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Dynamic Role Switching Scheme with Joint
Trajectory and Power Control for Multi-UAV

Cooperative Secure Communication
Ang Gao, Qinyu Wang, Yansu Hu, Wei Liang and Jiankang Zhang

Abstract—Due to the high flexibility and mobility, unmanned
aerial vehicles (UAVs) can be deployed as aerial relays touring
to serve ground users (GUs), especially when the ground base
station is temporally damaged. However, the broadcasting nature
of wireless channels makes such communication vulnerable to
be wiretapped by malicious eavesdropping users (EUs). Besides
the collecting offloading data for legitimate GUs, UAVs are also
expected to be friendly jammers, i.e., generating artificial noise
(AN) to deteriorate the wiretapping of EUs. With this in mind,
a novel role switching scheme (RSS) is proposed in the paper
to guarantee the secure communication by the cooperation of
multiple UAVs, where each UAV is allowed to switch its role as a
collector or a jammer autonomously to explore a wider trajectory
space. It’s worthy to be noticed that the joint optimization for
the trajectory of UAVs and the transmission power of GUs and
UAVs with role switching scheme is a non-convex mixed integer
non-linear programming (MINLP) problem. Since the relaxation
of binary variables will lead the solution dropping into local
minimum, a deep reinforcement learning (DRL) combined suc-
cessive convex approximate (SCA) algorithm is further designed
to maximize the achievable secrecy rate (ASR) of GUs. Numerical
results illustrate that compared with the role fixed scheme (RFS)
and relaxation based SCA approaches, the proposed DRL-SCA
algorithm endows UAVs the capacity to fly close enough to target
users (both GUs and EUs) with less moving distance which brings
better ASR and less energy consumption.

Index Terms—Unmanned Aerial Vehicles, Secure Communica-
tion, Role Switching, Deep Reinforcement Learning, Successive
Convex Approximate

I. INTRODUCTION

Due to the mobility, flexibility as well as high probability
of line-of-sight (LoS) propagation, unmanned aerial vehicles
(UAVs) are envisaged as a promising technology to assist the
mobile wireless communication, known as UAV-assisted com-
munication networks, where UAVs can be flexibly deployed
as aerial relays to collect the offloading data of ground users
(GUs). However, the LoS propagation of UAVs is a double-
edged sword that the broadcasting nature makes the aerial
communications be exposed to malicious eavesdropping users
(EUs) and easy to be wiretapped.

Unfortunately, traditional encryption techniques require
high computational complexity leading to a large amount
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of energy consumption which may be not affordable for
UAV systems. As an alternative, physical layer security (PLS)
is computationally efficient to protect against the potential
wiretapping by exploiting the inherent randomness of wireless
channels [1], [2]. UAVs are expected to fly close to legitimate
users to enhance the communication quality while as far
away from eavesdroppers as possible to avoid the wiretapping
by trajectory optimization [3], [4], which is known as the
‘passive touring scheme’. Besides, UAVs can also work as
friendly jammers to safeguard legitimate users by actively
generating artificial noise (AN) to suppress the wiretapping of
eavesdroppers [5]–[9], which is known as the ‘active jammer
scheme’.

Some existing researches have payed much attention to the
subject. A dual-UAV cooperative jamming model for secure
communications is proposed where when one UAV collects
data from users at uplink [5], [6] or disseminates data at
downlink [7], [8], a secondary UAV cooperatively acts as the
jammer to disrupt EUs by generating AN synchronously. To
further exploit the potential of friendly jammers, the double
antennas UAV is studied in [10], [11], which is capable
of collecting offloading data and sending jamming signals
simultaneously. Subsequently, AN-beamforming and cooper-
ative jamming relying on the location and statistical channel
state information (CSI) of eavesdroppers are considered in
[12]. The research in [13] aims for the maximization of worst-
case downlink secrecy energy efficiency (SEE) in multiple
UAVs cooperative communication, where source UAVs coop-
eratively transmit information to the legitimate users while
jamming UAVs are leveraged to send jamming signals to the
eavesdroppers.

In general, the literatures above formulate the secure com-
munication as an optimization issue which can be solved
by block coordinate descent (BCD) or successive convex
approximation (SCA). However, there are still some challenges
to be improved:
• Although UAVs are equipped with the capacity to collect

the offloading data of GUs and suppress the wiretapping
of EUs, they have to be fixed at a specific role during the
whole flight. We believe that the role switching of UAVs
will increase the flying flexibility and thus be possible to
explore a more optimal trajectory.

• No matter pursuing better secrecy rate [5]–[7] or general
communication rate [14], [15], the existence of binary
variables makes the optimization be a mixed integer non-
linear programming (MINLP) problem. Even though it
can be solved by the convex approximation based on the
binary variables relaxation, the solution may not perform
well and drop into local minimum when a large number
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of UAVs and GUs are involved in the system.

Recently, deep reinforcement learning (DRL) has been
widely used for the trajectory optimization of UAVs in un-
certain environments for their powerful non-linear approxi-
mation capability [16]–[19], which makes it easier to solve
the model-free and complex problems by training neural
networks. In specific, the work in [16], [17] adopts multi-agent
deep deterministic policy gradient (MADDPG) to exploit the
potential of cooperative friendly jammer UAVs by 3D beam-
forming in urban environments where exist random non-line-
of-slight (NLoS) links caused by the terrain reflection. The bi-
directional secrecy communication between UAVs and ground
devices is considered in [18], where the ground devices are
supposed to be mobile. The joint optimization for trajectory
and transmit power of UAVs is formulated as a constrained
Markov decision process (CMDP), and then solved by deep
deterministic policy gradient (DDPG), which can be regarded
as a centralized version of MADDPG. The work in [19] further
extends MADDPG to a more challenging scenario that one
UAV acts as a smart malicious eavesdropper and intelligently
optimizes its trajectory to increase the wiretapping rate. Since
the trajectory of the eavesdropper UAV can not be obtained
in advance, the secure communication becomes a dynamic
uncooperative game and hard to be solved by traditional
algorithms.

Despite of the great success in combating the environments’
uncertainty, DRL needs to be trained by amount of episodes
which is time-consuming. The slow convergence makes it
inapplicable in UAV-assisted communication networks with
high real-time requirements. In our previous work [20], game
theory is introduced to help speeding up the trajectory opti-
mization of UAVs. Although the physical security is out of
consideration, it inspires us to combine traditional theories
with machine learning to pursue a near closed-form solution
with low-complexity. The main contributions of the paper are
as follows:

• A challenging scenario is considered for the secure com-
munication where multiple UAVs are dispatched as mo-
bile collectors to gather the offloading data of GUs in the
presence of potential eavesdroppers. To achieve a more
satisfied secrecy rate, a dynamic role switching scheme
(RSS) is creatively designed for UAVs, i.e., each UAV
can choose to act as a collector or a jammer by dynamic
role switching. Due to the battery or fuel limitation of
GUs and UAVs, the role assignment, trajectory as well
as transmission power of both GUs and UAVs should be
jointly optimized to maximize the achievable secrecy rate
(ASR).

• A DRL combined successive convex approximate (SCA)
algorithm is proposed to tackle such non-convex MINLP
problem. In specific, the binary variables related to the
role assignment of UAVs are solved by DRL directly
without relaxation, while the trajectory and transmission
power are jointly optimized by SCA in sequence to speed
up the convergence. The numerical results demonstrate
that the proposed DRL-SCA algorithm is more effective
in exploring better trajectory compared with the role fixed

scheme (RFS) and avoiding dropping into local minimum
compared with binary relaxation. As a result, UAVs with
more flexibility are able to fly closer to target users with
less moving distance, which not only enhances ASR, but
also saves the transmission energy for both GUs and
UAVs.

The differences between our work and the existing liter-
atures are summarized in TABLE I. The rest of paper is
organized as follows. Sec. II describes the mathematical model
of the multi-UAV assisted secure communication with RSS.
The proposed DRL-SCA algorithm for optimization is detailed
in Sec. III, and the convergence and complexity are analyzed
in Sec.IV. The numerical results are demonstrated in Sec.V,
while the algorithm deployment is discussed and the future
work is prospected in Sec.VI. The paper is concluded in
Sec.VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
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Fig. 1: System model.

Considering a challenging scenario shown as Fig. 1, 𝑀

UAVs are dispatched as mobile collectors to gather the in-
formation from 𝑁 fixed legitimate GUs in the presence of
𝐸 non-colluding malicious EUs. Since GUs adopt orthogonal
frequency division multiple (OFDM) to transmit the offloading
data to UAVs, the channel assignment can be determined via a
special pre-assigned command channel maintained by a central
controller at the base station or an unique leader UAV. Each
UAV is equipped with only one transceiver taking half duplex
operation to avoid undesired self-interference. To take full use
of the on-board resources, UAVs who are not collecting data
for GUs are supposed to generate artificial noise to suppress
the wiretapping of EUs, which means each UAV either works
as an collector or a jammer by dynamic role switching.
• Collector UAVs tend to fly close to GUs to establish

better legitimate channels, while jammer UAVs aim at
suppressing eavesdroppers by generating artificial noise.

• GUs have to carefully adapt the transmission power
dynamically to guarantee a satisfied offloading rate but
not to be wiretapped.

