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Achievable Rate of a STAR-RIS Assisted Massive MIMO
System Under Spatially-Correlated Channels

Anastasios Papazafeiropoulos, Le-Nam Tran, Zaid Abdullah, Pandelis Kourtessis, Symeon Chatzinotas

Abstract—Reconfigurable intelligent surfaces (RIS)-assisted
massive multiple-input multiple-output (mMIMO) is a promising
technology for applications in next-generation networks. However,
reflecting-only RIS provides limited coverage compared to a
simultaneously transmitting and reflecting RIS (STAR-RIS).
Hence, in this paper, we focus on the downlink achievable rate and
its optimization of a STAR-RIS-assisted mMIMO system. Contrary
to previous works on STAR-RIS, we consider mMIMO, correlated
fading, and multiple user equipments (UEs) at both sides of
the RIS. In particular, we introduce an estimation approach
of the aggregated channel with the main benefit of reduced
overhead links instead of estimating the individual channels. Next,
leveraging channel hardening in mMIMO and the use-and-forget
bounding technique, we obtain an achievable rate in closed-
form that only depends on statistical channel state information
(CSI). To optimize the amplitudes and phase shifts of the STAR-
RIS, we employ a projected gradient ascent method (PGAM)
that simultaneously adjusts the amplitudes and phase shifts for
both energy splitting (ES) and mode switching (MS) STAR-
RIS operation protocols. By considering large-scale fading, the
proposed optimization can be performed every several coherence
intervals, which can significantly reduce overhead. Considering
that STAR-RIS has twice the number of controllable parameters
compared to conventional reflecting-only RIS, this accomplishment
offers substantial practical benefits. Simulations are carried out to
verify the analytical results, reveal the interplay of the achievable
rate with fundamental parameters, and show the superiority of
STAR-RIS regarding its achievable rate compared to its reflecting-
only counterpart.Index Terms—Simultaneously transmitting and reflecting RIS,
correlated Rayleigh fading, imperfect CSI, achievable rate, 6G
networks.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RIS) have emerged as
a promising technology to meet the requirements of sixth-
generation (6G) networks such as a 1000-fold capacity increase
together with increased connectivity among billions of devices
[1]–[3]. A RIS consists of a metamaterial layer of low-
cost controllable elements. Among its significant benefits is
that its control signals can be dynamically adjusted to steer
the impinging waves in specific directions and shape the
propagation environment while providing uninterrupted service
not only with low hardware cost, but also with low power
consumption due to the absence of any power amplifiers.
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Most of the existing works on RIS have assumed that both
the transmitter and the receiver are found on the same side of
the surface, i.e., only reflection takes place [1], [2], [4]–[7].
However, practical applications might include user equipments
(UEs) on both sides of the RIS, which contain the spaces
in front and behind the surface. Recently, advancements in
programmable metamaterials have enabled the technology of
simultaneously transmitting and reflecting RIS (STAR-RIS).1

Hence, STAR-RIS has been proposed as a technology to satisfy
this demand, i.e., it provides full space coverage by changing
the amplitudes and phases of the impinging waves [8]–[12].
For instance, in [8], the authors provided a general hardware
model and two-channel models corresponding to the near-field
region and the far-field region of STAR-RIS with only two UEs.
Also, they showed that the coverage and diversity gain are
greater than reflecting-only/conventional RIS-assisted systems.
Furthermore, in [9], three operating protocols for adjusting the
transmission and reflection coefficients of the transmitted and
reflected signals were suggested, namely, energy splitting (ES),
mode switching (MS), and time switching (TS).

In particular, most existing works on RIS-aided systems have
assumed perfect CSI, but this is a highly unrealistic assumption
since practical systems have imperfect CSI. The accuracy of
the channel state information (CSI) at the transmitter side is
crucial to achieving a high beamforming gain of RIS, which
includes channels between the transmitter and the UEs [13].
However, the acquisition of CSI is challenging because of the
following reasons. First, RIS, in general, consists of passive
elements to perform the desired reflecting operation, which
makes any active transmission or reception infeasible, i.e., it
cannot perform any sampling or processing of the pilots [1].
For this reason, an alternative method is the estimation of
the aggregated transmitter-RIS-receiver channel by sending
appropriate pilot symbols [14]. Second, RIS are generally large
and consist of a large number of elements, and thus, induce
high training overhead for channel estimation (CE), which
results in spectral efficiency (SE) reduction [15].

Various CE schemes have been proposed to address this
issue [16]–[20]. For example, in [17], an ON/OFF CE method
was proposed, where the estimates of all RIS-assisted channels
for a single-user MISO system are obtained one-by-one. Note
that in the case of multi-user systems, this model was extended,
assuming all RIS elements to be active during training, but
the number of sub-phases is required to be at least equal
to the number of RIS elements [20]. Although that method
provides better CE as the number of sub-phases increases,

1We note that the word “transmitting” does not correspond to active
transmission but implies coverage of the UEs at the other side of the RIS.
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the achievable rate decreases because the data transmission
phase takes a smaller fraction of the coherence time due to
excessive training overhead. Also, that method computes the
estimates of the channels of the individual RIS elements but
the covariance of the channel vector from all RIS elements to a
specific UE is unknown. Especially, in the case of STAR-RIS,
CE becomes more challenging because UEs are located in both
transmission and reflection regions, which requires different
passive beamforming matrices (PBMs). In [11], a CE scheme
was presented but did not account for multiple antennas at the
BS, multiple UEs, and correlated fading.

In parallel, many early works on conventional RIS assumed
independent Rayleigh fading such as [1], but recently, it was
shown that RIS correlation should be considered because it
is unavoidable in practical systems [4]. To this end, several
works on conventional RIS have taken into account the impact
of RIS correlation [5], [6], but only [21] has considered
fading correlation on a STAR-RIS assisted system. Furthermore,
except [9], [10], [12], all other works have assumed a single-
antenna transmitter. Also, all previous studies on STAR-RIS
have only considered a single UE on each side of the STAR-
RIS. In this paper, we consider a more general case where
multiple UEs are present on each side of the STAR-RIS.

Contributions: The observations above indicate the topic of
this work, which concerns the study and design of a STAR-
RIS assisted mMIMO system under the realistic conditions of
imperfect CSI and correlated fading. These realistic assump-
tions and the consideration of multiple UEs at each side of the
STAR-RIS make it extremely difficult for the derivations of the
achievable rate and the resulting optimization of the amplitudes
and phase shifts of the STAR-RIS. Our main contributions are
summarized as follows:

• Aiming to characterize the potentials of STAR-RIS under
realistic assumptions, we include the effect of spatially
correlated fading at both the BS and the STAR-RIS.2 In
particular, we consider a massive multiple-input multiple-
output (mMIMO) system with a BS having a large but
finite number of antennas. Under this general setup, we
derive the downlink achievable spectral efficiency (SE) of
a STAR-RIS-assisted mMIMO system with imperfect CSI
and correlated fading in closed form that depends only on
large-scale statistics, which has not been known previously.
Moreover, we achieve this by a unified analysis of the
channel estimation and data transmission phases for UEs
located in either the t or r regions, which distinguishes
our work from previous research.

• Contrary to [8]–[12] which have assumed a single UE
at each side of the surface, we consider multiple UEs

2In the case of the active beamforming, being MRT in this work, it is
designed based on the instantaneous channel, which depends on the correlation
of the aggregated channel described by (6). In the case of the passive
beamforming, it is designed based on statistical CSI in terms of path loss
and correlation. Specifically, the sum-rate expression depends only on these
large scale statistics, which vary every several coherence intervals. Hence,
passive beamforming can be optimized at every several coherence intervals.
Moreover, given that we rely on the statistical CSI approach, if no correlation
is considered, the aggregated correlation will not depend on the phase shifts,
which means that the sum rate cannot be optimized with respect to the phase
shifts.

at each side of the RIS, which are served in the same
time-frequency response.

• We apply the linear minimum mean square error (LMMSE)
method to perform CE, and obtain closed-form expressions
with lower overhead than other CE methods suggested for
RIS-assisted systems. Specifically, we demonstrate that
LMMSE can be applied without the need for a tailored
design for STAR-RIS under conditions of statistical
CSI. Note that previous works do not provide analytical
expressions and/or do not take into account the spatial
correlation at the RIS [8]–[12].

