h]
aT (ϕ[ı], φ[ı])+b(ϕ[ı], φ[ı])

∂aT (ϕ[ı],φ[ı])

∂Ψ[ı][h]

]

Θr/tX[ı]

)

(1 ≤ h ≤ 2).

With the derivative chain rule, we have

∂ǫ(ϕ[ı], φ[ı])

∂Ψ[ı][h]
= ǫ(ϕ[ı], φ[ı])⊙ ǫ̇Ψ[ı][h], ǫ(ϕ[ı], φ[ı]) ∈ {a(ϕ[ı], φ[ı]),b(ϕ[ı], φ[ı])}, (A-2)
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where the n-th elements of ǫ̇Ψ[ı][h] are given by

ǫ̇Ψ[ı][h][n] =







n̄π cosφ[ı] cosϕ[ı], if h = 1,

(−n̄π sinφ[ı] sinϕ[ı] + (n− 1−Nhn̄)π cosφ[ı]), if h = 2,
(A-3)

Let Q̇Ψ[ı][h] =
∂b(ϕ[ı],φ[ı])

∂Ψ[ı][h]
aT (ϕ[ı], φ[ı])+b(ϕ[ı], φ[ı])

∂aT (ϕ[ı],φ[ı])

∂Ψ[ı][h]
, we can rewrite JΨ[ı]Ψ[ı]

as

JΨ[ı]Ψ[ı]
=

2T |α[ı]|2
σ2

ℜ








Tr(Q̇ϕ[ı]

Θr/tRx[ı]
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H
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H
ϕ[ı]

) Tr(Q̇φ[ı]
Θr/tRx[ı]

ΘH
r/tQ̇

H
φ[ı]

)







 , (A-4)

where RX[ı]
≈ 1

T
X[ı]X

H
[ı]. Similarly, let Q[ı] = b(ϕ[ı], φ[ı])a

T (ϕ[ı], φ[ı]), we can obtain

JΨ[ı]α[ı]
=

2T

σ2
ℜ
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H
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)







 , (A-5)

Jα[ı]α[ı]
=

2T

σ2
Tr(Q[ı]Θr/tRx[ı]

ΘH
r/tQ

H
[ı])I2. (A-6)

This completes the derivation.

APPENDIX B: DERIVATION OF ERGODIC RATE

With the results in [33, Lemma 1], the ergodic rate is approximated as

E{R[ı],k} ≈ 1

2
log2

(

1 +
PkE{‖hH

k,SΘr/tGr‖2}
σ2

)

. (B-1)

Substituting (1) into (B-1), we can obatin

E{‖hH
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κE{‖h̃H
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,

(b)
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(

κ2‖ĥH
k,SΘr/tĜr‖2+κMr‖ĥH

k,SΘr/t‖2+κ‖Θr/tĜr‖2F+Mr‖Θr/t‖2F
)

(1 + κ)2/L2
k,SL

2
r

, (B-2)

where equality (a) holds because the h̃k,S and G̃r are independent of each other, while equality

(b) holds since all the elements in h̃k,S and G̃r follow the complex Gaussian distribution with

zero mean and unit variance. With the result of (B-2), we can easily obtain the approximated

ergodic rate expression in Lemma 1. This completes the proof.
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APPENDIX C: PROOF OF COROLLARY 1

For the considered problem (16), we can readily know that achieving the maximum-number

sensor deployment is tantamount to search for the minimum-dimensional reflection/transmission

coefficients and the feasible transmit power that satisfy the QoS constraint, i.e.,

find {Θmin
r/t ,P} (C-1a)

s.t. (16d), (16f), (16g), (C-2b)

where Θmin
r/t denotes the minimum-dimensional coefficient matrix. By substituting Mr = 1 to the

ergodic rate expression in Lemma 1, it is readily to show that when the reflection/transmission co-

efficients of PEs are aligned to the cascaded channels ĥH
k,SΘr/tĝr, i.e., the reflection/transmission

coefficients derived in (24), and Pk = PU,max holds, it achieves the best communication perfor-

mance with the least N1. As such, constraint (19c) can be transformed into

κ2

(1 + κ)2
N2

1 +
2κ+ 1

(1 + κ)2
N1 −

(22Rer,t − 1)σ2

PU,maxL2
k,SL

2
r

≥ 0. (C-3)

Resorting the standard quadratic-root formula and the non-negativity of N1, the minimum Nmin
1

can be determined. Thus, the maximum Nmax
2 can be derived as shown in (25) based on Nmin

1 +

Nmax
2 = N . This completes the proof.