• Since there is no pre-knowledge of channels assignment
of GUs, EUs do not know whether the wiretapped data
is from GUs or contaminated by artificial noise. Besides,
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TABLE I: Comparison with existing literatures

Reference Active jammer Passive touring Multi-UAV Optimization
objective DRL SCA NotesPower splitting★ Friendly jamming

★ Each UAV is equipped with double antennas
to transmit confidential messages and AN

simultaneously by power splitting.
† Secrecy energy efficiency (SEE), considering the

energy consumption costed by UAV’s propulsion power.
‡ Considering the energy consumption costed by

both UAV’s propulsion power and transmission power.

[3], [4] ! ASR !

[5], [6] ! Dual-UAV SEE† !

[7], [8] ! Dual-UAV ASR !

[13] ! ! SEE‡ !

[10] ! SEE† !

[11] ! ASR !

[16], [17] ! ! ASR !

[18] ! ! ASR !

Our Work Friendly Jamming with role switching ! ASR ! !

to guarantee the concealment during wiretapping, EUs
should keep silent and not collude with each other [21].
Otherwise, they would be detected by the unwanted
leakage of electronic waveforms.

Let M = {1, 2, . . . , 𝑀}, N = {1, 2, . . . , 𝑁} and E =

{1, 2, . . . , 𝐸} denote the sets of UAVs, GUs and EUs, re-
spectively. Binary matrixes u𝑚 [𝑡] = {𝑢𝑚,𝑛 [𝑡]} ∈ Z𝑁×1 and
v𝑚 [𝑡] = {𝑣𝑚,𝑒 [𝑡]} ∈ Z𝐸×1 are adopted to represent the
role of the 𝑚th UAV at the 𝑡th time slot, where 𝑢𝑚,𝑛 [𝑡] ∈
{0, 1}, 𝑣𝑚,𝑛 [𝑡] ∈ {0, 1}. When 𝑢𝑚,𝑛 [𝑡] = 1, the 𝑚th UAV
collects the offloading data for the 𝑛th GU. Similarly, when
𝑣𝑚,𝑒 [𝑡] = 1, the 𝑚th UAV will act as a jammer to suppress
the wiretapping of the 𝑒th EU. For each GU, there is at most
one UAV to collect its offloading data at a time slot. And for
each UAV, it can only serve one GU at most at a time slot.
So there are constraints:

𝑢𝑚,𝑛 [𝑡] ∈ {0, 1}, 𝑣𝑚,𝑛 [𝑡] ∈ {0, 1}, (C1)

0 ≤
∑︁𝑀

𝑚=1
𝑢𝑚,𝑛 [𝑡] ≤ 1,∀𝑛 ∈ N , (C2)

0 ≤
∑︁𝑁

𝑛=1
𝑢𝑚,𝑛 [𝑡] ≤ 1,∀𝑚 ∈ M . (C3)

Similarly, each jammer UAV can only suppress one EU at
most at a time slot:

0 ≤
∑︁𝐸

𝑒=1
𝑣𝑚,𝑒 [𝑡] ≤ 1,∀𝑚 ∈ M . (C4)

For ease of reference, the main notations are summarized
in TABLE II.

B. Movement Model
The finite flight period 𝑇0 of UAVs can be equally divided

into 𝑇 = 𝑇0/Δ𝑡 time slots, where Δ𝑡 should be small enough
so that the location of UAVs can be regarded as unchanged
within a time slot. For mathematical clarity, the 2-dimensional
(2D) Cartesian coordinate system is adopted 1, where 𝒒𝑚 [𝑡] =
[𝑞𝑥𝑚 [𝑡], 𝑞𝑦𝑚 [𝑡]]T denotes the location of the 𝑚th UAV at the
𝑡th time slot.

In general, GUs and EUs move slowly enough compared
with UAVs, so their location can be assumed to be static
and denoted by 𝒒𝑛 = [𝑞𝑥𝑛, 𝑞𝑦𝑛]T and 𝒒𝑒 = [𝑞𝑥𝑒, 𝑞𝑦𝑒]T,
respectively.

The maximum speed of UAVs should be limited by 𝑣max,
then the maximum moving distance in each time slot is
𝑑max = 𝑣maxΔ𝑡. Since UAVs have to return to a pre-fixed
docking station for energy refueling, their initial location 𝒒I

𝑚

and final location 𝒒F
𝑚 should be assigned in advance.

1The 3D movement of UAVs can be handled in the similar way.

In summary, the Kinematic constraints of UAVs are formu-
lated as following, where 𝑑min is the minimum safe distance
among UAVs to avoid collisions, and ∥ · ∥ means the Euclid
distance.

𝒒𝑚 [0] = 𝒒I
𝑚 , (C5)

𝒒𝑚 [𝑇] = 𝒒F
𝑚 , (C6)

∥ 𝒒𝑚 [𝑡 + 1] − 𝒒𝑚 [𝑡] ∥2 ≤ (𝑑max)2 , (C7)

∥ 𝒒𝑚 [𝑡] − 𝒒𝑚′ [𝑡] ∥2 ≥ (𝑑min)2 ,∀𝑚, 𝑚′ ∈ M, 𝑚 ≠ 𝑚′ ,
(C8)

C. Communication Model

In general, channels between UAVs and GUs are considered
to be dominated by LoS links 2 and follow quasi-static block
fading, i.e., the channel gain 𝑔𝑛,𝑚 [𝑡] = 𝛽0

∥𝒒𝑚 [𝑡 ]−𝒒𝑛 ∥2
remains

unchanged in each time slot, where 𝛽0 is the channel gain
at the reference distance 𝑑0 = 1m. Similarly, the jamming
channel gain of the 𝑚th UAV to the 𝑒th EU is defined as
𝑔𝑚,𝑒 [𝑡] = 𝛽0

∥𝒒𝑚 [𝑡 ]−𝒒𝑒 ∥2
.

Since GUs and EUs are all on the ground, the wiretapping
channels can be assumed to be constituted by the distance-
dependent path loss with pass-exponent 𝛼 > 2 and the small-
scale Rayleigh fading. Therefore, the wiretapping channel gain
of the GU-EU pair can be expressed as 𝑔𝑛,𝑒 =

𝛽0
∥𝒒𝑛−𝒒𝑒 ∥𝛼 𝜁 ,

where 𝜁 ∼ CN(0, 1) is an exponentially distributed random
variable with unit mean.

The transmitting power of the 𝑛th GU 𝑝𝑛 [𝑡] and the jam-
ming power of the 𝑚th UAV 𝑝J

𝑚 [𝑡] are limited by both the
average value and peak value, which leads to the constraints:

1
𝑇

∑︁𝑇

𝑡=1
𝑝𝑛 [𝑡] ≤ 𝑃ave

GU , (C9)

0 ≤ 𝑝𝑛 [𝑡] ≤ 𝑃max
GU ,∀𝑛, 𝑡 . (C10)

1
𝑇

∑︁𝑇

𝑡=1
𝑝J
𝑚 [𝑡] ≤ 𝑃ave

UAV , (C11)

0 ≤ 𝑝J
𝑚 [𝑡] ≤ 𝑃max

UAV,∀𝑚, 𝑡 . (C12)

D. Worst-Case Secrecy Rate

In the 𝑡th time slot , the offloading rate per Hz of the 𝑛th

GU to the 𝑚th UAV is:

𝑅𝑛,𝑚 [𝑡] = log2

(
1 +

𝑝𝑛 [𝑡]𝑔𝑛,𝑚 [𝑡]∑𝑀
𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒 [𝑡]𝑝J

𝑚′ [𝑡]𝑔𝑚′ ,𝑚 [𝑡] + 𝛿2
𝐿

)
,

(1)

2LoS probability of the air-to-ground link can be approximate to 1 when
UAVs are above 120 meters [22]–[24].
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TABLE II: Main notations

M UAVs set QC = {qC,𝑚} Way points set of all UAVs acting as collectors
N Legitimate GUs set QJ = {qJ,𝑚} Way points set of all UAVs acting as jammers
E Potential malicious EUs set Q ∈ R𝑇×2𝑀 Way points matrix of all UAVs
𝑢𝑚,𝑛 [𝑡] Service indication of the 𝑚th UAV to 𝑛th GU at the 𝑡th time slot 𝑝J

𝑚 [𝑡] Jamming power of the 𝑚th UAV at the 𝑡th time slot
𝑣𝑚,𝑒 [𝑡] Jamming indication of the 𝑚th UAV to 𝑒th EU at the 𝑡th time slot 𝑝𝑛 [𝑡] Transmission power of the 𝑛th GU at the 𝑡th time slot
u𝑚 [𝑡] ∈ Z𝑁×1 Service matrix of the 𝑚th UAV at the 𝑡th time slot p𝑛 ∈ R𝑇 Transmission power vector of the 𝑛th GU throughout the duration 𝑇

v𝑚 [𝑡] ∈ Z𝐸×1 Jamming matrix of the 𝑚th UAV at the 𝑡th time slot pJ
𝑚 ∈ R𝑇 Jamming power vector of the 𝑚th UAV throughout the duration 𝑇

U ∈ Z𝑀×𝑇×𝑁 Service matrix of all UAVs P ∈ R𝑇×(𝑁+𝑀 ) Power matrix of all UAVs and GUs
V ∈ Z𝑀×𝑇×𝐸 Jamming matrix of all UAVs 𝑔𝑛,𝑚 Channel gain between the 𝑚th

𝒒𝑚 [𝑡] Position of the 𝑚th UAV at the 𝑡th time slot 𝑔𝑚,𝑒𝑛 Channel gain between the 𝑚th UAV and the 𝑒th
𝑛 EU.