• Our analysis relies on statistical CSI, meaning that our
closed-form expressions are dependent only on large-scale
fading that changes at every several coherence intervals.
Thus, the proposed optimization of the STAR-RIS can take
place at every several coherence intervals, which saves
significant overhead. On the contrary, previous studies,
which are based on instantaneous CSI changing at each
coherence interval, might not be feasible in practice due
to inherent large overheads.3

• We formulate the problem of finding the amplitudes and
phase shifts of the STAR-RIS to maximize the achievable
sum SE. Our optimization framework considers multiple
users at each side of the STAR-RIS in a unified manner.
Despite its non-convexity, we derive an iterative efficient
method based on the projected gradient ascent method in
which both amplitudes and phase shifts of the STAR-RIS
are updated simultaneously at each iteration. To the best of
our knowledge, we are the first to optimize simultaneously
the amplitudes and the phase shifts of the PBM in a
STAR-RIS system. This is a significant contribution since
other works optimize only the phase shifts or optimize
both the amplitudes and the phase shifts in an alternating
optimization manner. Moreover, as large-scale fading is
considered, our optimization has very lower overhead in
terms of complexity, training, and feedback compared
to other works which rely on instantaneous CSI such
as [9]. Notably, this property is important for STAR-RIS
applications, which have twice the number of optimization
variables compared to reflecting-only RIS. We also remark
that the beamforming optimization based on statistical CSI
for STAR-RIS has not been investigated previously.

• Simulations and analytical results are provided to shed
light on the impact of various parameters and to show
the superiority of STAR-RIS over conventional RIS. For
example, we find that the system performance decreases
as the RIS correlation increases.

Paper Outline: The remainder of this paper is organized
as follows. Section II presents the system model of a STAR-
RIS-assisted mMIMO system with correlated Rayleigh fading.
Section III provides the CE. Section IV presents the downlink

3In this work, we have followed the two-timescale transmission protocol
approach as in [22], where a maximisation of the achievable sum rate of a RIS-
assisted multi-user multi-input single-output (MU-MISO) system took place.
According to this approach, the precoding is designed in terms of instantaneous
CSI, while the RIS phase shifts is optimized by using statistical CSI. Notably,
all works, which are based on statistical CSI, have relied on the two-timescale
protocol. Examples are the study of the impact of hardware impairments on
the sum rate and the minimum rate in [6] and [23], respectively.



3

data transmission with the derived downlink sum SE. Section
V provides the simultaneous amplitudes and phase-shifts
configuration concerning both the PBMs for the transmission
and reflection regions. The numerical results are placed in
Section VI, and Section VII concludes the paper.

Notation: Vectors and matrices are denoted by boldface lower
and upper case symbols, respectively. The notations (·)T, (·)H,
and tr(·) describe the transpose, Hermitian transpose, and trace
operators, respectively. Moreover, the notations arg (·), E [·],
and Var(·) express the argument function, the expectation,
and variance operators, respectively. The notation diag (A)
describes a vector with elements equal to the diagonal elements
of A, the notation diag (x) describes a diagonal matrix whose
elements are x, while b ∼ CN (0,Σ) describes a circularly
symmetric complex Gaussian vector with zero mean and a
covariance matrix Σ.

II. SYSTEM MODEL

We consider a STAR-RIS-aided system, where a BS with an
M -element uniform linear array (ULA) serves simultaneously
K single-antenna UEs that are distributed on both sides of
the STAR-RIS, as illustrated in Fig. 1. Specifically, Kt =
{1, . . . ,Kt} UEs are located in the transmission region (t)
and Kr = {1, . . . ,Kr} UEs are located in the reflection region
(r), respectively, where Kt + Kr = K. Also, we denote by
W = {w1, w2, ..., wK} the set that defines the RIS operation
mode for each of the K UEs. In particular, if the kth UE is
located behind the STAR-RIS (i.e., k ∈ Kt), then wk = t, while
wk = r when the kth UE is facing the STAR-RIS (i.e., k ∈ Kr).
Moreover, we assume direct links between the BS and UEs. The
RIS consists of a uniform planar array (UPA) composed of Nh

horizontally and Nv vertically passive elements, which belong
to the set of N = {1, . . . , N} elements, where N = Nh ×Nv

is the total number of RIS elements. The STAR-RIS is able to

Fig. 1: A mMIMO STAR-RIS assisted system with multiple
UEs at transmission and reflection regions.

configure the transmitted (t) and reflected (r) signals by two
independent coefficients. In particular, let tn = (βt

ne
jϕt

n)sn and
rn = (βr

ne
jϕr

n)sn denote the transmitted and reflected signal

by the nth STAR-RIS element, respectively.4 The amplitude
and phase parameters βwk

n ∈ [0, 1] and ϕwk
n ∈ [0, 2π), where

the kth UE can be in any of the two regions that corresponds
also to the RIS mode, i.e. transmission (t) or reflection (r) [8],
are independent. This model suggests that ϕt

n and ϕr
n can be

chosen independently, but the choice of the amplitudes is based
on the relationship expressed by the law of energy conservation
as

(βt
n)

2 + (βr
n)

2 = 1,∀n ∈ N . (1)

Henceforth, for the sake of exposition, we denote θwk
i =

ejϕ
wk
i .

A. Operation Protocols

Our analysis is dedicated to the ES/MS protocols, which
were presented in [9]. Herein, we outline them by providing
their main points.

1) ES protocol: All RIS elements serve simultaneously all
UEs in both t and r regions. Especially, the PBM for the kth UE
is expressed as ΦES

wk
= diag(βwk

1 θwk
1 , . . . , βwk

N θwk

N ) ∈ CN×N ,
where βwk

n ≥ 0, (βt
n)

2 + (βr
n)

2 = 1, and |θwk
n | = 1,∀n ∈ N .

2) MS protocol: The RIS elements are partitioned into
two groups of Nt and Nr elements that serve UEs in the
t and r regions, respectively. In other words, Nt +Nr = N .
The PBM for k ∈ Kt or k ∈ Kr is given by ΦMS

wk
=

diag(βwk
1 θwk

1 , . . . , βwk

N θwk

N ) ∈ CN×N , where βwk
n ∈ {0, 1},

(βt
n)

2 + (βr
n)

2 = 1, and |θwk
i | = 1,∀n ∈ N . As can be

seen, this protocol is a special case of the ES protocol, where
the amplitude coefficients for transmission and reflection are
restricted to binary values. As a result, the MS protocol is
inferior of the ES counterpart since it cannot achieve the
full-dimension transmission and reflection beamforming gain.
Despite this performance degradation, it brings the advantage
of lower computational complexity regarding the PBM design.

B. Channel Model

We assume narrowband quasi-static block fading channels
with each block having a duration of τc channel uses. We adopt
the standard time-division-duplex (TDD) protocol, which is
preferable in mMIMO systems. Within TDD, we assume that
each block includes τ channel uses for the uplink training phase
and τc − τ channel uses for the downlink data transmission
phase. Notably, contrary to other works, we aim to achieve
a unified analysis regarding the channel estimation and data
transmission phase that applies to a UE found in any of the t
or r regions.

Let G = [g1 . . . ,gN ] ∈ CM×N be the channel between
the BS and the STAR-RIS with gi ∈ CM×1 for i ∈ N . Also,
qk ∈ CN×1 denotes the channel between the STAR-RIS and
UE k that can be found on either side. The direct link between
the BS and UE k is denoted as dk. On this ground, we assume

4Note that here, we use β
wk
i , instead of

√
β
wk
i as in [8], to denote the

amplitude of the ith RIS element in mode wk . The reason for this change
will become clear when we present our proposed algorithm in Section V.
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that all links are subject to correlated Rayleigh fading, which
is normally the case in practice [4].5 In particular, we have

G =

√
β̃gR

1/2
BS DR

1/2
RIS, (2)

qk =

√
β̃kR

1/2
RISck, (3)

dk =

√
β̄kR

1/2
BS c̄k, (4)

where RBS ∈ CM×M and RRIS ∈ CN×N , assumed to be
known by the network, express the deterministic Hermitian-
symmetric positive semi-definite correlation matrices at the
BS and the RIS respectively.6 Regarding RBS, it can be
modeled e.g., as in [24], and RRIS is modeled as in [4].
Moreover, β̃g, β̄k, and β̃k express the path-losses of the
BS-RIS, BS-UE k, and RIS-UE k links in t or r region,
respectively. Also, vec(D) ∼ CN (0, IMN ), ck ∼ CN (0, IN ),
and c̄k ∼ CN (0, IN ) express the corresponding fast-fading
components.

