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Abstract—We consider a cellular network, where the uplink
transmissions to a base station (BS) are interferenced by other
devices, a condition that may occur, e.g., in cell-free networks or
when using non-orthogonal multiple access (NOMA) techniques.
Assuming that the BS treats this interference as additional noise,
we focus on the problem of estimating the interference correlation
matrix from received signal samples. We consider a BS equipped
with multiple antennas and operating in the millimeter-wave
(mmWave) bands and propose techniques exploiting the fact that
channels comprise only a few reflections at these frequencies. This
yields a specific structure of the interference correlation matrix
that can be decomposed into three matrices, two rectangular
depending on the angle of arrival (AoA) of the interference and
the third square with smaller dimensions. We resort to gridless
approaches to estimate the AoAs and then project the least square
estimate of the interference correlation matrix into a subspace
with a smaller dimension, thus reducing the estimation error.
Moreover, we derive two simplified estimators, still based on the
gridless angle estimation that turns out to be convenient when
estimating the interference over a larger number of samples.

Index Terms—Angle of arrival, Cell-free networks, Interfer-
ence estimation, Non-orthogonal multiple access.

I. INTRODUCTION

THE evolution of cellular networks is pushing to-
wards non-orthogonal multiple access (NOMA) schemes,

wherein the wireless resource is not exclusively assigned to a
user (as in orthogonal multiple access) but is shared among
several devices that interfere. Such an approach may be applied
either within each cell (in what is more specifically NOMA,
[1]) or among different cells, e.g., in dynamic time-division
duplexing (TDD) networks [2] and is particularly attractive
in systems with partial or distributed coordination, such as
in device-to-device (D2D) communications [3] or cell-free
networks [4]. In all these cases, the interference among devices
becomes challenging and is addressed by several techniques
that can be classified according to the underlying interference
model: when interference is seen as an additional data signal
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with a suitable structure (e.g., with known modulation and
coding parameters) successive interference cancellation (SIC)
or multiuser decoding solutions are applied; when interference
is seen as additional noise, it is handled by suitable signal pro-
cessing at the transmitter or the receiver, e.g., by beamforming
and combining signals over multiple antennas in multiple-input
multiple-output (MIMO) systems. The first approach, which is
preferable under strong interference coming from a few users,
requires the estimation of the interference channels, and yields
intensive computations. The latter approach is preferable when
several low-power interferers are present, as they cannot be
demodulated without errors; this approach requires the esti-
mation of the statistics of the interference and entails fewer
computations. However, interference can always be treated
as additional noise, even under strong interference, thus our
approach has a very wide application. This is particularly true
when either strong interferers cannot be decoded, e.g., because
the receiver either does not know the used modulation or
coding or does not have enough computational capabilities. In
all these cases, the estimation of the interference correlation
matrix turns out to be very useful.

We focus on the latter scenario, where interference is treated
as additional noise, and consider the problem of estimating
its correlation matrix when the receiver is equipped with
multiple antennas. The estimation of the interference statistics
is not only useful for the design of beamformers but also to
improve the channel estimation [5], estimate the phase noise
and frequency offset [6], and perform link adaptation [7]. Note
however that we aim at estimating the correlation matrix of
the interference averaging over the signal transmitted by the
interferers, but assuming their channel as time-invariant: this
makes our problem significantly different from the covariance
matrix estimation of the channel, where the average is taken
with respect to the channel fading (see for example [8]).