𝒒𝑛 Position of the 𝑛th GU 𝑔𝑛,𝑒𝑛 Channel gain between the 𝑛th GU and the 𝑒th
𝑛 EU

𝒒𝑒 Position of the 𝑒th EU 𝑔𝑚,𝑚′ Channel gain between the 𝑚th UAV and the 𝑚′th UAV.
𝒒I
𝑚, 𝒒F

𝑚 Initial and final location of the 𝑚th UAV, respectively 𝑅𝑛,𝑚 Transmission rate of the 𝑛th GU to the 𝑚th UAV
q𝑚 ∈ R2×𝑇 Way points vector of the 𝑚th UAV throughout the duration 𝑇 𝑅𝑛,𝑒𝑛 Wiretapping rate of the 𝑒th

𝑛 EU to the 𝑛th GU
qC,𝑚 Way points set of the 𝑚th UAV acting as collector 𝐷𝑛 Task or Data size of the 𝑛th GU to be offloaded
qJ,𝑚 Way points set of the 𝑚th UAV acting as jammer 𝐵𝜔 Bandwidth of each channel
𝑇0 Total flight period 𝑇 Number of time slots

where 𝛿2
𝐿

denotes the additive white Gaussian noise (AWGN)
power, and 𝑔𝑚′ ,𝑚 [𝑡] = 𝛽0

∥𝒒𝑚 [𝑡 ]−𝒒𝑚′ [𝑡 ] ∥2
is the air-to-air interfer-

ence channel gain from UAV 𝑚′ to UAV 𝑚 (𝑚′ ≠ 𝑚). Thus the
summation

∑𝑀
𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒 [𝑡]𝑝J

𝑚′ [𝑡]𝑔𝑚′ ,𝑚 [𝑡] in denominator
is the interference of all jammer UAVs to the 𝑚th UAV which
currently acts as a collector.

Jammer UAVs also generate interference to EUs, so the
wiretapping rate of the 𝑒th EU to the 𝑛th GU can be formulated
as:

𝑅𝑛,𝑒 [𝑡] = log2

(
1 +

𝑝𝑛 [𝑡]𝑔𝑛,𝑒∑𝑀
𝑚=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒 [𝑡]𝑝J

𝑚′ [𝑡]𝑔𝑚′ ,𝑒 [𝑡] + 𝛿2
𝐸

)
.

(2)

Lemma 1. Assume that EUs will non-selectively wiretap the
channel with the largest received power (RP). Then the worst
case for a legitimate GU is to be wiretapped by the most
nearby eavesdropper, i.e., 𝑒𝑛 = argmax 𝑔𝑛,𝑒 (𝑒 ∈ E, ∀𝑛 ∈ N ).

Proof. If EU 𝑒′ rather than 𝑒𝑛 detects a larger received
power at the channel occupied by the 𝑛th GU, and the 𝑚th

jammer UAV is sending AN to interfere with the channel, then
according to the ‘largest received power’ wiretapping strategy,
there is:

∥ 𝑝J
𝑚𝑔𝑚,𝑒′ + 𝑝𝑛𝑔𝑛,𝑒′ + 𝛿𝐸2 ∥2≥∥ 𝑝J

𝑚𝑔𝑚,𝑒𝑛 + 𝑝𝑛𝑔𝑛,𝑒𝑛 + 𝛿𝐸2 ∥2 .

(3)
Since 𝑒𝑛 is supposed to be the most nearby eavesdropper for

the 𝑛th GU, i.e., 𝑔𝑛,𝑒𝑛 > 𝑔𝑛,𝑒′ , there must be 𝑔𝑚,𝑒′ > 𝑔𝑚,𝑒𝑛 to
hold the inequality (3) true. Because of 𝑔𝑛,𝑒𝑛 > 𝑔𝑛,𝑒′ , 𝑔𝑚,𝑒′ >

𝑔𝑚,𝑒𝑛 and the monotonic increasing of log2 (·) function, there
is:

log2 (1 +
𝑃𝑛𝑔𝑛,𝑒′

𝑃J
𝑚𝑔𝑚,𝑒′

) < log2 (1 +
𝑃𝑛𝑔𝑛,𝑒𝑛

𝑃J
𝑚𝑔𝑚,𝑒𝑛

) , (4)

which finally leads to 𝑅𝑛,𝑒′ < 𝑅𝑛,𝑒𝑛 , i.e., the theoretical
wiretapping rate of EU 𝑒′ is still less than that of 𝑒𝑛. In other
words, EU 𝑒′ tends to wiretap the channel with the largest
received power, even though the channel is not occupied by the
closest GU currently. If doing so, its theoretical wiretapping
rate will be smaller than that of the most nearby eavesdropper
𝑒𝑛. It implies that no matter how eavesdroppers change their
wiretapped channels, it is still the most effective choice for
jammer UAVs to suppress the eavesdropper closest to one
specific GU. □

E. Role Switching of UAVs

Based on Lemma 1, the 𝑛th GU can be automatically paired
with the most nearby eavesdropper 𝑒𝑛. When the number of
GUs is more than EUs, the absent EUs can be easily treated
as infinite far away. Since there is the possibility for the 𝑛th

GU to be wiretapped during the transmission, the 𝑚th UAV
should be safeguarded by another jammer UAV 𝑚′ as long as
it works as a collector, i.e., 𝑢𝑚,𝑛 = 1. So there is the constraint:

𝑀∑︁
𝑚=1

𝑢𝑚,𝑛 [𝑡] −
𝑀∑︁

𝑚′=1
𝑣𝑚′ ,𝑒𝑛 [𝑡] = 0,∀𝑛, 𝑡 , (C13)

which implies that the number of UAVs who act as collectors
and jammers should be the same at a time slot. It is worth
noting that the coupling between ‘collector-jammer’ UAVs
undergoes dynamic changes across different time slots, and
there is no requirement for the number of UAVs to be even.
Specifically, once a pair of ‘collector-jammer’ UAVs com-
pletes their service for the current GU, they will be decoupled
and have the possibility to form a new pair with other UAVs,
being reassigned new roles to serve another GU.

Because of the half duplex operation, each UAV can only
play one role at the same time, i.e., either an collector or a
jammer by dynamic role switching.

0 ≤
𝑁∑︁
𝑛=1

𝑢𝑚,𝑛 [𝑡] +
𝐸∑︁

𝑒𝑛=1
𝑣𝑚,𝑒𝑛 [𝑡] ≤ 1,∀𝑚, 𝑡 . (C14)

The secure transmission can be effectively improved by
the cooperation of multiple UAVs involved in the system. In
specific, when collector UAVs move close to GUs for a better
offloading rate by trajectory optimization, other jammer UAVs
should generate AN to against possible EUs nearby at the same
time.

F. Problem Formulation

The worst-case achievable secrecy transmission rate of the
𝑛th GU can be expressed by:

𝑅sec
𝑛 [𝑡] =

[
0,

∑︁𝑀

𝑚=1
𝑢𝑚,𝑛 [𝑡]𝑅𝑛,𝑚 [𝑡] − 𝑅𝑛,𝑒𝑛 [𝑡]

]+
,∀𝑛, 𝑡, (5)

where [·]+ Δ
= 𝑚𝑎𝑥{·}.
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Since UAVs are battery or fuel driven, it is essential to make
sure that the data offloading of GUs should be accomplished
within the limited time slots 𝑇 :

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝐵𝜔𝑢𝑚,𝑛 [𝑡]𝑅𝑛,𝑚 [𝑡] ≥ 𝐷𝑛,∀𝑛 ∈ N , (C15)

where 𝐷𝑛 is the byte size of the offloading tasks of the 𝑛th

GU and 𝐵𝜔 is the bandwidth for legitimate transmission.
Let P =

[
pT

1 , · · · , p
T
𝑁
, pJ

1
T
, · · · , pJ

𝑀

T
]

be the power vector

concatenation of GUs and jammer UAVs, Q =
[
qT

1 , · · · , q
T
𝑀

]
be the trajectory matrix of UAVs, and U = [u1, . . . , u𝑀 ] ∈
Z𝑀×𝑇×𝑁 , V = [v1, . . . , v𝑀 ] ∈ Z𝑀×𝑇×𝐸 be the role switching
matrix of UAVs. The problem can be formulated to maximize
ASR of all GUs by jointly optimizing all the variables above:

P1 : max
Q,U,V,P

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅𝑛
sec [𝑡] , (6)

s.t. (C1)-(C15),

where (C1)-(C4), (C13)-(C14) are the requirements for the
uniqueness of UAVs’ role assignment, (C5)-(C8) are the
trajectory Kinetic limitations of UAVs’ movement, (C9-(C12)
are the average and maximum transmitting power limitation
for GUs and UAVs, and (C15) means that GUs should finish
data offloading within limited time slots 𝑇 .

Notice that the objective function (6) is non-smooth due
to the operator [·]+ and the binary matrix U and V. Besides,
(C8) and (C15) are non-convex. Therefore, P1 is a non-convex
MINLP problem which is difficult to be optimally solved in
general.