We note that the correlation matrices RRIS and RBS can be
assumed to be known by the network since they can be obtained
by existing estimation methods [25], [26]. Alternatively, we
can practically calculate the covariance matrices for both RRIS

and RBS, despite the fact that RRIS is passive. Especially,
the expressions for these covariance matrices depend on the
distances between the RIS elements and the BS antennas,
respectively, as well as the angles between them. The distances
are known from the construction of the RIS and the BS, and the
angles can be calculated when the locations are given. Hence,
the covariance matrices can be considered to be known.

Given the PBM, the aggregated channel vector for UE k
hk = dk+GΦwk

qk has a covariance matrix Rk = E{hkh
H

k}
given by

Rk = β̄kRBS + β̂k tr
(
RRISΦwk

RRISΦ
H

wk

)
RBS, (5)

where we have used the independence between G and qk, β̂k =
β̃gβ̃k, E{qkq

H

k} = β̃kRRIS, and E{VUVH} = tr(U)IM with
U being a deterministic square matrix, and V being any matrix
with independent and identically distributed (i.i.d.) entries of
zero mean and unit variance. Notably, when RRIS = IN , Rk

does not depend on the phase shifts but only on the amplitudes,
as also observed in [7].

Remark 1: As shown in (5), when independent Rayleigh
fading is assumed, i.e., RRIS = IN and RBS = IM ,
the covariance matrix of the aggregated channel becomes
Rk = (β̄k + β̂k

∑N
i=1(β

wk
i )2)IM , which is independent of

the phase shifts. This reduces significantly the capability of
the RIS in forming narrow beams and thus the performance is
degraded accordingly. Therefore, it is not possible to optimize
the achievable rate with respect to the phase shifts under

5The consideration of correlated Rician fading, which includes an LoS
component, is the topic of future work.

6Many previous works have assumed that the channel between the BS
and the RIS is deterministic expressing a line-of-sight (LoS) component [6],
[20], while the analysis here is more general since we assume that all links
are correlated Rayleigh fading distributed. In particular, G, as expressed in
(2) is based on the Kronecker channel model.

independent Rayleigh fading conditions.7 However, in practice,
correlated fading is unavoidable, which enables the optimization
of the surface in terms of the phase shifts.

III. CHANNEL ESTIMATION

In practical systems, perfect CSI cannot be obtained. Espe-
cially, in mMIMO systems, the TDD protocol is adopted and
channels are estimated by an uplink training phase with pilot
symbols [27]. However, a RIS, being implemented by nearly
passive elements without any RF chains, cannot process the
estimated channels and obtain the received pilots by UEs. Also,
it cannot transmit any pilot sequences to the BS for channel
estimation.

In general, there are two approaches to channel estimation
for RIS-aided communication systems, one focusing on the
estimation of the individual channels such as [11], [13], [14],
and the other obtaining the estimated aggregated channel such
as [6], [20], [28]. The first benefit of the latter approach is
that its implementation does not require any extra hardware
and power cost. Also, the estimated aggregated BS-RIS-user
channel is sufficient for the transmission beamforming design
for the RIS-related links. It is easy to see that the BS-RIS
channel has a large dimension in the considered system, which
results in a prohibitively high pilot overhead if individual
channels need to be estimated. This issue motivates us to
employ the second approach in this paper, which has lower
overhead and allows estimated channels to be expressed in
closed form. We will now provide the details of the adopted
channel estimation method.

We assume that all UEs either in t or r region send
orthogonal pilot sequences. Specifically, we denote by xk =
[xk,1, . . . , xk,τ ]

H ∈ Cτ×1 the pilot sequence of UE k that can
be found in any of the two regions since the duration of the
uplink training phase is τ channel uses. Note that xH

kxl =
0 ∀k ̸= l and xH

kxk = τP joules with P = |xk,i|2, ∀k, i, i.e.,
it is assumed that all UEs use the same average transmit power
during the training phase.

The received signal by the BS for the whole uplink training
period is written as

Ytr =

K∑
i=1

hix
H

i + Ztr, (6)

where Ztr ∈ CM×τ is the received AWGN matrix having inde-
pendent columns with each one distributed as CN

(
0, σ2IM

)
.

Obviously, in (6), there is a contribution from UEs of both
regions.

Multiplication of (6) with the transmit training sequence
from UE k removes the interference by other UEs that can be
found in the same or in the opposite region, and gives

rk = hk +
zk
τP

, (7)

where zk = Ztrxk.

7It is important to note that the recent works based on statistical CSI,
such as [5]–[7], [22], [23], have shown a similar observation, i.e., in the case
of no RIS correlation, the covariance matrix of the aggregated channel Rk

does not depend on the phase shifts.
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Lemma 1: The LMMSE estimate of the aggregated channel
hk between the BS and UE k is given by

ĥk = RkQkrk, (8)

where Qk =
(
Rk+

σ2

τP IM

)−1

, and rk is the noisy channel
given by (7).

Proof: Please see Appendix A.
The property of the orthogonality of LMMSE estimation

gives the overall perfect channel in terms of the estimated
channel ĥk and estimation channel error vectors h̃k as

hk = ĥk + h̃k. (9)

Both ĥk and h̃k have zero mean, and have variances (cf. (40))

Ψk=RkQkRk, (10)

Ψ̃k = Rk −Ψk, (11)

respectively. Given that hk is not Gaussian, ĥk and h̃k are not
independent, but they are uncorrelated and each of them has
zero mean [27].

It is clear from the above derivations that we indeed
follow a conventional channel estimation method from standard
mMIMO systems, where only the aggregated instantaneous
BS-UE channel hk is estimated. In this way, the minimum pilot
sequence length is K, which is independent of the dimensions
M and N . We note that if individual channels need to be
estimated, the required complexity increases with M and N ,
which are large in the considered system. Thus, the presented
method of estimating aggregated channels offers significant
overhead reduction. It is important to note that this channel
estimation method is sufficient for the design of the precoder
at the BS in statistical CSI-based approaches.

We also remark that the method of estimating aggregated
channels presented above has not been previously applied to
STAR-RIS-aided systems based on the two-timescale method,
which adds to the novelty of our paper. Specifically, we have
demonstrated that the same expression for estimated channels
can be used for users in either t or r regions, which has not
been reported in previous papers studying STAR-RIS. Note
also that the proposed two-timescale transmission approach has
a channel estimation phase that does not depend on N , and
thus, it is applicable to both ES and MS protocols. However,
the ES protocol has twice the number of optimizable variables
and thus requires higher complexity compared to the MS
protocol. An advantage of the two-timescale approach is that
the surface needs to be redesigned only when the statistical
CSI changes. In contrast, instantaneous CSI-based schemes
require beamforming calculations and information feedback in
every channel coherence interval, leading to high computational
complexity, power consumption, and feedback overhead. For
such schemes, the ES protocol is not practically appealing, and
thus, our proposed two-timescale approach is certainly more
viable.

Remark 2: Our analysis presented above relies on large-scale
statistics for a given PBM, which is obtained at every several
coherence intervals. Thus, the optimization of the PBM that
will be studied in the sequel is more practically appealing. Note

that our method provides the estimated aggregated channel
vector in closed-form. Other methods in the RIS literature
such as [18] do not result in analytical expressions, and do not
capture the correlation effect since they obtain the estimated
channel per RIS element [20]. Moreover, in the case of STAR-
RIS, the only work on channel estimation is [11] but it does
not consider practical effects such as correlation and multiple
antennas at the BS.

IV. DOWNLINK DATA TRANSMISSION

The downlink data transmission from the BS to UE k in t
or r region relies on TDD, which exploits channel reciprocity,
i.e., the downlink channel equals the Hermitian transpose of
the uplink channel. Hence, the received signal by UE k is
expressed as

rk = hH

ks+ zk, (12)

where s =
√
λ
∑K

i=1

√
pifili expresses the transmit signal

vector by the BS, pi is the power allocated to UE i, and λ is
a constant which is found such that E[sHs] = ρ, where ρ is
the total average power budget. Also, zk ∼ CN (0, σ2) is the
additive white complex Gaussian noise at UE k. Moreover, fi ∈
CM×1 is the linear precoding vector and li is the corresponding
data symbol with E{|li|2} = 1. In this paper we adopt equal
power allocation among all UEs as usually happens in the
mMIMO literature, i.e. pi = ρ/K [24]. Thus, λ is found
to ensure E[sHs] = ρ, which gives λ = K

E{trFFH} , where
F = [f1, . . . , fK ] ∈ CM×K .