Several works in the literature have addressed the estimation
of the noise variance, under the assumption of independent
identically distributed noise samples on each receive antenna.
Among other works, we mention [9], where the noise variance
estimation is considered in the context of massive MIMO as-
suming uncorrelated noise at the antennas and under practical
impairments such as pilot contamination. Although a different
noise power is assumed at each antenna, noise samples at dif-
ferent antennas are still considered uncorrelated. In this paper,
we instead focus on the case wherein interference is correlated
among the various antennas. In this respect, in the literature
we can find exponential models for the correlation of the
noise among antennas, see [10] and references therein. These
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models neither exemplify any particular propagation scenario
nor are suited to capture the underlying composite interference
signals. In fact, they are typically proposed as the simplest
analytical model that can be easily adapted to empirically
derived covariances [11]. Nevertheless, exponential correlation
modeling has some drawbacks: on one hand, the fitting may
not be straightforward given that they are not linear functions,
on the other, they may miss relevant components, e.g., at high
frequencies. In [12], [13] the training sequence for channel
estimation in MIMO systems with colored noise is designed,
but no specific solution is proposed for the estimation of the
noise correlation matrix. In [14] a generic covariance matrix
of the interference is considered, and the problem of its joint
estimation with the channel is addressed and solved by a low-
rank approximation of the channel. However, no particular
structure of the interference correlation matrix is assumed. The
estimation of colored interference is considered in [2] and a
least square (LS) technique is proposed. The noise correlation
matrix estimation is included in the estimation of the channel
correlation in [15], and a modified version of the LS estimator
is derived, taking into account the channel statistics.

However, to our knowledge, there are no specific solutions
for interference correlation matrix estimation when operating
at millimeter-wave (mmWave) or Terahertz (THz) bands. In-
deed, at those frequencies, the channels exhibit only a few
propagation paths, due to the strong attenuation incurred by
radio signals. This feature has been extensively exploited
to obtain accurate channel estimators [16]. Still, it remains
not used for the estimation of the interference correlation
matrix in systems operating at mmWave or THz bands. Note
that, although the presence of few paths could make the
beamforming to the interfering users more accurate, the strong
attenuations combined to more flexible architectures (includ-
ing D2D, cell-free, and dynamic-TDD communications) may
make the detection and cancellation of all interfering users
more problematic. Thus, also with mmWaves the estimation
of the interference correlation matrix is still relevant.

In this paper, we propose three techniques to estimate the
interference correlation matrix in mmWave or THz systems
with different complexity and performance. All solutions
exploit the structure of the interference channels, and the
objective is to obtain more accurate estimations using fewer
samples than those needed by the LS approach. In particular,
we consider a receiver equipped with a linear array of antennas
and first observe that the interference correlation matrix can
be decomposed into the product of three matrices, where the
two external depend only on the angles of arrival (AoAs) of
the interference signals. At the same time, the internal one
represents the correlation among the interference signals. The
internal matrix has a much lower rank than the interference
correlation matrix since it only provides the correlation of
signals with the (few) different AoAs. Then, we propose a
procedure by which we estimate a) the AoAs, b) the internal
correlation matrix, and c) the interference matrix. Lastly, we
reconstruct the interference correlation matrix.

In particular, for the AoA estimation, we adopt a gridless
angle estimation (GAE) approach [17], where the estimation
is described as a gridless identification of several multi-

dimensional frequency vectors, each corresponding to a dif-
ferent AoA. Although this estimator shows an improvement
over the LS estimator already when using a few samples for
each antenna, it becomes infeasible when applied to several
samples. Therefore, we introduce two alternative approaches,
still based on GAE: the subspace gridless estimation (SGE)
and the gridless estimation and clustering (GEC). SGE first
estimates the subspace of the LS correlation estimate and
then applies the GAE method on the subspace basis vectors,
with a complexity that does not increase with the number
of observations. GEC instead performs a separate GAE es-
timation on each new interference observation and then fuses
the estimates by clustering the estimated AoAs. In this case,
the complexity increases with the number of observations,
since a larger number of points must be clustered; however,
the resulting complexity is still less than that of the original
GAE technique. For comparison purposes, we also consider
the multiple signal classification (MUSIC) algorithm for the
AoA estimation.