III. DRL-SCA FOR MULTI-UAV ASSISTED SECURE
COMMUNICATION

Fig. 2: DRL-SCA optimization framework.

As shown in Fig. 2, P1 can be divided into four sub-
problems by block coordinate descent (BCD) approach for
iterative optimization. In specific, the role switching of UAVs
which is indicated by binary variables is learned by multi-
agent DRL denoted as P2. The continuous variables, i.e., the
transmitting power of GUs and jammer UAVs, are modeled as
P3, and the flight trajectory of UAVs acting as collectors and
jammers is formulated as P4 and P5, respectively. Such DRL-

SCA algorithm for multi-UAV assisted secure communication
with RSS is detailed in the following.

For notation brevity, the time slot indication 𝑡 is omitted in
the following unless otherwise stated.

A. Dynamic Role Switching Optimization by MADRL
Since the role assignment of UAVs is independent with other

continuous variables in P1, it can be solved by multi-agent
DRL (MADRL) in advance with the given trajectory of UAVs
and given transmitting power of GUs and jammer UAVs. The
sub-problem can be formulated as:

P2 : max
U,V

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅sec
𝑛 , (7)

s.t. (C1)-(C4), (C13)-(C14) .

Shown as Fig. 3, each UAV acts as an individual agent and
adopts double deep 𝑄-network (DDQN) to learn interacting
with the environment. In specific, UAVs can be trained to
map a specific State consisting of the power vector P and the
trajectory vector Q to a proper Action denoted by U and V
during the flight to make a better Reward. It is worthy noting
that the matrixes U and V not only indicate the role of UAVs,
but also imply which GUs or EUs should be assigned to a
specific UAV. It is a basic condition for the optimization of
following sub-problems.
• State S𝑘

𝑚 = {Q𝑘 ,P𝑘} is the global observation of the 𝑚th

UAV to the overall system. All agents share the same
state.

• Action A𝑘
𝑚 = {u𝑘

𝑚, v𝑘
𝑚} is the role and service assignment

for each agent.
• Reward 𝑟𝑘𝑚 is defined on account of ASR and returned

from the environment when the agent takes action A𝑘
𝑚.

𝑟𝑘𝑚 =
1
𝑇

𝑇∑︁
𝑡=1

(
𝑁∑︁
𝑛

𝑢𝑚,𝑛 [𝑡]𝑅𝑛,𝑚 [𝑡] −
𝐸∑︁
𝑒=1

𝑣𝑚,𝑒 [𝑡]𝑅𝑛,𝑒𝑛 [𝑡]
)
,

(8)
where the superscript 𝑘 is used to denote the interaction step
number.

On the right side of (8), the first term is the cumulative trans-
mission capacity of the 𝑚th UAV acting as a collector, while
the second term represents the blocking effectiveness of the
𝑚th UAV which is taken as a negative value of the wiretapping
rate. The summation reward

∑𝑀
𝑚=1 𝑟

𝑘
𝑚 = 1

𝑇

∑𝑇
𝑡=1

∑𝑁
𝑛=1 𝑅

𝑛
sec [𝑡]

is identical to the object of P1.
DDQN, inherited from DQN, adopts double networks,

i.e., an on-line network Q(S,A|𝜃) and a target network
Q̂ (S,A|𝜃), to decouple the action generation and Q-value
evaluation, which improves the learning stability and over-
comes the over-optimistic in large-scale problems [25], where
𝜃 and 𝜃 denote the corresponding network parameters, respec-
tively.

Another essential technique of DDQN is equipped with the
replay buffer (RB) to store the (state, action,reward, next state)
transition {S,A, 𝑟,S′}, which will be fetched out randomly
for the further calculation of loss function. Together with
mini-batch, RB can effectively avoid the highly correlation
of successive updating.
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Fig. 3: DDQN for role switching of UAVs.

❶ On-line network selects the next action according to
the Q-value of each state-action pair with greedy policy, i.e.,
arg maxA Q(S,A|𝜃).

❷ Target network aims to evaluate such action by calculat-
ing the temporal difference (TD) error defined as:

L = EM

(
𝑟𝑚 + 𝛾Q̂

(
S′, arg max

A
Q(S′,A)|𝜃

)︸                                ︷︷                                ︸
①

−Q(S,A|𝜃)︸       ︷︷       ︸
②

)2
,

(9)
which is the mean square error (MSE) of M number of
(S,A, 𝑟𝑚,S′) tetrads randomly selected as a mini-batch. Term
① in (9) is the expected Q-value of the next state-action
pair with a discount factor 𝛾, which is approximated by the
target network based on its current policy 𝜃. The next action
is selected by the on-line network, i.e., arg maxA Q. While
term ② is the predicted Q-value of the current state-action
pair by the neural network with parameter 𝜃, and EM is the
mathematical expectation over the mini-batch. Therefore, the
action selection and evaluation can be independent to avoid
the over-estimation of Q-value [25].

❸ The on-line network parameter 𝜃 can be iteratively
updated by the gradient decent of TD-error ▽𝜃L, i.e., 𝜃𝑘+1𝑚 =

𝜃𝑘𝑚+𝛼𝜃▽𝜃L, where 𝛼𝜃 is the step size for parameter updating,
and ▽𝜃L is the gradient of L with regard to 𝜃, which can be
easily obtained by back propagation.

❹ With regard to the parameter 𝜃 of the target network,
it will be copied from the on-line network every 𝜏 times
iterations, i.e., 𝜃𝑘𝑚 = 𝜃𝑘−𝜏𝑚 . As a result, the role switching and
service assignment of UAVs can be obtained once the on-line
network has been well trained. The detailed DDQN learning
is in Algorithm 1.

B. Transmission and Jamming Power Optimization
Once the role switching for UAVs has been assigned,

the transmission power for GUs and jammer UAVs can be
next optimized by convex theory. The sub-problem can be
formulated as:

P3 : max
P

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅sec
𝑛 , (10)

s.t. (C9)-(C12), (C15) .

Algorithm 1: Double DQN for Role Switching
Input: Tasks vector D = {𝐷1, 𝐷2, · · · , 𝐷𝑁 }, transmission

power vector P and trajectory vector Q ;
Output: On-line network Q(·|𝜃𝑚);

1 Obtain the initial observation state S;
2 if training = true then
3 Randomly initialize the on-line 𝑄𝑚 network parameter

𝜃𝑚;
4 Initialize the target Q̂𝑚 network parameter 𝜃𝑚 ← 𝜃𝑚;
5 Empty replay buffer RB;
6 Initialize Gaussian noise N;
7 for agent 𝑚 = 1 to 𝑀 do
8 for step 𝑘 = 1 to max-episode-length do
9 Select action by

A𝑘
𝑚 = arg maxA Q(S𝑘 ,A𝑚 |𝜃𝑘𝑚) + N;

10 Interact with the environment, and obtain the
reward 𝑟𝑘𝑚 and next state S𝑘+1 to store into
RB as (S,A, 𝑟𝑚,S′) ;

11 Sample a random mini-batch of M from RB;
12 Calculate Q-value Q(S𝑘 ,A𝑘 |𝜃𝑘𝑚) according to

the sampled (S𝑘 ,A𝑘) pairs in the mini-batch,
and obtain the second term of (9);

13 Select the action arg maxA according to the
sampled S′ in the mini-batch, and find the
corresponding target Q-value in Q̂, i.e., obtain
the first term of (9);

14 Calculating the TD error for tetrad
(S,A, 𝑟𝑚,S′) in mini-batch according to (9);

15 Update the online network parameters 𝜃 for
minimizing TD error by gradient decent ;

16 Update the target network parameters 𝜃 every 𝜏
iteration interval;

17 𝑘 ← 𝑘 + 1;

18 else
19 Output action by A𝑚 = arg maxA Q(S,A𝑚 |𝜃𝑚)

For clarity, two auxiliary variables 𝑋𝑛 and 𝑌𝑛 are introduced
to facilitate the derivation. Then 𝑅sec

𝑛 in (5) can be rewritten
as:

𝑅sec
𝑛 =

𝑀∑︁
𝑚=1

𝑢𝑚,𝑛

(
log2 (𝑋𝑛 + 𝛿2

𝐿 + 𝑝𝑛𝑔𝑛,𝑚) − log2 (𝑋𝑛 + 𝛿2
𝐿)

)
(11)

− log2 (𝑌𝑛 + 𝛿2
𝐸 + 𝑝𝑛𝑔𝑛,𝑒𝑛 ) + log2 (𝑌𝑛 + 𝛿2

𝐸) ,

where 𝑋𝑛 =
∑𝑀

𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛 𝑝
J
𝑚′𝑔𝑚′ ,𝑚 and 𝑌𝑛 =∑𝑀

𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛 𝑝
J
𝑚′𝑔𝑚′ ,𝑒𝑛 .

Both 𝑋𝑛 and 𝑌𝑛 are linear functions of 𝑝J
𝑚′ and (C9)-(C12)
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with respect to 𝑝𝑛 and 𝑝J
𝑚′ are convex. However, (C15) is not

convex and the objective function (10) is non-concave with
respect to 𝑝𝑛 and 𝑝J

𝑚′ . Successive convex approximation is
used to tackle such issue.