According to the technique in [29] and by exploiting that
UEs do not have instantaneous CSI but are aware of only
statistical CSI, the received signal by UE k can be written as

rk=

√
λρ

K
(E{hH

kfk}lk+ hH

kfklk − E{hH

kfk}lk

+

K∑
i ̸=k

hH

kfiliZ+zk. (13)

Now, by using the use-and-then-forget bound [27], which
relies on the common assumption of the worst-case uncorrelated
additive noise for the inter-user interference, we obtain a lower
bound on downlink average SE in bps/Hz. We remark that this
lower bound is tight for mMIMO as the number of antennas
is very large. Specifically, the achievable sum SE is given by

SE =
τc − τ

τc

K∑
k=1

log2 (1 + γk), (14)

where γk is the downlink signal-to-interference-plus-noise ratio
(SINR), and the pre-log fraction corresponds to the percentage
of samples per coherence block for downlink data transmission.
Note that according to the use-and-forget bounding technique,
the downlink SINR is given by

γk =
Sk

Ik
, (15)
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where

Sk = |E{hH

kfk}|2 (16)

Ik = E
{∣∣hH

kĥk − E
{
hH

kĥk

}∣∣2}+ K∑
i ̸=k

|E{hH

kfi}|2+
Kσ2

ρλ
.

(17)

It is obvious that the final expressions for Sk and Ik depend
on the choice of the precoder and the derivation of the SINR. In
this regard, we note that maximum ratio transmission (MRT)
and regularized zero-forcing (RZF) precoders are common
options in the mMIMO literature. Herein, we select MRT for
the sake of simplicity while RZF will be investigated in a
future work. Since aggregated channels between the BS and
users involve the indirect link through the STAR-RIS, it is
challenging to evaluate (16) and (17) in closed-form. In the
following proposition we present tight approximations of (16)
and (17), which are then used to optimize the phase shifts.

Proposition 1: Let fk = ĥk, i.e., MRT precoding being used,
then a tight approximation of the downlink achievable SINR of
UE k for a given PBM Φwk

in a STAR-RIS assisted mMIMO
system, accounting for imperfect CSI, is given by

γk ≈
Sk

Ĩk
, (18)

where

Sk = tr2 (Ψk), (19)

Ĩk =

K∑
i=1

tr(RkΨi)− tr
(
Ψ2

k

)
+

Kσ2

ρ

K∑
i=1

tr(Ψi). (20)

Proof: Please see Appendix B.

V. SIMULTANEOUS AMPLITUDES AND PHASE SHIFTS
CONFIGURATION

It is critical to find the PBM to optimize a performance
measure of STAR-RIS assisted systems. In this paper, assuming
infinite-resolution phase shifters, we formulate the optimization
problem for maximizing the sum SE with imperfect CSI and
correlated fading. As mentioned in the preceding section, there
are two operation protocols: ES protocol and MS protocol. In
the following two subsections we deal with these two protocols.

A. Optimization of Amplitudes and Phase Shifts for ES protocol

For the ES protocol the formulated problem reads

max
θ,β

f(θ,β) ≜
∑K

k=1
log2(1 +

Sk

Ĩk
)

s.t (βt
n)

2 + (βr
n)

2 = 1,∀n ∈ N
βt
n ≥ 0, βr

n ≥ 0, ∀n ∈ N
|θtn| = |θrn| = 1, ∀n ∈ N

(P1)

where θ = [(θt)T, (θr)T]T and β = [(βt)T, (βr)T]T. Note that
to achieve a compact description we have vertically stacked
θt and θr into a single vector θ, and βt and βr into a single
vector β, respectively. Also note that in the above problem
formulation we have used the tight approximation of the SINR
given in Proposition 1 to maximize the approximate sum SE,

denoted by f(θ,β). For ease of exposition, we define two
sets: Θ = {θ | |θti | = |θri | = 1, i = 1, 2, . . . N}, and B =
{β | (βt

i )
2 + (βr

i )
2 = 1, βt

i ≥ 0, βr
i ≥ 0, i = 1, 2, . . . N},

which in fact together describe the feasible set of (P1). Notably,
the introduction of STAR-RIS imposes new challenges. In
particular, the first constraint is not simple but includes the
two types of passive beamforming, namely transmission and
reflection beamforming, to be optimized, which are coupled
with each other due to the energy conservation law.

The problem (P1) is non-convex and is coupled among the
optimization variables, which are the amplitudes and the phase
shifts for transmission and reflection. For the development
of an efficient algorithm to solve (P1) we remark that the
sets Θ and B are simple in the sense that their projection
operators can be done in closed-form. This motivates us to
apply the projected gradient ascent method (PGAM) [30, Ch.
2] to optimize θ and β, which is described next. However, in
the case of independent Rayleigh fading, SE does not depend
on θ, which means that optimization can take place only with
respect to β.

The proposed PGAM consists of the following iterations

θn+1 = PΘ(θ
n + µn∇θf(θ

n,βn)), (21a)

βn+1 = PB(β
n + µn∇βf(θ

n,βn)). (21b)

In the above equations, the superscript denotes the iteration
count. From the current iterate (θn,βn) we move along the
gradient direction to increase the objective. In (21), µn is the
step size for both θ and β. Also, in (21), PΘ(·) and PB(·) are
the projections onto Θ and B, respectively.

The choice of the step size in (21a) and (21b) is important
to make the proposed PGAM converge. The ideal step size
should be inversely proportional to the Lipschitz constant of
the corresponding gradient but this is difficult to find for the
considered problem. For this reason, we apply the Armijo-
Goldstein backtracking line search to find the step size at each
iteration. To this end, we define a quadratic approximation of
f(θ,β) as

Qµ(θ,β;x,y) = f(θ,β) + ⟨∇θf(θ,β),x− θ⟩

− 1

µ
∥x− θ∥22 + ⟨∇βf(θ,β),y − β⟩ − 1

µ
∥y − β∥22. (22)

Note that in this paper we define ⟨x,y⟩ = 2Re{xHy} for
complex-valued x and y and ⟨x,y⟩ = xTy for non complex-
valued x and y. Now, let Ln > 0, and κ ∈ (0, 1). Then the
step size µn in (21) can be found as µn = Lnκ

mn , where mn

is the smallest nonnegative integer satisfying

f(θn+1,βn+1) ≥ QLnκmn (θn,βn;θn+1,βn+1), (23)

which can be done by an iterative procedure. In the proposed
PGAM, we use the step size at iteration n as the initial step
size at iteration n+ 1. The proposed PGAM is summarized in
Algorithm 1.

We present the complex-valued gradients in the following
lemma.

Lemma 2: The complex gradients∇θf(θ,β) and∇βf(θ,β)
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Algorithm 1 Projected Gradient Ascent Method for the RIS
Design

1: Input: θ0,β0, µ1 > 0, κ ∈ (0, 1)
2: n← 1
3: repeat
4: repeat
5: θn+1 = PΘ(θ

n + µn∇θf(θ
n,βn))

6: βn+1 = PB(β
n + µn∇βf(θ

n,βn))
7: if f(θn+1,βn+1) ≤ Qµn(θ

n,βn;θn+1,βn+1)
then

8: µn = µnκ
9: end if

10: until f(θn+1,βn+1) > Qµn
(θn,βn;θn+1,βn+1)

11: µn+1 ← µn

12: n← n+ 1
13: until convergence
14: Output: θn+1,βn+1

are given in closed-forms by

∇θf(θ,β) = [∇θtf(θ,β)T,∇θrf(θ,β)T]T, (24a)

∇θtf(θ,β) =
τc − τ

τc log 2

K∑
k=1

Ĩk∇θtSk − Sk∇θt Ĩk

(1 + γk)Ĩk2
, (24b)

∇θrf(θ,β) =
τc − τ

τc log 2

K∑
k=1

Ĩk∇θrSk − Sk∇θr Ĩk

(1 + γk)Ĩk2
, (24c)

where

∇θtSk =

{
νkdiag

(
Atdiag(βt)

)
wk = t

0 wk = r
(25a)