The rest of the paper is organized as follows. Section II
introduces the considered interference scenario, the mmWave
channel model with few reflections, and the LS estimate of the
interference correlation matrix. Section III describes the pro-
posed projection-based correlation estimate and the procedure
that first estimates the AoAs and then provides a more accurate
estimate of the interference correlation matrix. The channel
interference matrix estimators based on GAE techniques are
described in Section IV. The proposed approaches for the
interference correlation estimate are then compared with the
LS estimate in a typical cellular communication scenario
in Section V before the main conclusions are outlined in
Section VI.

Notation: Matrices and vectors are denoted in boldface,
with uppercase and lowercase letters, respectively. AT and
AH denote the transpose and Hermitian operators on matrix
A, respectively. A ≽ 0 indicates that matrix A is semidefinite
positive. IL is the identity matrix of size L×L. B = diag{b}
is a diagonal matrix having on the diagonal elements of vector
b. atan2(p) is the 2-argument arc-tangent of point p = [x, y].
A† denotes the More-Penrose pseudoinverse of matrix A.

II. SYSTEM MODEL

In a communication system, we consider one base station
(BS) with N antennas (denoted main BS) receiving signals
in uplink from several served user equipments (UEs). In the
surroundings, a set of users transmit to their own serving BSs
and interfere at the main BS. In this system, we set L as the
total number of interferers to the main BS, each interferer is
equipped with NI antennas, and interferers transmit statisti-
cally independent signals. We consider one BS (denoted main
BS) of a cellular communication system receiving signals in
uplink from several served UEs through its N antennas. This
scenario fits cellular systems dynamic TDD networks (where
interferes are in other cells) and cell-free networks.

Let us indicate with J (ℓ)(t) ∈ CNI×1, ℓ = 1, . . . , L,
the column vector of symbols transmitted by interferer ℓ at
symbol time t. Assuming time-invariant narrowband channels,
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the matrices of the channels from the L interferers to the main
BS are G(ℓ) ∈ CN×NI , ℓ = 1, . . . , L. We consider here that
only a few interferers are present, i.e., L is a small number.
Due to the specific propagation conditions in mmWave, such as
severe large-scale fading and blockage, we consider here that
only a few interferers are present, i.e., L is a small number.
The baseband equivalent interference and noise signal received
at sample time t by the main BS can then be written as the
N -size column vector

N(t) = Y (t) +Z(t) =

L∑
ℓ=1

G(ℓ)J (ℓ)(t) +Z(t), (1)

where Z(t) is the vector of additive white Gaussian noise
(AWGN), with independent entries having zero mean and
variance σ2, which is supposed to be known at the main BS.

We assume that J (ℓ)(t) and Z(t) are independent complex
Gaussian vectors with zero mean. The cross-correlation matri-
ces of vectors J (ℓ)(t) and Z(t) are RJ = E[J (ℓ)(t)J (ℓ)H(t)],
and RZ = E[Z(t)ZH(t)] = σ2IN , respectively. Note that
the cross-correlation matrix of J (ℓ)(t), in general, is not
an identity matrix as each interferer may use a transmit
beamforming to convey one data stream with its multiple
antennas. The cross-correlation of N(t) is therefore

R =E
[
N(t)NH(t)

]
=E

[(
L∑

ℓ=1

G(ℓ)J (ℓ)(t) +Z(t)

)
×

(
L∑

ℓ=1

G(ℓ)J (ℓ)(t) +Z(t)

)H


=

L∑
ℓ=1

G(ℓ)RJG
H(ℓ) + σ2IN .

(2)

In this paper, we aim at estimating matrix R from T
samples of the interference and noise signal, i.e., from N(t),
t = 1, . . . , T . The main BS can obtain such samples for
example in correspondence of pilot signals transmitted by the
UE canceling the received signals (and also some other strong
interference signals). The estimated interference correlation
matrix R̂ will then be used to process the forthcoming received
signals containing uplink data and mitigate the effects of
interference. As mentioned in the introduction, we consider a
scenario wherein the interference is treated as additional noise,
as an example in the presence of several low-power interferes
whose signals cannot be properly detected and canceled.