❶ The first-order Taylor expansion is used to approximate
the second and the third terms by the global upper-bounded
inequality 3:

𝑀∑︁
𝑚=1

𝑢𝑚,𝑛log2 (𝑋𝑛 + 𝛿2
𝐿) + log2 (𝑌𝑛 + 𝛿2

𝐸 + 𝑝𝑛𝑔𝑛,𝑒𝑛 )

≤
𝑀∑︁
𝑚=1

𝑢𝑚,𝑛log2 ( 𝑋̂𝑛 + 𝛿2
𝐿) + log2 (𝑌𝑛 + 𝑝𝑛𝑔𝑛,𝑒𝑛 + 𝛿2

𝐸)

+
𝑀∑︁
𝑚=1

𝑢𝑚,𝑛

𝑋𝑛 − 𝑋̂𝑛

ln 2( 𝑋̂𝑛 + 𝛿2
𝐿
)
+
(𝑌𝑛 − 𝑌𝑛) + 𝑔𝑛,𝑒𝑛 (𝑝𝑛 − 𝑝𝑛)

ln 2(𝑌𝑛 + 𝑝𝑛𝑔𝑛,𝑒𝑛 + 𝛿2
𝐸
)

≜ 𝑓1 (𝑋𝑛, 𝑌𝑛) ,

(12)

where 𝑋̂𝑛 =
∑𝑀

𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛 𝑝
J
𝑚′𝑔𝑚′ ,𝑚 and 𝑌𝑛 =∑𝑀

𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛 𝑝
J
𝑚′𝑔𝑚′ ,𝑒𝑛 .

Since 𝑋̂𝑛, 𝑌𝑛 could be the value of 𝑋𝑛, 𝑌𝑛 at any feasible
point of 𝑝J

𝑚′ , they can be treated as constants. Thus 𝑓1 is the
linear function of 𝑝𝑛, 𝑋𝑛 and 𝑌𝑛.

❷ According to (12), define 𝑅̂sec
𝑛 as the global lower-bound

of 𝑅sec
𝑛 , which is a concave function to 𝑝𝑛 and 𝑝J

𝑚′ .

𝑅sec
𝑛 ≥

𝑀∑︁
𝑚=1

𝑢𝑚,𝑛

(
log2 (𝑋𝑛 + 𝛿2

𝐿 + 𝑝𝑛𝑔𝑛,𝑚)
)

+ log2 (𝑌𝑛 + 𝛿2
𝐸) − 𝑓1 (𝑋𝑛, 𝑌𝑛) ≜ 𝑅̂sec

𝑛 .

(13)

❸ Similarly, there is the global inequality for 𝑅𝑛,𝑚 :

𝑅𝑛,𝑚 = log2 (𝑋𝑛 + 𝛿2
𝐿 + 𝑝𝑛𝑔𝑛,𝑚) − log2 (𝑋𝑛 + 𝛿2

𝐿)
≥ log2 (𝑋𝑛 + 𝛿2

𝐿 + 𝑝𝑛𝑔𝑛,𝑚)

−
(

log2 ( 𝑋̂𝑛 + 𝛿2
𝐿) +

𝑋𝑛 − 𝑋̂𝑛

ln 2( 𝑋̂𝑛 + 𝛿2
𝐿
)

)
≜ 𝑅lb

𝑛,𝑚 (𝑋𝑛, 𝑋̂𝑛) ,

(14)

where 𝑅lb
𝑛,𝑚 (𝑋𝑛, 𝑋̂𝑛) is the lower-bound of 𝑅𝑛,𝑚, and is

concave and linear to 𝑝𝑛 and 𝑝J
𝑚′ .

❹ In summary, P3 can be approximated by maximizing of
the global lower-bound of 𝑅sec

𝑛 :

P3.1 : max
P

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅̂sec
𝑛 , (15)

s.t. (C9)-(C12) ,
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝐵𝜔𝑢𝑚,𝑛𝑅
lb
𝑛,𝑚 ≥ 𝐷𝑛,∀𝑛 ∈ N . (C15.a)

The object is to maximize the concave function (15) with
respect to P (equivalent to minimize a convex function), and
(C15.a) is a convex set 4. Therefore, P3.1 is transferred to a

3− log2 ( ·) is convex, and any convex function is global lower-bounded by
its first-order Taylor expansion.

4The superlevel sets of a concave function are convex [26].

convex problem which can be effectively solved by the existing
convex toolbox such as CVX.

C. Trajectory Optimization For Collector UAVs

Based on the role switching assignment and the transmitting
power control solved by DRL and SCA respectively, the trajec-
tory of UAVs can be further planned. It should be noticed that
the purpose of trajectory optimization for collector UAVs and
jammer UAVs are different. In specific, collector UAVs tend
to move close to GUs for a better offloading rate. But when
UAVs act as jammers, they fly close to EUs to deteriorate the
wiretapping. Therefore, UAVs’ trajectory are discriminately
optimized in Sec.III-C and Sec.III-D, respectively.

The trajectory of the 𝑚th UAV denoted by q𝑚 can be
split into two subsets of vectors, i.e., qC,𝑚 and qJ,𝑚, which
consist of the way points of the 𝑚th UAV acting as a
collector and a jammer, respectively. For all UAVs, there
are Q = [qT

1 , · · · , q
T
M], QC = [qT

C,1, · · · , q
T
C,𝑀 ] and QJ =

[qT
J,1, · · · , q

T
J,𝑀 ]. Due to constraint (C14), a way point in the

trajectory of the 𝑚th UAV can not belong to both qC,𝑚 and
qJ,𝑚 at the same time.{

if
∑𝑁

𝑛=1 𝑢𝑚,𝑛 = 1, 𝒒𝑚 ∈ qC,𝑚 ,

if
∑𝑁

𝑛=1 𝑣𝑚,𝑛 = 1, 𝒒𝑚 ∈ qJ,𝑚 .
∀𝑚 ∈ M (16)

If the trajectory of jammer UAVs QJ is fixed, the trajectory
optimization for collector UAVs can be written as:

P4 : max
𝒒𝑚∈QC

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅sec
𝑛 , (17)

s.t. (C5)-(C8), (C15).

where (C8) and (C15) are non-convex, and the object function
(17) is still non-concave with regard to 𝒒𝑚. Such optimization
can be solved by convex approximation similar with P3.

❶ Constraint (C8) is non-convex5. Recalling that any convex
function is global lower-bounded by its first-order Taylor
expansion at any given feasible point 𝒒̂𝑚. So there is:

∥ 𝒒𝑚 − 𝒒𝑚′ ∥2 ≥∥ 𝒒̂𝑚 − 𝒒𝑚′ ∥2 +2(𝒒̂𝑚 − 𝒒𝑚′ )T (𝒒𝑚 − 𝒒̂𝑚)
≜ 𝑓 lb

2 (𝒒𝑚, 𝒒̂𝑚, 𝒒𝑚′ ) ,
(18)

where (C8) is strengthened by its global lower-bound 𝑓 lb
2

which is an affine function of 𝒒𝑚.
❷ The wiretapping rate 𝑅𝑛,𝑒𝑛 of the 𝑒th

𝑛 EU in (2) is only
related to the trajectory of the 𝑚′th jammer UAV via the path-
loss 𝑔𝑚′ ,𝑒𝑛 in the denominator. So it can be seemed as a
constant during the trajectory optimization for collector UAVs.

For briefly, the auxiliary variables 𝐻𝑛 and 𝐼 are introduced.
Consequently, 𝑅𝑛,𝑚 and 𝑅sec

𝑛 can be rewritten as:

𝑅𝑛,𝑚 (𝒒𝑚) = log2 (1 +
1

𝐻𝑛𝐼
) , (19)

𝑅sec
𝑛 (𝒒𝑚) =

(
𝑀∑
𝑚=1

𝑢𝑚,𝑛 log2 (1 +
1

𝐻𝑛𝐼
) − 𝑅𝑛,𝑒𝑛

)
, (20)

5Even though ∥ 𝒒𝑚 − 𝒒𝑚′ ∥2 is convex with respect to 𝒒𝑚, the resulting
set is not a convex set since the superlevel sets of a convex quadratic function
is not convex in general [14], [26].
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where 𝐻𝑛 (𝒒𝑚) =
∥𝒒𝑛−𝒒𝑚 ∥2

𝑝𝑛𝛽0
and 𝐼 (𝒒𝑚) =∑𝑀

𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛
𝑝J
𝑚′ 𝛽0

∥𝒒𝑚′−𝒒𝑚 ∥2
+ 𝛿2

L.
Since (20) is convex to 𝐻𝑛 and 𝐼, the global lower-bound

of the first term can be obtained by its first-order Taylor
expansion at any given feasible point 𝐻̂𝑛 and 𝐼.

log2 (1 +
1

𝐻𝑛𝐼
) ≥ 𝑓 lb

3 (𝐻𝑛, 𝐼) , (21)

where 𝑓 lb
3 (𝐻𝑛, 𝐼) ≜ log2 (1+ 1

𝐻̂𝑛 𝐼
)−

(
𝐻𝑛−𝐻̂𝑛

ln 2(𝐻̂𝑛+𝐻̂2
𝑛 𝐼 )
+ 𝐼−𝐼

ln 2(𝐼+𝐼2𝐻̂𝑛 )

)
.

Notice that 𝐻𝑛 and 𝐼 are convex to 𝒒𝑚 because their
secondary derivation is always positive. Thus that 𝑓3 is a
concave function to 𝒒𝑚 now.