∇θrSk =

{
νkdiag

(
Ardiag(βr)

)
wk = r

0 wk = t
(25b)

∇θt Ĩk = diag
(
Ãktdiag(βt)

)
(25c)

∇θr Ĩk = diag
(
Ãkrdiag(βr)

)
(25d)

with Awk
= RRISΦwk

RRIS for wk ∈ {t, r}, νk =
2β̂k tr (Ψk) tr((QkRk +RkQk −QkRkQk)RBS),

Ãku =

{(
ν̄k +

∑K
i∈Ku

ν̃ki
)
Au wk = u∑K

i∈Ku
ν̃kiAu wk ̸= u,

(26)

u ∈ {t, r}, ν̄k = β̂k tr
(
Ψ̌kRBS

)
, ν̃ki = β̂k tr

(
R̃kiRBS

)
,

Ψ̌k = Ψ − 2(QkRkΨk + ΨkRkQk − QkRkΨkRkQk),
Ψ =

∑K
i=1 Ψi, R̃ki = QiRiR̄k−QiRiR̄kRiQi+R̄kRiQi,

and R̄k = Rk + Kσ2

ρ IM . Similarly, the gradient ∇βf(θ,β)
is given by

∇βf(θ,β) = [∇βtf(θ,β)T,∇βrf(θ,β)T]T, (27a)

∇βtf(θ,β) =
τc − τ

τc log 2

K∑
k=1

Ĩk∇βtSk − Sk∇βt Ĩk

(1 + γk)Ĩk2
, (27b)

∇βrf(θ,β) =
τc − τ

τc log 2

K∑
k=1

Ĩk∇βrSk − Sk∇βr Ĩk

(1 + γk)Ĩk2
, (27c)

where

∇βtSk =

{
2νk Re

{
diag

(
AH

kdiag(θt)
)}

wk = t

0 wk = r
(28a)

∇βrSk =

{
2νk Re

{
diag

(
AH

kdiag(θr)
)}

wk = r

0 wk = t
(28b)

∇βt Ĩk = 2Re
{

diag
(
ÃH

ktdiag(θt)
)}

(28c)

∇βr Ĩk = 2Re
{

diag
(
ÃH

krdiag(θr)
)}

. (28d)

Note that ∇βf(θ,β) is real-valued.
Proof: Please see Appendix C.

Remark 3: As mentioned earlier we use βwk
i , instead of√

βwk
i as in [8], to denote the amplitude of the ith RIS element

in mode wk. The purpose of that maneuver is now clear. In
fact, if

√
βwk
i were used to represent the amplitude, then the

gradient ∇βf(θ,β) would be similar to (27) but contain the
term

√
βwk
i in the denominator. This will make ∇βf(θ,β)

ill-conditioned (i.e., extremely large), which in turn can cause
numerical issues in the execution of Algorithm 1 in practice.

To conclude the description of Algorithm 1, we now provide
the projection onto the sets Θ and B. First, it is straightforward
to check that, for a given θ ∈ C2N×1 PΘ(θ) is given by

PΘ(θ) = θ/|θ| = ej∠θ, (29)

where the operations in the right-hand side of the above
equation are performed entrywise.

The projection PB(β) deserves special attention. Note that
the constraint (βt

i )
2+(βr

i )
2 = 1, βt

i ≥ 0, βr
i ≥ 0 indeed defines

the first quadrant of the unit circle. Thus, the expression of the
projection onto B is rather complicated. To make PB(β) more
efficient we allow βt

i and βr
i to take negative value during the

iterative process. However, we remark that this step does not
affect the optimality of the proposed solution since we can
change the sign of both βu

i and θui , u ∈ t, r and still achieve
the same objective. As a result, we can project βt

i and βr
i onto

the entire unit circle, and thus we can write PB(β) as

[PB(β)]i =
βi√

β2
i + β2

i+N

, i = 1, 2, . . . , N (30a)

[PB(β)]i+N =
βi+N√

β2
i + β2

i+N

, i = 1, 2, . . . , N. (30b)

Complexity Analysis of Algorithm 1: We now provide the
complexity analysis for each iteration of Algorithm 1 in terms
of the required number of complex multiplications using big-O
notation, which is in particular relevant for large M and N as
considered in this paper. We note Algorithm 1 only requires
the first-order information, i.e., the objective and its gradient
value. Let us analyze the complexity of computing the objective
value. First, we need to compute Rk which can be written as
Rk = β̄kRBS + β̂k tr

(
RRISΦwk

RRISΦ
H
wk

)
RBS = β̄kRBS +

β̂k tr
(
Awk

ΦH
wk

)
RBS. Now it is obvious that we need to obtain

the term tr
(
Awk

ΦH
wk

)
. To this end, we note that since Φwk

is diagonal, only diagonal elements of Awk
, i.e., diag(Awk

),
are required. Next, computing RRISΦwk

requires N2 complex
multiplications since Φwk

is diagonal, and thus, diag(Awk
) =

diag(RRISΦwk
RRIS) requires O(N2) complex multiplications.
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As a result, the complexity to compute tr
(
Awk

ΦH
wk

)
is O(N2+

N), and thus, the complexity to obtain Rk is O(N2+N+M2)
since O(M2) additional complexity multiplications are required
to obtain tr

(
Awk

ΦH
wk

)
RBS. Recall that Ψk = RkQkRk =

Rk

(
Rk + σ2

τP IM
)−1

Rk and thus it would take O(M3) to
compute it, which is due to the calculation of the involving
matrix inversion. Here we present a more efficient way to
compute Ψk. Let RBS = UΣUH, where Σ is diagonal and
U is unitary, be the eigenvalue decomposition (EVD) of RBS

and αk = β̂k tr
(
Awk

ΦH
wk

)
. We remark that the EVD of Σ is

only performed once before Algorithm 1 is executed. Then,
we can write

Qk =
(
Rk +

σ2

τP
IM

)−1

=
(
αkUΣUH +

σ2

τP
IM

)−1

= U
(
αkΣ+

σ2

τP
IM

)−1
UH, (31)

where we have used the fact that Rk = αkRBS = αkUΣUH.
Substituting (31) into (10), we immediately have

Ψk = α2
kUΣ

(
αkΣ+

σ2

τP
IM

)−1
ΣUH

= UΣ
(
α−1
k Σ+

σ2

τPα2
k

IM
)−1

ΣUH

= UΣΣ̄kΣUH, (32)

where Σ̄k =
(
α−1
k Σ+ σ2

τPα2
k
IM

)−1
. Note that Σ̄k is diagonal

and takes O(M) complex multiplications to compute. Now it
is clear that tr(Ψk) = tr

(
ΣΣ̄kΣ

)
requires O(M) complex

multiplications to compute, which is indeed the complexity to
compute Sk in (19). To compute Ik we have

Ψ =
∑K

i=1
Ψi

= UΣ
(∑K

i=1
Σ̄i

)
ΣUH

= UΣΣ̄ΣUH, (33)

where Σ̄ =
∑K

i=1 Σ̄i. We note that obtaining Σ̄ once all Σ̄i’s
are known requires only KM complex additions, which is
negligible. Thus, it follows that∑K

i=1
tr(RkΨi) = tr(RkΨ)

= αk tr
(
UΣ2Σ̄ΣUH

)
= αk tr

(
Σ2Σ̄Σ

)
, (34)

and that ∑K

i=1
tr(Ψi) = tr(Ψ) = tr

(
ΣΣ̄Σ

)
. (35)

Summarizing the above results, we can conclude that the
complexity to compute f(θ,β) is O(K(N2 +M2)).

Next we present the complexity to compute ∇θf(θ,β)
and ∇βf(θ,β). Recall that vk in (25a) and (25b) is given
by vk = 2β̂k tr (Ψk) tr((QkRk +RkQk −QkRkQk)RBS).
Following the above analysis, we can write QkRkRBS as
QkRkRBS = RkQk = αkU(αkΣ + σ2

τPα2
k
IM )−1Σ2UH

and QkRkQkRBS as QkRkQk)RBS = αkU(αkΣ +
σ2

τPα2
k
IM )−2Σ2UH. Thus, we can rewrite vk equivalently as

vk = 2β̂kαk tr (Ψk)

×
(
2 tr

((
αkΣ+

σ2

τPα2
k

IM
)−1

Σ2
)

− tr
((
αkΣ+

σ2

τPα2
k

IM
)−2

Σ2
))

, (36)

which requires O(M) complex multiplications to obtain since
tr (Ψk) is already computed and the involving matrices in the
second term of the above equation are diagonal.