A. Channel Model
All devices are equipped with linear antenna arrays. Signals

transmitted by interferer ℓ, with ℓ = 1, . . . , L, propagate
through Ng scatterers and we indicate with α

(Tx)
i,ℓ and α

(Rx)
i,ℓ

the angle of departure (AoD) and AoA of the i-reflection, for
i = 0, . . . , Ng − 1. Let us also define the transmit and receive
phase shifts as

γi,ℓ =
D

(Tx)
min

λ
sinα

(Tx)
i,ℓ ,

βi,ℓ =
D

(Rx)
min

λ
sinα

(Rx)
i,ℓ ,

(3)

where D
(Tx)
min and D

(Rx)
min are the distances between the el-

ements in the transmit and receive linear antenna arrays,
respectively, and λ is the wavelength of the carrier signal.
Defining the steering vector function

aN (β) = [1, e−2πiβ , . . . , e−2πiβ(N−1)]T, (4)

with i =
√
−1, we can write the interference channel matrices

as

G(ℓ) =

Ng−1∑
i=0

vi,ℓaN (βi,ℓ)a
H
NI

(γi,ℓ), (5)

where vi,ℓ is the complex gain of signal i of the ℓth interferer,
with power given by the path-loss (Pi,ℓ). In mmWave, the
attenuation is high, due to the high operating frequencies and
only a few rays participate in the formation of the useful signal
(typically Ng ∈ {1, 2, 3}). In the following, we assume that the
BS knows the value of Ng , although solutions are available to
estimate its value [18], [19]. Note that our model may easily
include the presence of blockage, a typical phenomenon of
mmWaves, by considering a higher path-loss Pi,ℓ, [20], [21].
Moreover, we do not have any specific assumption on the
distribution of the interferes that will affect in general the
statistics of vi,ℓ, βi,ℓ, and γi,ℓ.

B. LS Interference Correlation Matrix Estimate

A basic estimate of the interference correlation matrix R
from the T samples is provided by the LS estimate (or sample
covariance matrix)

R̂LS(T ) =
1

T

T∑
t=1

N(t)NH(t). (6)

Although for T → ∞ we have R̂LS → R, the convergence
of this estimator alone is slow, thus we consider techniques
having a faster convergence. We will also integrate the LS
estimate into advanced solutions that, starting from a still
rough estimate, are able to refine it significantly.

III. PROJECTION-BASED CORRELATION ESTIMATE

In this section, we propose an estimator of the interference
correlation matrix that exploits the structure of the interference
channel given by (1). From (5), we immediately have

Y (ℓ)(t) = G(ℓ)J (ℓ)(t) =

Ng−1∑
i=0

aN (βi,ℓ) [vi,ℓa
H
NI

(γi,ℓ)J
(ℓ)(t)]︸ ︷︷ ︸

xi,ℓ(t)

,

(7)
where (for fixed vi,ℓ) {xi,ℓ(t)}, i = 0, . . . , Ng − 1, are zero-
mean complex Gaussian variables (since J (ℓ) is assumed to
be Gaussian) with cross-correlations

E[xi,ℓ(t)x
∗
j,ℓ(t)] = vi,ℓv

∗
j,ℓE

[
aH
NI

(γi,ℓ)J
(ℓ)(t)J (ℓ)H(t)aNI

(γj,ℓ)
]

= vi,ℓv
∗
j,ℓa

T
NI

(γi,ℓ)RJaNI
γj,ℓ).

(8)
Therefore, from (1) and (7) we have

Y (t) =

Ng−1∑
i=0

L∑
ℓ=1

aN (βi,ℓ)xi,ℓ(t). (9)
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Note that we assume that both L and Ng are small numbers
and in particular NgL << N .