❸ With regard to (C15), similarly, there is 𝑅𝑛,𝑚 = log2 (1 +
1

𝐻𝑛 𝐼
) ≥ 𝑓 lb

3 (𝐻𝑛, 𝐼).
❹ In summary, with any give feasible point 𝒒̂𝑚 as well

as the lower-bound calculated by (18) and (21), P4 can be
approximately transferred to the following convex problem:

P4.1 : max
𝒒𝑚∈QC

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅̃sec
𝑛 , (22)

s.t. (C5)-(C7) ,

𝑓 lb
2 (𝒒𝑚, 𝒒̂𝑚, 𝒒𝑚′ ) ≥ (𝑑

min)2, (C8.a)
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝐵𝜔𝑢𝑚,𝑛 𝑓
lb
3 (𝐻𝑛, 𝐼) ≥ 𝐷𝑛,∀𝑛 ∈ N .

(C15.b)

where 𝑅sec
𝑛 ≥

(
𝑀∑
𝑚=1

𝑢𝑚,𝑛 𝑓
lb
3 (𝐻𝑛, 𝐼) − 𝑅𝑛,𝑒𝑛

)
≜ 𝑅̃sec

𝑛 .

Therefore, the maximization of 𝑅sec
𝑛 can be approximated by

maximizing its lower-bound 𝑅̃sec
𝑛 , which is a concave function

of 𝒒𝑚 ∈ QC. Furthermore, (C8.a) is a linear set and (C15.b)
is a convex set. Thus P4.1 turns to a convex problem which
can be effectively solved by the existing convex toolbox such
as CVX.

D. Trajectory Optimization for Jammer UAVs

The trajectory optimization of jammer UAVs can be rewrit-
ten as follows with all the other variables fixed:

P5 : max
𝒒𝑚∈QJ

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅sec
𝑛 , (23)

s.t. (C5)-(C8), (C15),

where (23) is non-concave with regard to 𝒒𝑚′ and (C8), (C15)
are non-convex.

To facilitate the derivation, four auxiliary variables are
introduced as follows: 𝑎𝑛 =

𝑝𝑛𝑔𝑛,𝑚

𝛿2
L

, 𝑏𝑛 =
𝑝𝑛𝑔𝑛,𝑒𝑛

𝛿2
E

, 𝐴𝑚 =∑𝑀
𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛 𝑝𝑚′ 𝛽0

∥𝒒𝑚′−𝒒𝑚 ∥2 𝛿2
L

+ 1 and 𝐵𝑚 =

∑𝑀
𝑚′=1,𝑚′≠𝑚 𝑣𝑚′ ,𝑒𝑛 𝑝𝑚′ 𝛽0

( ∥𝒒𝑚′−𝒒𝑒𝑛 ∥2 ) 𝛿2
E

+ 1.
Notice that 𝑎𝑛 is only related to the trajectory of collector
UAVs which has been planned by sub-problem P4 above and
𝑏𝑛 is not related to any UAV’s trajectory, so they can be treated
as constants.

On this basis, 𝑅sec
𝑛 can be rewritten as:

𝑅sec
𝑛 =

(∑︁𝑀

𝑚=1
𝑢𝑚,𝑛 log2 (1 +

𝑎𝑛

𝐴𝑚

)
)
− log2 (1 +

𝑏𝑛

𝐵𝑚

) . (24)

❶ Since 𝑎𝑛 and 𝑏𝑛 are non-negative parameters, both
log2 (1 +

𝑎𝑛
𝐴𝑚
) and log2 (1 +

𝑏𝑛
𝐵𝑚
) are convex functions with

respect to 𝐴𝑚 and 𝐵𝑚, respectively. Therefore, the global
inequality must hold:

log2 (1 +
𝑎𝑛

𝐴𝑚

) ≥ 𝑓 lb
4 (𝐴𝑚, 𝐴̂𝑚)

≜ log2 (1 +
𝑎𝑛

𝐴̂𝑚

) −
𝑎𝑛 (𝐴𝑚 − 𝐴̂𝑚)

ln 2( 𝐴̂2
𝑚 + 𝑎𝑛 𝐴̂𝑚)

,

(25)

where 𝐴̂𝑚 is any given feasible point of 𝐴𝑚. Thus there is:

𝑅sec
𝑛 ≥

(∑︁𝑀

𝑚=1
𝑢𝑚,𝑛 𝑓

lb
4 (𝐴𝑚, 𝐴̂𝑚)

)
− log2 (1 +

𝑏𝑛

𝐵𝑚

) ≜ 𝑅̆sec
𝑛 .

(26)
Note that 𝐴𝑚 is convex to 𝒒𝑚′ due to the secondary

derivation to 𝒒𝑚′ is always positive. While the second
term − 𝑎𝑛

ln 2( 𝐴̂2
𝑚+𝑎𝑛 𝐴̂𝑚 )

of (25) is always negative. Therefore,

𝑓 lb
4 (𝐴𝑚, 𝐴̂𝑚) is a concave function to 𝒒𝑚′ .
❷ Similarly, 𝐵𝑚 is convex to 𝒒𝑚′ due to the secondary

derivation of 𝐵𝑚 is always positive, and log2 (1+
𝑏𝑛
𝐵𝑚
) is convex

and monotonic decreasing to 𝐵𝑚. Thus that the second term
of (26), i.e., − log2 (1 +

𝑏𝑛
𝐵𝑚
), is a concave function to 𝒒𝑚′ .

Therefore, the global lower-bound 𝑅̆𝑛
sec in (26) is a concave

function to 𝒒𝑚′ now.
❸ With regards to (C15), similarly, there is 𝑅𝑛,𝑚 = log2 (1+

𝑎𝑛
𝐴𝑀
) ≥ 𝑓 lb

4 (𝐴𝑚, 𝐴̂𝑚).
❹ In summary, with any give feasible point 𝒒̂𝑚′ as well

as the lower-bound expressed by (18) and (26), P5 can be
approximately transferred to a convex problem:

P5.1 : max
𝒒𝑚∈QJ

min
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅̆sec
𝑛 , (27)

s.t. (C5)-(C7) , (28)

𝑓 lb
2 (𝒒𝑚, 𝒒̂𝑚, 𝒒𝑚′ ) ≥ (𝑑

min)2 , (C8.a)
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝐵𝜔𝑢𝑚,𝑛 𝑓
lb
4 (𝐴𝑚, 𝐴̂𝑚) ≥ 𝐷𝑛,∀𝑛 ∈ N .

(C15.c)

Therefore, the maximization of 𝑅sec
𝑛 can be approximated by

maximizing its lower-bound 𝑅̆sec
𝑛 which is a concave function

to 𝒒𝑚′ ∈ QJ. Furthermore, (C8.a) is a linear set and (C15.c) is
a convex set. Thus P5.1 turns to be a convex problem which
can also be solved by CVX.

Details of the overall optimization algorithm are summa-
rized in Algorithm 2.

IV. CONVERGENCE AND COMPLEXITY ANALYSIS

A. Convergence Analysis
Lemma 2. Algorithm 2 can be converged to a local subopti-
mal solution at least in finite iterations.

Proof. The original problem P1 is divided into four sub-
problems and iteratively solved by applying BCD. In specific,
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Algorithm 2: DRL-SCA for Multi-UAV Assisted Se-
cure Communication with RSS

1 Initialization: the maximum tolerance 𝜖 , random transmit
power P0, random trajectory for each UAV Q0, the
iteration index 𝑙 = 0.

2 repeat
3 Solve Problem P2 by MADRL with any given{

U𝑙 ,V𝑙 ,P𝑙 ,Q𝑙
}
, and output the feasible solution of role

arrangement U𝑙+1 and V𝑙+1 according to Algorithm 1 ;
4 Split the trajectory Q𝑙 into QC

𝑙 and QJ
𝑙 according to

(16) based on U𝑙+1 and V𝑙+1;
5 Solving Problem P3.1 by CVX for any given{

U𝑙+1,V𝑙+1,P𝑙 ,QC
𝑙 ,QJ

𝑙
}
, and denote the feasible

solution of the transmit power of GUs and jammer
UAVs as P𝑙+1;

6 Solve Problem P4.1 by CVX with any given{
U𝑙+1,V𝑙+1,P𝑙+1,QC

𝑙 ,QJ
𝑙
}
, and denote the feasible

solution of the trajectory of collector UAVs as QC
𝑙+1;

7 Solve Problem P5.1 by CVX with any given{
U𝑙+1,V𝑙+1,P𝑙+1,QC

𝑙+1,QJ
𝑙
}
, and denote the feasible

solution of the trajectory of jammer UAVs as QJ
𝑙+1;

8 𝑙 ← 𝑙 + 1;
9 until The fractional increasement of the objective value is

small enough;
10 Output: P,Q,U,V

problems P2, P3.1, P4.1 and P5.1 are alternatively optimized to
obtain the suboptimal solution with the initial feasible points.
The obtained solution in each iteration is used as the input
feasible points for the next iteration.

Let 𝜂(U𝑙 ,V𝑙 , P̃𝑙 , Q̃𝑙) be the solution of the original objective
function 6 at the 𝑙 th iteration.