Next, to obtain ∇θtSk in (25a), we further need to calculate
the diagonal elements of Atdiag(βt), which can be obtained
by multiplying each diagonal element of At with the corre-
sponding entry of βt, i.e., diag

(
Atdiag(βt)

)
= diag

(
At

)
⊙βt,

where ⊙ represents the entry-wise multiplication. We remark
that the term diag

(
At

)
is already computed when calculating

Rk, and thus, the complexity to compute ∇θtSk is O(N).
Apparently, the same complexity is required to obtain ∇θrSk

in (25b). The complexity of calculating ∇θuIk, u ∈ {t, r}
follows similar lines. More specifically, both ν̄k and

∑K
i∈Ku

ν̃ki
require O(M2) to compute. In summary, the complexity of
computing the gradients for each iteration is O(K(N2+M2)).

Convergence Analysis of Algorithm 1: The convergence of
Algorithm 1 is guaranteed by following standard arguments
for projected gradient methods. First, the gradients ∇θf(θ,β)
and ∇βf(θ,β) are Lipschitz continuous8 over the feasible set
as they comprise basic functions as given above. Let Lθ and
Lβ be the Lipschitz constant of ∇θf(θ,β) and ∇βf(θ,β),
respectively. Then it holds that [30, Chapter 2]

f(x,y) ≥ f(θ,β) + ⟨∇θf(θ,β),x− θ⟩ − 1

Lθ
∥x− θ∥22

+ ⟨∇βf(θ,β),y − β⟩ − 1

Lβ
∥y − β∥22

≥ f(θ,β) + ⟨∇θf(θ,β),x− θ⟩ − 1

Lmax
∥x− θ∥22

+ ⟨∇βf(θ,β),y − β⟩ − 1

Lmax
∥y − β∥22

where Lmax = max(Lθ, Lβ). Thus, the line search procedure
of Algorithm 1 (i.e. the loop between Steps 4 – 10) terminates
in finite iterations since the condition in Step 10 must be
satisfied when µn < Lmax. More specifically, given µn−1,
the maximum number of steps in the line search procedure
is

⌈
log(Lmaxµn−1)

log κ

⌉
, where log() denotes the natural logarithm

and ⌈·⌉ denotes the smallest integer that is larger than or
equal to the argument. Also, due to the line search we
automatically have an increasing sequence of objectives, i.e.,
f(θn+1,βn+1) ≥ f(θn,βn). Since the feasible sets Θ and B
are compact, f(θn,βn) must converge. However, we remark
that Algorithm 1 is only guaranteed to converge to a stationary
point of (P1), which is not necessarily an optimal solution due

8A function h(x) is said to be Lipschitz continuous over the set D if
there exists L > 0 such that ||h(x)− h(y)|| ≤ L||x− y||2
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to the nonconvexity of (P1). We also note that Lθ and Lβ are
not required to run Algorithm 1.

Remark 4: A question naturally arising is why we have
optimized the amplitude, [βu]i, and phase shift, [θu]i, u ∈
{t, r} separately, rather than optimizing them as a single
complex, e.g, [vu]i = [βu]ie

j[θu]i . The latter would certainly
make the presentation of the proposed method more elegant.
However, interestingly enough, we find by extensive numerical
experiments that both ways give the same performance in
many cases. We note that this does not mean the amplitudes
corresponding to the reflection or transmission mode of most
of the STAR-IRS elements are close to 1. There is indeed
a significant gap between the ES and MS mode as shown
in the next section. However, in some cases, using two
separate variables yields a better performance. This numerical
observation has led to the current presentation of the proposed
method where amplitudes and phase shifts are optimized
separately.

B. Optimization of Amplitudes and Phase Shifts for MS
protocol

In the case of the MS scheme, the values of amplitude are
forced to be binary, i.e., βt

n ∈ {0, 1} and βr
n ∈ {0, 1}. Thus,

the optimization problem for the MS protocol is stated as

max
θ,β

f(θ,β)

s.t βt
n + βr

n = 1,∀n ∈ N
βt
n ∈ {0, 1}, βr

n ∈ {0, 1}, ∀n ∈ N
|θtn| = |θrn| = 1, ∀n ∈ N .

(P2)

The binary constraints on βt
n and βr

n in (P2) make it far
more difficult to solve. In fact, (P2) belongs to the class
of binary nonconvex programming, which is generally NP-
hard. For this type of problems, a pragmatic approach is to
find a high-performing solution. To this end, we find that the
simple solution obtained by rounding off the solution obtained
by solving (P1) to the nearest binary value can produce
a reasonably good performance. This shall be numerically
demonstrated in the next section. More advanced methods for
solving (P2) are thus left for future work.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the sum SE
in STAR-RIS-aided systems, using both analytical techniques
and Monte Carlo simulations. Specifically, our analytical results
for the sum SE are derived from equations (18)-(20), while
for Monte Carlo simulations, we perform 1000 independent
channel realizations to evaluate the expressions in equations
(15)-(17). This is to verify the tightness of the approximation
stated in Proposition 1 and the derivations in Appendix B. The
results shown in Figs. 3 and 5 clearly demonstrate a close
match between the analytical results and MC simulations, and
thus, confirming that Proposition 1 indeed presents a very tight
approximation of the SINR.

The simulation setup includes a STAR-RIS with a UPA
of N = 64 elements assisting the communication between a
uniform linear array (ULA) of M = 64 antennas at the BS that

serves K = 4 UEs. The xy−coordinates of the BS and RIS
are given as (xB , yB) = (0, 0) and (xR, yR) = (50, 10),
respectively, all in meter units. In addition, users in r region are
located on a straight line between (xR − 1

2d0, yR − 1
2d0) and

(xR + 1
2do, yR− 1

2d0) with equal distances between each two
adjacent users, and d0 = 20 m in our simulations. Similarly,
users in the t region are located between (xR− 1

2d0, yR+ 1
2d0)

and (xR + 1
2do, yR + 1

2d0). The size of each RIS element
is dH = dV =λ/4. Distance-based path-loss is considered in
our work, such that the channel gain of a given link j is
β̃j = Ad

−αj

j , where A is the area of each reflecting element at
the RIS, and αj is the path-loss exponent. Regarding β̃g, we
assume the same values as for β̃j . Similar values are assumed
for β̄k but we also consider an additional penetration loss
equal to 15 dB. The correlation matrices RBS and RRIS are
computed according to [24] and [4], respectively. Also, σ2 =
−174 + 10 log10 Bc in dBm, where Bc = 200 kHz is the
bandwidth.

As a baseline scheme, we consider the RIS, which consists
of transmitting-only or reflecting-only elements, each with
Nt and Nr elements, such that Nt +Nr = N . Notably, this
scheme resembles the MS protocol, where the first Nt elements
operate in transmission mode and the Nr elements operate in
reflection mode. Also, we have applied an ON/OFF scheme
for channel estimation by following the idea in [17], the direct
links are estimated with all sub-surfaces turned off and the
cascaded links are estimated with one element turned on at
transmission/reflection mode sequentially.

Fig. 2: Convergence of Algorithm 1 for an STAR-RIS assisted
MIMO system with imperfect CSI (M = 64, N = 64, K = 4)
for five different initial points.

In the first numerical experiment, we demonstrate the
convergence of the proposed projected gradient algorithm.
Specifically, we plot the achievable sum SE against the iteration
count returned by Algorithm 1 from 5 different randomly
generated initial points as shown in Fig. 2. More specifically, the
initial points for Algorithm 1 are generated as follows. First, we
set the amplitudes to [β

(0)
r ]n = [β

(0)
t ]n =

√
0.5, for all n ∈ N ,

i.e, equal power splitting between transmission and reception
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Fig. 3: Downlink achievable sum SE versus the number of RIS
elements antennas N of a STAR-RIS assisted MIMO system
with imperfect CSI (N = 64, K = 4) for varying conditions
(Analytical results and MC simulations).

mode for all elements of the STAR-RIS. The initial values for
the phase shifts are taken as [θ(0)

r ]n = ejϕ
r
n and [θ

(0)
t ]n = ejϕ

t
n ,

where ϕr
n and ϕt

n are independently drawn from the uniform
distribution over [0, 2π]. We terminate Algorithm 1 when the
increase of the objective between two last iterations is less
than 10−5 or the number of iterations is larger than 200. Note
that the considered problem in (P1) is nonconvex, and thus,
the proposed projected gradient algorithm can only guarantee a
stationary solution that is not necessarily optimal. As a result,
Algorithm 1 may converge to different points starting from
different initial points, which is clearly seen in Fig. 2. Moreover,
we can see that different initial points may lead to different
convergence rates. Thus, to mitigate this performance sensitivity
of Algorithm 1 on the initial points, we need to run it from
different initial points and take the best convergent solutions.
Through our extensive simulations, it is best to run Algorithm
1 from 5 randomly generated initial points to achieve a good
trade-off between complexity and obtained sum SE.