To obtain a more compact model, we collect the interference
channels into the matrix G = [G(1), . . . ,G(L)] and analo-
gously we collect the transmitted interference symbol vectors
into the column vector J(t) = [J (1)T(t), . . . ,J (L)T(t)]T .
Now, by defining

x(ℓ, t) = [x1,ℓ(t), x2,ℓ(t), . . . , xNg−1,ℓ(t)]
T ,

x(t) = [xT (1, t), . . . ,xT (L, t)]T ,
(10)

we can rewrite the interference vector at sample time t as

N(t) = GJ(t) +Z(t) = Ax(t) +Z(t), (11)

with A = [A(1), . . . ,A(L)] and A(ℓ) =
[aN (β0,ℓ), . . . ,aN (βNg−1,ℓ)]. From (11) we can write
the interference vector as the sum of LNg correlated
Gaussian sources, arriving at the BS with receive phase shifts
βi,ℓ, for i = 0, . . . , Ng − 1, and ℓ = 1, . . . , L.

Thus, inserting (11) into (2), the interference correlation
matrix can be written as

R = ARxA
H + σ2IN , (12)

where Rx = E[x(t)xH(t)] is block-diagonal with L blocks,
as we assumed that the signals transmitted by the L interferers
are independent; entries of block ℓ are given by (8). From (12),
we observe that the interference correlation matrix (neglecting
noise) has a particular structure, as it can be decomposed into
the product of three matrices: the two external matrices depend
only on the AoAs of the interference signals, while the inner
matrix depends only on the correlation of the interference
signals coming from the different angles.

As we consider a scenario with few paths and few inter-
ferers, the number of rows (columns) NgL of Rx is much
smaller than the number of rows (columns) N of R. Moreover,
although matrix A may have a large number of rows (N ),
it actually depends again on a small number of parameters.
Therefore, we propose the projection-based correlation esti-
mation (PBCE) technique that splits the correlation estimation
into two sub-problems: a) the estimation of the receive phase
shifts (from which an estimate of matrix A is obtained), and
b) the estimate of the inner correlation matrix Rx.

In particular, PBCE works as follows. Once T received
vectors N(t), t = 1, . . . , T , have been collected:

1) estimate the receive phase shifts as β̂i,ℓ, i = 0, . . . , Ng−
1, ℓ = 1, . . . , L, from N(t), t = 1, . . . , T ;

2) obtain the LS estimate of the interference correlation
matrix R̂LS(T ) as in (6);

3) remove the noise contribution from the LS estimate
of the correlation matrix to obtain an estimate of the
interference correlation

R̂′
LS(T ) = R̂LS(T )− σ2IN ; (13)

4) project R̂′
LS(T ) into the subspace defined

by Â(ℓ) = [aN (β̂0,ℓ), . . . ,aN (β̂Ng−1,ℓ)] and
Â = [Â(1), . . . , Â(L)] to obtain an estimate of
Rx as

R̂x(T ) = Â†R̂′
LS(T )(Â

†)H; (14)

5) obtain the new estimate of the interference correlation
matrix as (see (12))

R̂PBCE(T ) = ÂR̂x(T )Â
H + σ2IN . (15)

This is the explanation of the various points:
Point 1) refers to the estimate of the phase shifts and will

be detailed in the next Section IV, where several techniques
will be considered.

Point 2) provides the starting estimate of the interference
correlation matrix, from which the inner correlation matrix
Rx will be estimated, given the estimate of the AoA (thus the
estimate of A) obtained in point 1).

Point 3) elaborates on (12), first removing the AWGN
noise contribution from the LS estimate of the interference
correlation matrix.

Point 4) is obtained by observing that the LS estimate of
x(t) from N(t), given the estimate Â, is obtained as (see
(11))

x̂LS(t) = Â†N(t). (16)

Assuming that the angle estimates are correct (Â = A), the
correlation matrix of x̂LS(t) is

E[x̂LS(t)x
H
LS(t)] = A†RA†H = Rx + σ2A†A†H , (17)

and its LS estimate is

1

T

T∑
t=1

x̂LS(t)x̂
H
LS(t) =

1

T

T∑
t=1

A†N(t)NH(t)A†H

= A†R̂LS(T )A
†H .