In Step 3, DDQN will output a better solution U𝑙+1 and
V𝑙+1 satisfying:

𝜂(U𝑙 ,V𝑙 , P̃𝑙 , Q̃𝑙) ≤ 𝜂(U𝑙+1,V𝑙+1, P̃𝑙 , Q̃𝑙) . (29)

Then, in Step 5, the suboptimal solution for transmission
power of both GUs and jammer UAVs P̃𝑙+1 can be obtained
by solving P3.1:

𝜂(U𝑙+1,V𝑙+1, P̃𝑙 , Q̃𝑙) (a)
= 𝜂lb (U𝑙+1,V𝑙+1, P̃𝑙 , Q̃𝑙)

(b)
≤ 𝜂lb (U𝑙+1,V𝑙+1, P̃𝑙+1, Q̃𝑙)

(c)
≤ 𝜂(U𝑙+1,V𝑙+1, P̃𝑙+1, Q̃𝑙)

(30)

where (𝑎) holds the fact that the first-order Taylor expansions
are tight at the optimal; (𝑏) follows that P3.1 can be solved op-
timally due to its convexity; (𝑐) holds because the optimization
objective in (13) is the lower bound of the original objective
function. The inequality of (30) induces that problems P2 and
P3.1 with regarding to ASR are always non-decreasing after
each iteration.

The proof of Step 6 and Step 7 is similar to that of (30),
and the result follows:

𝜂(U𝑙+1,V𝑙+1, P̃𝑙+1, Q̃𝑙) ≤ 𝜂(U𝑙+1,V𝑙+1, P̃𝑙+1, Q̃𝑙+1) . (31)

Notice that the objective function is non-decreasing after
each iteration. Owing to the limitation of constraints, the
maximum sum ASR is upper bounded by a finite value.
Therefore, Algorithm 2 is guaranteed to converge to at least a
local suboptimal solution. □

0 100 200 300 400 500 600
30

40

50

60

70

RB is Full

Fig. 4: Algorithm convergence by DRL-SCA.

B. Complexity of DRL for Role Switching

The computation complexity of DDQN is in terms of the
floating point of operations(FLOPs) [27]. As aforementioned,
each agent consists of two isomorphic neural networks, i.e., the
target network and the on-line network constructed by basic
fully-connected multi-layer perceptron (MLP). The neural
networks configuration is detailed in TABLE III.

Let 𝑒𝑖 be the number of neurons in the 𝑖th layer of the on-
line network, where 𝑖 ∈ {0, · · · , 𝐼} and 𝐼 is the number of
layers. For a fully-connected layer of MLP with 𝑒𝑖 neurons
as the input and 𝑒𝑖+1 neurons as the output, the dot product
of FLOPs computation from the 𝑖th to the (𝑖 + 1)th layer is
(2𝑒𝑖 −1) × 𝑒𝑖+1, i.e., multiply 𝑒𝑖 times and add (𝑒𝑖+1−1) times
for each neuron.

Let 𝜅 be the corresponding parameter determined by the
type of activation function. For example, the Sigmoid function
has 𝜅Sigmoid = 4 FLOPs because the function 𝛿(𝑧) = 1/1 + 𝑒−𝑧
has four mathematical operations, i.e., division, summation,
exponentiation and subtraction, and each of them needs one
FLOPs. Similarly, 𝜅Relu = 1 FLOPs. Therefore, the computa-
tion complexity of DDQN is:

2
∑︁𝐼−1

𝑖=0
((2𝑒𝑖 − 1)𝑒𝑖+1 + 𝜅𝑖𝑒𝑖) = O(

∑︁𝐼−1

𝑖=0
𝑒𝑖𝑒𝑖+1)

= O (2𝑒1𝑀𝑇 + (𝑒1 + 𝑒2)𝑁𝑇 + 𝑒2𝐸𝑇) .
(32)

C. Complexity of SCA for Trajectory and Power Optimization

The following problems P3.1, P4.1 and P5.1 solved by
SCA are convex optimization [26]. For example, P3.1 in-
volves logarithmic operation which has the complexity of
O((𝑁𝑇 + 𝑁 + 𝑇)3.5 log 1

𝜖
) and can be solved in polynomial

time, where (𝑁𝑇 +𝑁+𝑇) denotes the total number of variables
and 𝜖 is the solving accuracy.

Similarly, the complexity of P4.1 and P5.1 are both O((𝑁𝑇+
𝑁 + 𝑀𝑇 + 𝑇)3.5 log 1

𝜖
). Therefore, the overall computation

complexity of SCA for the trajectory and power optimization
is:

O
((

2(𝑁𝑇 + 𝑁 + 𝑀𝑇 + 𝑇)3.5 + (𝑁𝑇 + 𝑁 + 𝑇)3.5
)

log
1
𝜖

)
.

(33)



10

TABLE III: DDQN neural networks configuration

Name Neurons Num. and Active Fun. Type Notes
Input layer 𝑒0 = (2𝑀 + 𝑁)𝑇 for S𝑘

𝑚
★, ReLU

On-line
★ Input is two-tuples S𝑘

𝑚 = {Q𝑘 ,P𝑘}. Thus that
the input dimension is 𝑒0 = (2𝑀 + 𝑁)𝑇 .

† Output is A𝑘
𝑚 = {u𝑘

𝑚, v𝑘
𝑚}, thus 𝑒3 = (𝐸 + 𝑁)𝑇 .

Hidden Layer 2 layers with 𝑒𝑎,1 = 𝑒𝑎,2 = 256, ReLU6
Output layer 𝑒𝑎,3 = (𝐸 + 𝑁)𝑇 for A𝑘

𝑚
†, Sigmoid

TABLE IV: Simulation parameters

Parameter Notation Simulation value Parameter Notation Simulation value
Max speed of UAVs 𝑣max 50m/s Average transmit power of UAVs 𝑃ave

UAV 25dBm
Safe distance among UAVs 𝑑min 5m Peak transmit power of UAVs 𝑃max

UAV 30dBm
Number of time slots 𝑇 50 Noise power 𝛿2

𝐿
-110dBm

Time slot duration △𝑡 1s Noise power 𝛿2
𝐸

-110dBm
Altitude of UAVs ℎ 150m Data size of GUs 𝐷𝑛 1000Mbits
Channel power gain 𝛽0 -60dB Bandwidth 𝐵𝜔 1MHz
Terrestrial pass-loss exponent 𝛼 3 Size of replay buffer RB-size 80
Average transmit power of GUs 𝑃ave

GU 15dBm Size of mini-batch M 32
Peak transmit power of GUs 𝑃max

GU 20dBm Discount factor 𝛾 0.95

V. SIMULATION RESULTS

Supposing that there are 𝑁 = 5 GUs and 𝐸 = 5 EUs de-
ployed in the range of [1600𝑚×1600𝑚]. While 𝑀 = 4 UAVs
cooperatively collect offloading data for GUs and generate AN
to EUs during the flight with a fixed initial and final location.
As shown in Fig. 5, UAV 1 and UAV 2 start and end at the
same position, i.e., [0, 800] and [0,−800] respectively. UAV
3 flies from [−800, 800] to [−800,−800], while UAV 4 starts
from [800,−800] and ends at [800, 800]. All UAVs fly at the
fixed altitude of 150m. The detailed parameters are provided
in TABLE IV.

A. Convergence and Effectiveness

Fig. 4 shows that the value of ASR improves with the iter-
ation and finally converges at a steady value by the proposed
DRL-SCA optimization.
• Once RB is full (Algorithm 1 Line 11), each agent begins

to be trained for a better reward with a random selected
mini-batch from RB. Along with the training, only the
best action can be retained in RB which brings the leap
of ASR. Although DDQN only needs to be trained once
to handle the following changes of environment, the stage
(red line) is specifically retained in each iteration for
clarity 6.

• Even though, compared with SCA approach for P3.1,
P4.1 and P5.1, the training for role switching is still
time-consuming which is an inevitable drawback of rein-
forcement learning based approaches. It implies that DRL
transfers the optimization difficulty to the training of net-
works by its powerful non-linear capability, but sacrifices
the real-time requirements. However, the introduction of
convex theory which can be proved to converge with finite
iterations, helps to speed up the training.

Fig. 5 details how the system performance is gradually
improved along with the number of iterations. For clarity, the

6Actually, once the state S has accomplished the ergodic trajectory during
the training, the network of DDQN is able to output a proper action without
retraining in the following iterations.

trajectory of UAVs by the 1st and 2nd iteration is drawn by
yellow and purple dashed lines with small dots respectively,
while the trajectory of UAVs by the 3rd iteration is drawn by
green solid line with bigger dots.

• Fig. 5 (a) not only depicts the trajectory of UAVs by each
iteration, but also distinguishes the role switching during
the flight by way points with different colors (blue for
collectors and red for jammers). It is worth noticing that
when one GU is offloading tasks to a specific collector
UAV, the nearest EU will be suppressed by another UAV
acting as a jammer. By the cooperation of multiple UAVs,
ASR of GUs can be effectively guaranteed.

• Fig. 5 (d)-(g) reveal that the transmission power of GUs
and jammer UAVs are also descended step by step. Since
the offloading time for multiple GUs would be overlapped
sometimes, four sub-figures are used to jointly detail the
transmission power of each GU and UAV. For example,
when GU 2 is offloading data to UAV 2 during 4s to 20s
(shown in (a) and (d)) , UAV 4 is correspondingly acting
as the jammer to suppress the wiretapping of EU 2 at the
same time (shown in (a) and (f)).