Fig. 3 shows the achievable sum SE versus the number
of STAR-RIS elements N while varying the effect of spatial
correlation in terms of the size of each RIS element. First, as
can be seen, the downlink sum SE increases with N as expected.
Next, by focusing on the impact of spatial correlation at the
STAR-RIS, we show that the performance decreases as the
correlation increases. In particular, the sum SE decreases with
increased correlation as the inter-element distance of the STAR-
RIS decreases. Moreover, the MS protocol achieves a lower
performance because it is a special case of the ES protocol.
Especially, for a low number of RIS elements the curves
coincide, while as N increases, an increasing gap appears.
Furthermore, for the sake of comparison, we provide the
performance of conventional RIS with reflection-only operation
but this also appears lower performance since fewer degrees
of freedom for just reflection can be exploited. We have also
depicted the performance in the case of blocked direct signal.
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Fig. 4: Downlink achievable sum SE versus the number of
BS antennas M of a STAR-RIS assisted MIMO system with
imperfect CSI for: (a) N = 64, K = 4, (b) N = 144, K = 4
under varying conditions (Analytical results).

Obviously, the STAR-RIS contributes to the performance since
the line corresponding the case with no direct signal is lower,
which means that the performance is worse.

Figs. 4(a) and 4(b) illustrate the achievable sum SE versus
the number of BS antennas M while shedding light on various
effects. Obviously, the sum SE increases with M . In particular,
regarding the RIS correlation, in Fig. 4(a), we observe that an
increased correlation by reducing the distance among the RIS
elements degrades the performance due to reduced diversity
gains among the RIS elements. In the case of no RIS correlation,
represented by the dashed cyan line, the performance is quite
low due to the absence of capability for phase shift optimization
as mentioned in Remark 1. Moreover, the ES protocol achieves
better performance but with higher complexity compared to
the MS protocol. The performance increases with more BS
antennas. Also, in the case of random phase shifts, the sum
SE is lower. Notably, for N = 64 elements, the two lines
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Fig. 5: Downlink achievable sum SE versus the SNR of a STAR-
RIS assisted MIMO system with imperfect CSI (M = 64,
N = 64, K = 4) for varying conditions (Analytical results).

corresponding to the ES and MS protocols coincide but,
according to Fig.4(b), which assumes N = 144 elements,
a gap between the lines appears. The gap increases with
increasing M . Similar to the previous figure, we have included
the baseline scenario with reflecting-only capabilities having
the half elements N = 20, and we witness the superiority of
STAR-RIS. Moreover, a comparison of the two figures, reveals
that an increase in RIS elements spacing has a greater impact
on a lower number of RIS elements, i.e., N = 64. Furthermore,
Fig. 4(b) shows that the scenario of no RIS correlation performs
worse than the cases with random phases when M is large.
Also, in this figure, it is shown that the achievable rate is higher
than Fig 4(b). In addition, in Fig. 4(b), we have added a line
corresponding to channel estimation based on the ON/OFF
scheme in [17]. We observe that the achievable rate is higher
in this case because in the case of statistical CSI we have loss
of information. In other words, we observe a trade-off between
a lower overhead of the proposed approach and a higher rate
in the case of estimating individual channels.

Fig. 5 depicts the achievable sum SE versus the SNR under
similar conditions, i.e., in the cases of N = 100 (solid lines)
and N = 64 (dotted lines). As expected, when N = 100,
the performance is better since a higher SE is achieved. In
each case, for low SNR, the ES and MS protocols coincide,
while for high SNR, an increasing gap is observed. In the
case N = 100, conventional RIS and random MS protocols
exhibit the same performance at low SNR, but a gap appears
as the SNR increases. The behavior at low SNR is similar,
however, the corresponding gaps are smaller. The reasons for
these observations can be explained as follows. At low SNR,
it is more beneficial to focus on users in the reflection region
as they are closer to the BS. This is confirmed by the fact
that, after running the proposed algorithm, βr

n ≈ 1,∀n ∈ N .
As a result, the performances of the ES and MS protocols, as
well as the conventional RIS, are nearly the same. However, as
SNR increases, the increase in the sum SE becomes minimal if

we continue to focus on users in the reflection region. Thus, at
high SNR, directing some power to users in the transmission
region can improve the total SE. This leads to performance
differences between the ES and MS protocols, as well as the
conventional RIS.

VII. CONCLUSION

This paper presented a study of the achievable rate of STAR-
RIS assisted mMIMO systems while accounting for imperfect
CSI and correlated Rayleigh fading. Notably, we considered
several UEs, each of which can lie on either side of the RIS,
and we derived the achievable rate in closed-form. Also, we
provided a low-complexity iterative optimization approach to
maximizing the achievable rate, in which the amplitudes and
the phase shifts of the RIS are updated simultaneously at each
iteration. Furthermore, we provided useful insights into the
impact of RIS correlation and showed that STAR-RIS is more
beneficial compared to the traditional RIS which is reflecting
only.

APPENDIX A
PROOF OF LEMMA 1

The LMMSE estimator of hk, obtained by minimizing
tr
(
E
{
(ĥk − hk)(ĥk − hk)

H
})

, is given by

ĥk = E{rkhH

k} (E{rkrH

k})
−1

rk. (37)

Given that the channel and the receiver noise are uncorrelated,
we obtain

E {rkhH

k} = E {hkh
H

k} = Rk. (38)

The second term in (37) is written as

E {rkrH

k} = Rk +
σ2

τP
IM . (39)

The LMMSE estimate in (8) is obtained by inserting (38) and
(39) into (37), which completes the proof. We further note that
the covariance matrix of the estimated channel is

E
{
ĥkĥ

H

k

}
= RkQkRk. (40)

APPENDIX B
PROOF OF PROPOSITION 1

Recalling the property xHy = tr(yxH) for any vectors x, y,
we can further rewrite Sk in (16) as

Sk = |E{hH

kĥk}|2 = | tr
(
E{ĥkh

H

k}
)
|2 (41)

= | tr (E {RkQkrkh
H

k})|2 (42)

= | tr (Ψk)|2, (43)

where, in (42), we have substituted (8). The last equation is
obtained after computing the expectation between rk and hk.

Next, the first term of Ik in (17) is written as

E
{∣∣hH

kĥk − E
{
hH

kĥk

}∣∣2}=E
{∣∣hH

kĥk

∣∣2}−∣∣E{hH

kĥk

}∣∣2 (44)

= E
{∣∣ĥH

kĥk + h̃H

kĥk

∣∣2}− ∣∣E{ĥH

kĥk

}∣∣2 (45)

= E
{∣∣h̃H

kĥk

∣∣2}+ 2Re{E{ĥH

kĥkĥ
H

kh̃k}} (46)
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where in (45), we have used (9) in the main text. In (46), to
simplify the second term, we resort to the well-known channel
hardening property in massive MIMO which intuitively states
that channels behave as deterministic. The same property is
also applied to the estimated channels, which means ĥH

kĥk ≈
E{ĥH

kĥk} with high accuracy [27]. Using this property, we
have

E{ĥH

kĥkĥ
H

kh̃k} ≈ E{ĥH

kĥk}E{ĥH

kh̃k} = 0 (47)

and thus

E
{∣∣hH

kĥk − E
{
hH

kĥk

}∣∣2}≈E
{
|h̃H

kĥk|2
}

(48)

= tr(RkΨk)− tr
(
Ψ2

k

)
. (49)

We note that (49) holds because E{|h̃H

kĥk|2} =

tr
(
E{h̃kh̃

H

kĥkĥ
H

k}
)
≈ tr

(
E{h̃kh̃

H

k}E{ĥkĥ
H

k}
)

=

tr((Rk −Ψk)Ψk), where we have applied the approximations
ĥH

kĥk ≈ E{ĥH

kĥk} and h̃H

kh̃k ≈ E{h̃H

kh̃k}, which is due to
the channel hardening property in massive MIMO as explained
above.