(18)

Then, considering (18) as an estimate of (17) and removing
the contribution of noise, we obtain the estimate (14) for Rx.

Lastly, point 5) follows from (12), and the estimated matri-
ces replace the true matrices. The resulting PBCE estimate of
R can also be written as

R̂PBCE(T ) = Â
[
Â†R̂LS(T )Â

†H − σ2Â†Â†H
]
ÂH+σ2IN .

(19)

A. MSE For Correct Phase Shift Estimates

We now compute the mean square error (MSE) of the
interference correlation matrix estimate under the hypothesis
of correct receive phase-shift estimates and compare it with
that obtained with the LS estimate. The MSE is defined as

Γ =
1

N2

∑
m,n

E[|R̂n,m −Rn,m|2]. (20)

First, note that both the LS and the PBCE estimates (un-
der correct angle estimation) are unbiased, i.e., E[R̂LS] =
E[R̂PBCE] = R. Then, for the LS estimate we have

ΓLS(T ) =
1

N2

∑
m,n

E

∣∣∣∣∣ 1T
T∑

t=1

[N(t)NH(t)]n,m − [R]n,m

∣∣∣∣∣
2
 .

(21)
Now, considering that [N(t)NH(t)]n,m are zero-mean and
independent in t, we have

ΓLS(T ) =
1

N2

∑
m,n

E[|[N(t)NH(t)]n,m − [R]n,m|2], (22)
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and from the results of the Appendix, we have

ΓLS(T ) =
1

TN2

∑
m,n

[R]n,n[R]m,m

=
1

TN2
trace2(R).

(23)

For the PBCE, from (19) and assuming Â = A, we have

ΓPBCE(T ) =
1

N2

∑
m,n

E[|[RPBCE]n,m − [R]n,m|2]

=
1

N2

∑
m,n

E

[∣∣∣∣∣ 1T
T∑

t=1

[
A
[
A†N(t)NH(t)A†H

−σ2A†A†H]AH + σ2IN
]
n,m

− [R]n,m

∣∣∣2] .
(24)

Since each term of the summation is zero-mean and indepen-
dent also in this case, we have

ΓPBCE(T ) =
1

TN2

∑
m,n

E
[∣∣∣ [A(A†N(t)NH(t)A†H−

σ2A†A†H)AH + σ2IN
]
n,m

− [R]n,m

∣∣∣2]
=

1

TN2

∑
m,n

E
[ ∣∣[AA†N(t)NH(t)A†HAH]n,m−

[
σ2AA†A†HAH − σ2IN +R

]
n,m

∣∣∣2]
(25)

and again from the results of the Appendix, we have

ΓPBCE(T ) =
1

TN2

∑
m,n

[AA†RA†HAH]n,n[AA†RA†HAH]m,m

=
1

TN2
trace2[AA†RA†HAH].

(26)

Since A†A = ILNg
and using (12), we have

ΓPBCE(T ) =
1

TN2
trace2[R− σ2(IN −AA†RA†HAH)].

(27)

IV. RECEIVE PHASE-SHIFT ESTIMATION

For the estimation of the receive phase shifts β̂i,ℓ, i =
0, . . . , Ng − 1, ℓ = 1, . . . , L, we exploit the assumptions that
interferers’ channels have only a few paths and there are only
a few interferers. This yields a sparse Fourier transform of
the correlation matrix, i.e., its sparse representation in the
angular domain. We consider three solutions, based on the
gridless approach of [17], which has been proven to provide
accurate estimates even from a single or a few samples (small
T ). Still, as T grows, its complexity becomes prohibitive, and
we propose also two simplified approaches. In particular, first,
we propose the gridless angle estimation (GAE) based on [17],
[22]; in the second approach, denoted as subspace gridless
estimation (SGE), the receive phase shifts are estimated from
the LS-estimated interference correlation matrix; lastly, in
the third approach, denoted gridless estimation and clustering
(GEC), GAE is performed on windows of samples and the
estimated phase shifts are clustered.