APPENDIX D: DERIVATION OF EXTENDED FIM MATRIX

Firstly, we can rewrite (11) as

y[ı],s = vec
(
α[ı]Bε[ı]ε

T
[ı]AΘr/tX[ı]

︸ ︷︷ ︸

q[ı]

)
+ n[ı], (D-1)

where X[ı] ∈ CN×T is the equivalent signal matrix with regarding the whole STARS as PEs.

Similar to Appendix A, we have

∂q[ı]

∂Ψ[ı][h]
= vec

(

α[ı]B

[

∂ε[ı]
∂Ψ[ı][h]

ε
T
[ı] + ε[ı]

∂εT[ı]
∂Ψ[ı][h]

]

AΘr/tX[ı]

)

, 1 ≤ h ≤ 2, (D-2)

where
∂ε[ı]

∂Ψ[ı][h]
is given in (A-2) and (A-3) with 1 ≤ n ≤ N . Hence, the h-th row and v-th column

element of JΨ[ı]Ψ[ı]
is given by

∂qH
[ı]

∂Ψ[ı][h]

∂q[ı]

∂Ψ[ı][v]
= vec

(
α[ı]BĊΨ[ı][h]AΘr/tX[ı]

)H
vec
(
α[ı]BĊΨ[ı][v]AΘr/tX[ı]

)
,

= T |α[ı]|2Tr
(

BĊΨ[ı][v]AΘr/tRX[ı]
ΘH

r/tAĊH
Ψ[ı][h]

B
)

, 1 ≤ h, v ≤ 2, (D-3)
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where ĊΨ[ı][h] =
∂ε[ı]

∂Ψ[ı][h]
ε
T
[ı]+ ε[ı]

∂εT
[ı]

∂Ψ[ı][h]
. In the same way, the h-th row and v-th column element

of JΨ[ı]α[ı]
and the h-th element on the diagonal of Jα[ı]α[ı]

can be rewritten as

∂qH
[ı]

∂Ψ[ı][h]

∂q[ı]

∂α[ı][v]
= T ()v−1α̃[ı]Tr

(

BC[ı]AΘr/tRX[ı]
ΘH

r/tAĊH
Ψ[ı][h]

B
)

, 1 ≤ h, v ≤ 2, (D-4)

∂qH
[ı]

∂α[ı][h]

∂q[ı]

∂α[ı][h]
= TTr

(

BC[ı]AΘr/tRX[ı]
ΘH

r/tACH
[ı]B
)

, 1 ≤ h ≤ 2, (D-5)

where C[ı] = ε[ı]ε
T
[ı]. Substituting (D-3)–(D-5) into (A-4)–(A-6), we can obtain the extended

FIM matrix in Proposition 1. Then, we prove the equivalence between the extended FIM matrix

F[ı] and the original FIM matrix Fo
[ı] under any given A and B. To elaborate, let bp ∈ CN2×1

and ap ∈ CN1×1 denote the practical steering vectors at the sensors and PEs, the received echo

signal can be expressed as E
p

[ı] = α[ı]b
p(ap)TΘr/tX[ı]. With this in hand, it is easy to obtain the

following identity.

∥
∥
∥
∥

∂q[ı]

ς[ı][i]

∥
∥
∥
∥
=

∥
∥
∥
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∥
∥
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∥
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∂qp

[ı]

ς[ı][i]

∥
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∥
∥
∥
, 1 ≤ i ≤ 4, (D-6)

where q
p

[ı] = vec(Ep

[ı]). Therefore, the h-th row and v-th column element of the extended FIM

matrix is exactly equivalent to that of the original FIM matrix, i.e.,

F[ı][h, v] =
∂qH

[ı]

ς[ı][h]

∂q[ı]

∂ς[ı][v]
=

∂(qp

[ı])
H

ς[ı][h]

∂qp

[ı]

∂ς[ı][v]
= Fo

[ı][h, v], 1 ≤ h, v ≤ 4. (D-7)

This completes the proof.
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