For the second term of Ik in (17) it is easy to check that

E
{∣∣hH

kĥi

∣∣2} = E
{∣∣(ĥH

k + h̃k)ĥi

∣∣2} (50)

= E
{∣∣ĥH

kĥi

∣∣2}+ E
{∣∣h̃kĥi

∣∣2}+ 2Re{E{ĥH

kĥiĥ
H

i h̃k}}
(51)

= tr(RkΨi) . (52)

We note that (52) is true because the third term in (51) is zero
as can be shown below. Specifically, this term can be written
as

2Re{E{ĥH

kĥiĥ
H

i h̃k}}=2Re
{
E{tr

((
ĥiĥ

H

i

)(
h̃kĥ

H

k

))}
(53)

=2Re
{
tr
(
E{ĥiĥ

H

i}E{h̃kĥ
H

k}
)}

(54)

= 0 (55)

where, in (54), we have accounted for the independence
between ĥk and ĥi, and, in (55), we have considered that
h̃k and ĥk are uncorrelated.

The normalization parameter is written as

λ =
1∑K

i=1E{fH
i fi}

=
1∑K

i=1E{ĥH
i ĥi}

=
1∑K

i=1tr(Ψi)
. (56)

Combining (49), (52), and (56), we can approximate Ik as Ĩk
in (20), and thus complete the proof.

APPENDIX C
PROOF OF LEMMA 2

Let us first derive ∇θtf(θ,β) the complex gradient of the
achievable sum SE with respect to θt∗. From (14), it is easy
to see that

∇θtf(θ,β) = c

K∑
k=1

Ĩk∇θtSk − Sk∇θt Ĩk

(1 + γk)Ĩk2
, (57)

where c = τc−τ
τc log2(e)

. To compute ∇θtSk for a given user k,
we immediately note that ∇θtSk = 0 if wk = r, i.e., if UE k
is in the reflection region. This is obvious from (19), (10) and

(5). Thus, we only need to find ∇θtSk when wk = t. In such
a case, we can explicitly write Rk

Rk = β̄kRBS + β̂k tr(RRISΦtRRISΦ
H

t )RBS

= β̄kRBS + β̂k tr(AtΦ
H

t )RBS. (58)

where β̂k = β̃gβ̃k and At = RRISΦtRRIS. When wk = r,
we define Ar = RRISΦrRRIS.

To calculate ∇θtSk, we follow steps detailed in [31, Chap.
3]. First, let us denote d(·) the complex differential of the
function in the argument. Then, it holds that

d(Sk) = d
(
tr(Ψk)

2)
= 2 tr(Ψk)d tr(Ψk)

= 2 tr(Ψk) tr(dΨk). (59)

Next, we apply [31, Eq. (3.35)], which gives

d(Ψk) = d(RkQkRk)

= d(Rk)QkRk +Rkd(Qk)Rk +RkQkd(Rk). (60)

The differentials d(Rk) and d(Qk) are derived as follows.
First, from (58) it is easy to check that

d(Rk) = β̂kRBS tr
(
AH

td(Φt) +Atd
(
ΦH

t

))
, (61)

Since Φt is diagonal, we can further write d(Rk) as

d(Rk) = β̂kRBS

((
diag

(
AH

tdiag(βt)
))T

d(θt)

+
(
diag

(
Atdiag(βt)

))T
d(θt∗)

)
. (62)

Next, we use [31, eqn. (3.40)] to obtain

d(Qk) = d
(
Rk +

σ

τP
IM

)−1

= −
(
Rk +

σ2

τP
IM

)−1
d
(
Rk +

σ2

τP
IM

)(
Rk +

σ

τP
IM

)−1

= −Qkd(Rk)Qk. (63)

Combining (60) and (63) yields

d(Ψk) = d(Rk)QkRk−RkQkd(Rk)QkRk +RkQkdRk.
(64)

Thus, by inserting (64) and (62) into (59), we obtain

d(Sk) = 2 tr(Ψk)
(
tr(QkRkd(Rk)) + tr(RkQkd(Rk))

− tr
(
QkR

2
kQkd(Rk)

))
(65a)

= νk
(
diag

((
AH

tdiag(βt)
))T

dθt +
(
diag

(
Atdiag(βt)

))T
dθt∗),
(65b)

where

νk=2β̂k tr(Ψk)tr
((
QkRk+RkQk−QkR

2
kQk

)
RBS

)
. (66)

From (65), we can conclude that

∇θtSk =
∂

∂θt∗Sk

= νkdiag
(
Atdiag(βt)

)
(67)

for wk = t, which indeed proves (25a). Following the same
procedure we can easily prove (25b). The details are skipped
for the sake of brevity.
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Now we turn our attention to ∇θt Ĩk. To this end, from (20),
it is straightforward to check that

d(Ĩk) =
∑K

i=1
tr(d(Rk)Ψi) +

∑K

i=1
tr(Rkd(Ψi))

− 2 tr
(
Ψkd(Ψk)

)
+

Kσ2

ρ

∑K

i=1
tr(d(Ψi)). (68)

Note that d(Ψi) = 0 if wi ̸= t since Ψi is independent of θt

in this case. Thus, the above equation is reduced to

d(Ĩk) = tr(Ψd(Rk))−2 tr
(
Ψkd(Ψk)

)
+
∑

i∈Kt

tr
(
R̄kd(Ψi)

)
,

(69)
where Ψ =

∑K
i=1 Ψi and R̄k = Rk + Kσ2

ρ IM . Using (64)
into (69) gives

d(Ĩk) = tr(ΨdRk)

+
∑

i∈Kt

tr
(
R̄k

(
d(Ri)QiRi −RiQid(Ri)QiRi +RiQid(Ri)

))
− 2 tr

(
Ψk

(
d(Rk)QkRk −RkQkd(Rk)QkRk +RkQkd(Rk)

))
= tr

(
Ψ̌kd(Rk)

)
+
∑

i∈Kt

tr
(
R̃kid(Ri)

)
, (70)

where

Ψ̌k = Ψ−2
(
QkRkΨk+ΨkRkQk−QkRkΨkRkQk

)
(71)

and

R̃ki = QiRiR̄k −QiRiR̄kRiQi + R̄kRiQi, i ∈ Kt. (72)

Again, we note that d(Rk) = 0 if wk ̸= t. Thus, by using (62),
we can write ∇θt Ĩk as

∇θt Ĩk =
∂

∂θt∗ Ĩk = diag
(
Ãktdiag(βt)

)
, (73)

where ν̄k = β̂k tr
(
Ψ̌kRBS

)
, ν̃ki = β̂k tr

(
R̃kiRBS

)
, and

Ãkt =

{
ν̄kAt +

∑K
i∈Kt

ν̃kiAt wk = t∑
i∈Kt

ν̃kiAt wk ̸= t,
(74)

which is in fact the special case of (26) when u = t, meaning
that (25c) has been proved. Following the same steps we can
prove (25d), but again, we skip the details for the sake of
brevity.

The expression for ∇βtSk is derived as follows. First we
only need to consider ∇βtSk when wk = t. For this case,
from (61), we can write

d(Rk) = β̂kRBS tr
(
AH

td(Φt) +Atd
(
ΦH

t

))
(75a)

= β̂kRBS

(
diag

(
AH

tdiag(θt)
)T
d(βt)

+ diag
(
Atdiag(θt∗)

)T
d(βt)

)
(75b)

= 2β̂kRBS Re
{

diag
(
AH

tdiag(θt)
}T
d(βt). (75c)

Now, using (75) in (65) yields

∇βtSk = 2νk Re
{

diag
(
AH

tdiag(θt)
)}

. (76)

Similarly, we can write ∇βrSk as

∇βrSk = 2νk Re
{

diag
(
AH

rdiag(θr)
)}

. (77)

For ∇βt Ĩk and ∇βr Ĩk, we can follow the same steps above,
which gives

∇βt Ĩk = 2Re
{

diag
(
ÃH

ktdiag(θt)
)}

. (78)

∇βr Ĩk = 2Re
{

diag
(
ÃH

krdiag(θr)
)}

. (79)
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