A. Gridless Angle Estimation

First, we consider a solution where the AoAs are not forced
to be on a grid but can take continuous values, in what
is called a gridless estimation. In particular, we resort to
the approach of [17], [22], which leverages the equivalence
between the computation of the ℓ0 atomic norm (AN) and
a rank minimization problem restricted to the set of positive
semidefinite canonical multi-level Toeplitz matrices.

In the GAE algorithm, the receive phase shifts are estimated
by imposing a sparsity (ℓ0 norm) on the estimated vectors
Ŷ (t), t = 1, . . . , T . First, we recall that the ℓ0 AN of vectors
{Ŷ (t)} in the atomic set E = {aN (β), β ∈ [0, 2π)}, is defined
as

||{Ŷ (t)}||E,0 = inf
{ζp},{qp}

{
P : Ŷ (t) =

P∑
p=1

qp(t)aN (ζp), ∀t

}
.

(28)
Note that this definition is consistent with (9) when {ζp} are
the estimated receive phase shifts. Then, we aim at minimizing
the MSE between N(t) and Ŷ (t), under the sparsity con-
straint on Ŷ (t), with t = 1, . . . , T , i.e.,

min
{Ŷ (t)}

1− η

T

T∑
t=1

||N(t)− Ŷ (t)||22 + η||{Ŷ (t)}||E,0, (29)

where η ∈ (0, 1) is a parameter ruling the sparsity of the
obtained solution. The solution of (29) provides Ŷ (t), t =
1, . . . , T , which in turn provide the estimated receive phase
shifts β̂i,ℓ, i = 0, . . . , Ng − 1, ℓ = 1, . . . , L, through (28).

Now, the function (29) is non-convex, making its minimiza-
tion hard. Therefore, we consider its l1-AN relaxation to obtain
a simpler problem. Let TN be the set of positive semidefinite
canonical 1-Level Toeplitz matrices with dimension N (see
[17] for its definition and properties). The relaxation of (29)
leads to the following problem [17]

min
τ,{q(t)},Q∈TN

1− η

T

T∑
t=1

||N(t)− Ŷ (t)||22 +
η

2
[τ + trace(Q)],

(30a)
s.t. [

Q Ŷ (t)

Ŷ H(t) τ

]
≽ 0, t = 1, . . . , T. (30b)

This is a convex problem that can be solved with standard
methods. The new estimates of the receive phase shifts β̂i,ℓ,
i = 0, . . . , Ng − 1, ℓ = 1, . . . , L, are then obtained by the
Vandermonde decomposition of matrix Q, as from the [17,
Algorithm 1] (see also [22, Lemma 1]).

Complexity Analysis: As shown in [17], [23], solving (30)
requires

N (N,T, ϵ) = O(T (N3 + TN2 + T 2)
√
N log(1/ϵ)), (31)

arithmetic operations, where ϵ is the accuracy parameter. We
note that as T grows, the number of constraints in (30) also
grows linearly with T , and the complexity of solving the
optimization problem grows as O(T 3), as shown in [17].
Hence, we now consider two simplified solutions that are
adequate when the number of samples grows large.
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B. Subspace Gridless Estimation

The second solution is based on the estimation of the receive
phase shifts from the LS estimate of the interference matrix,
rather than on samples N(t), t = 1, . . . , T . This approach
holds when the number of interfering signals is smaller than
the number of BS antennas, i.e.,

S = LNg < N. (32)

First, we observe that we can remove the contribution of the
noise by subtracting the noise correlation as in (13), obtaining
R̂′