• The statistics results are shown in (b) and (c). Along
with the iterations, both collector and jammer UAVs are
allowed to fly closer to their objects with less cumulative
moving distance (CMD). As a result, not only the energy
consumption of GUs and UAVs is reduced, but also ASR
is greatly enhanced. Actually, no matter the fixed-wing
[28] or rotary-wing [29] UAVs, they have to consume a
large proportion of energy for propulsion, which increases
approximately linear with the moving distance [30]. So
the propulsion energy cost is sensitive to the little varia-
tion of CMD 7.

7Existing literatures have put forward that the trajectory optimization with
the consideration of propulsion energy of UAVs, can be generally approxi-
mated as a convex problem solved by SCA with regard to the moving velocity
and further transferred to the moving distance by integral transformation [4]–
[6], [8], [10].
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Fig. 5: Detailed optimization process along with iterations.

B. Impact of Flight Duration

Further simulations shown as Fig. 6 discuss the system
performance with different flight duration time 𝑇 = 30, 40,
50 and 60, respectively. Similar with the experiments above,
the trajectory of UAVs with 𝑇 = 30, 40 and 50 is marked
by dashed lines of different color with small dots, and the
trajectory of UAVs with 𝑇 = 60 is drawn by solid line with
bigger dots.

• When the flight duration 𝑇 changes from 30 to 50, there
are more time for UAVs to move closer to the target users,
no matter GUs for data collecting or EUs for wiretapping
suppressing. Although the moving distance of UAVs is
slightly increased, the sacrifice is meaningful in exchange
for a great improvement of ASR as well as transmission
energy consumption of GUs and UAVs.

• However, the system performance gap between 𝑇 = 50
and 𝑇 = 60 is insignificant. It can be inferred that
when the flight duration is large enough for obtaining the
optimum solution, further increment in 𝑇 can not bring
benefits any more because UAVs have to hover more time
idly which will cause extra but unnecessary propulsion
energy. So the number of time slots 𝑇 is set as 50 in the

following simulations unless otherwise stated.

C. Impact of Transmission Parameters

Transmission parameters also play an important role on the
average secure rate. Since the average transmission power is
linear with the maximum value, the results shown in Fig. 7
only exhibit the system performance along with the maximum
transmission power of GUs and UAVs.

• It is easy to interpret that when GUs are allowed to
enhance the threshold of maximum transmission power,
the legitimate channel gain i.e., 𝑔𝑛,𝑚 in (1) will be
augmented which leads to better ASR.

• At the first glance, eavesdroppers can be more effec-
tively suppressed when jammer UAVs generate AN with
larger transmission power according to (2). However,
more interference will be induced correspondingly which
finally aggravates ASR instead. So parameters related
to the transmission power are set as 𝑃ave

GU = 15dBm,
𝑃max

GU = 20dBm, 𝑃ave
UAV = 25dBm and 𝑃max

UAV = 30dBm
unless otherwise stated.
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D. Algorithms Comparison

To demonstrate the superiority of the proposed DRL-SCA
RSS algorithm, two more algorithms are considered for com-
parison.
• DRL-SCA RSS, the algorithm proposed in the paper.
• DRL-SCA RFS, where once the role of one specific UAV

is assigned by DRL, it has to be stayed unchanged during
the whole flight.

• Binary-Relax RSS, where the binary variables U and V
are relaxed into the continuous range and then the whole
optimization problem can be solved by SCA iteration
[5], [6]. However, such approach may lead the solution
dropping into local minimum.

A simple scenario with 2 UAVs and 4 GU-EU pairs is under
the consideration of Fig. 8.
• Since each UAV is assigned with a fixed role by DRL-

SCA RFS, it is impossible to ensure that one specific
collector UAV is always closer to GUs than EUs in pairs
(there exists the similar circumstance for jammer UAVs).

For example, when UAV 1 finishes serving GU 1 as a
collector in (b), it is actually closer to EU 2 than GU
2. However, it still has to fly more distance to GU 2 as
a collector than switch the role to a jammer to suppress
EU 2 instead. As a result, DRL-SCA RFS suffers worse
ASR of GUs and longer CMD of UAVs with more energy
consumption.

• Although role switching is still available for UAVs by
Binary-Relax RSS in (c), they can not fly close enough
to targets. Sometimes, the trajectory even shifts to other
adjacent GUs/EUs. As a result, even though there is only
a slight increment of CMD of UAVs, GUs and UAVs have
to consume much more energy compared with the former
two approaches, and ASR deteriorates irretrievably to a
much smaller value.

• A more complicated scenario involving 4 UAVs and 5
GU-EU pairs is considered in Fig. 9, where the superiority
of DRL-SCA RSS is further expanded compared with
the other two approaches. However, it is worth to notice
that the performance gap between DRL-SCA RFS and
Binary-Relax RSS is reduced instead, which implies that
RSS will be more effective along with the increasing
complexity of system.

VI. DISCUSSION AND FUTURE WORK

Since the paper focuses on the joint optimization of trajec-
tory and power control with dynamic role switching scheme,
we would like to restrict the current contributions to a more
concise case, where the communication channels are dom-
inated by LoS links without obstacles, and each entity is
equipped with a single antenna and deployed in 2D plane.

A. Deployment

It should be noticed that the proposed DRL-SCA algorithm
is deployed in centralize. All legitimate GUs and UAVs are
connected to a central controller (such as a base station or a
leader UAV) through an interference-free command channel.
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Fig. 9: Algorithms comparison in a more complicated scenario (4 UAVs for 5 GU-EU pairs).

Therefore, the position and task size of GUs, as well as the
initial and final position of UAVs can be easily obtained.

Besides, the position of EUs can be aware by detecting the
leaked oscillator power [31] or other alternative techniques
such as cameras [32], synthetic aperture radar [33] and RF
sensing [34] equipped on-board, and then reported to the
central controller. On the basis, the central controller can
construct a virtual environment to play the training by itself,
and the reward related to the secure communication in the
worst case defined in (5) can be figured out.

Once well trained, DDQN can output a proper action (i.e.,
the role assignment U,V for all UAVs) with the given global
observation {Q,P}. In other words, DDQN only needs to be
trained once, and then can handle the following changes of
environment (including the trajectory of UAVs and transmis-
sion power of GUs) according to the iteration of Step 5, 6, 7
in Algorithm 2.

B. Future Work
Quite a number of literatures have assumed the free space

path-loss model to simplify the mathematical analysis of UAV-
assisted communication networks. However, there still exists
the possibility of NLoS links caused by the terrain and aircraft
structure reflection. Such mobility related uncertainty may lead
to the performance deterioration, and block the straightforward
usage of the proposed DRL-SCA algorithm. It is still an
open issue to consider the composite channel model and
perform optimization using only the large-scale CSI for UAV
communications [35].

In general, it will be more effective for UAVs to work in
full-duplex mode, i.e., the UAV acting as a full-time jammer
can serve as a collector synchronously. The scheme will be
possible if UAVs are equipped with multi-antenna to compen-
sate the self-interference by active beamforming. However, it is
unpractical for small size UAVs to accommodate antenna array
with large inter-element distance. Smaller carrier wavelength
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such as mmWave can make it feasible but at the expense of
higher path loss and power consumption [36]. Even though,
some studies from the aspect of beam pattern optimization
have exploited MIMO in the airborne environment [16], [17],
[35], [37], which will be an interesting topic and one of our
further work.

Actually, no matter DDQN proposed in the manuscript,
or other descendant DRL approaches such as PPO [38],
DDPG [39], MADDPG [40] and TD3 [41] are capable of
solving such complicated optimized problems. However, there
is an inevitable drawback of such DRL based approaches that it
is time-consuming to train the neural networks. Another com-
mon concern for machine learning is the lack of interpretation
for the results [42], which prevents them to be completely
trusted. The combination of DRL with other theories, such
as convex [43], matching [44] and game theory [20] to
pursue the near closed-form solution with low-complexity,
may be a feasible way to balance the environment uncer-
tainty and the time-consuming training. Moreover, inspired
by the multi-actor-attention-critic (MAAC) scheme [45], self-
attention mechanism can be integrated into the neural networks
to interpret the agents’ interaction in complex environments.

VII. CONCLUSION

A novel role switching scheme is proposed in the paper for
secure transmission in UAV-assisted communication networks
by the cooperation of multiple UAVs, where UAVs can dy-
namically switch their roles either as aerial collectors to collect
offloading tasks of GUs or as friendly jammers to suppress the
potential wiretapping of malicious EUs. The maximization of
achievable secrecy rate of GUs can be formulated as a non-
convex MINLP problem by jointly optimizing the trajectory
and power control of GUs and UAVs, which is hard to be
solved in general.

A DRL combined SCA algorithm is further designed to
tackle such non-trivial issue. In specific, each UAV works as
an individual agent to learn the role switching during the flight.
While the trajectory and power control can be sequentially
solved by SCA. The results demonstrate that the introduction
of convex theory can converge with finite iterations and help
to speed up the training. Due to the capacity of exploring
better trajectory and avoiding dropping into local minimum,
the proposed DRL-SCA RSS is superior to the other two
approaches, i.e., DRL-SCA RFS and Binary-Relax RSS in
achieving better ASR with less energy consumption of GUs
and UAVs, especially when there are more UAVs and GUs
involving in the system.
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