LS(T ) = R̂LS(T ) − σ2IN . Then, we can improve the LS
estimate by imposing the Hermitian symmetry, obtaining

R̂′
LS(T ) =

1

2

[
R̂′

LS(T ) + R̂
′H
LS(T )

]
. (33)

Now, from (12), we observe that the columns of the true
interference-only correlation matrix

R′ = R− σIN (34)

lay in a sub-space of size S. Therefore, we can decompose the
LS estimate of the interference-only correlation by singular
value decomposition (SVD) as

R̂′
LS(T ) = V ΛV H, (35)

where V is unitary and Λ is diagonal with real non-negative
entries λ1 ≥ . . . ≥ λN , denoted as singular values.

To partially remove the estimation error, we define the tall
N × S sub-matrix Λ′ of Λ containing the S largest singular
values, i.e., [Λ′]s,s = λs, while all other entries of Λ′ are zero,
and compute the new correlation estimate

R̂′′
LS(T ) = V Λ′V H. (36)

Until now we have reduced the estimation error in the
LS estimate by exploiting the properties of the SVD of the
interference correlation matrix. Now, by comparing (36) with
(12), we note that in the columns of V we have the steering
vectors with the receive phase shifts. Thus, the SGE algorithm
exploits this property. To this end, we first define the square
root matrix of R̂′′

LS(T ) as

S = V diag{
√
λ1, . . . ,

√
λS}, (37)

and then we apply the GAE method on the columns of S. In
particular, we solve (30) with T = S and N(t) replaced by
the columns of S.

Complexity Analysis: The number of operations required
by this approach is

N (N,S, ϵ) = O(N3 + S(N3 + SN2 + S2)
√
N log(1/ϵ)),

(38)
where, with respect to (31) we added also the operations
required by the SVD (N3). Note that, in this case, regardless
of the value of T , the number of constraints is always S, thus
limiting the computational complexity of this solution.

C. Gridless Estimation and Clustering

We propose also the GEC algorithm, wherein GAE is
performed on windows of T0 samples, and the receive phase
shifts are estimated on several windows. They are then suitably
clustered and the new receive phase shift estimates are the
cluster heads. The obtained solution is denoted as GEC.

In detail, let us first define the subset of observations
obtained on window n of T0 samples as

N (n) = {N(t), t = nT0 + 1, . . . , nT0 + T0}. (39)

Then, the GEC algorithm works as follows. At time nT0,
for n ≥ 1:

1) apply the GAE on N (n) to obtain the estimated LNg

receive phase shifts {β̂1,1(n), . . . , β̂Ng−1,L(n)};
2) cluster the n previously estimated receive phase shifts

{β̂1,1(1), . . . , β̂Ng−1,L(n)} into S clusters, as detailed
in the following;

3) obtain the estimate of the receive phase shifts as the
centroids of the S clusters.

We now detail the clustering procedure and the computation
of the centroids. First, note that the k-means algorithm [21]
cannot be immediately applied on the estimated receive phase
shifts, since it does not ensure that the centroids are phase
shifts in the interval [0, 2π). Therefore, we first convert each
estimated receive phase shift β̂i,ℓ(n) into the two-dimensional
vector

β̂i,ℓ(n) = [cos(2πβ̂i,ℓ(n)), sin(2πβ̂i,ℓ(n))]. (40)

Hence, the set of all vectors at time nT0 is

B̄ = {β̂0,1(1), . . . , β̂Ng−1,L(1), . . . , β̂0,1(n), . . . , β̂Ng−1,L(n)}.
(41)

The S clusters are sets B1, . . . ,BS , with |Bs| = n/S: these
sets constitute a partition of B̄, i.e.,

⋃
s Bs = B̄ and Bs1 ∩

Bs2 for s1 ̸= s2. We use the MSE metric for clustering and
finding the cluster head

βs = argminζ
∑
β∈Bs

||ζ − β||22 =
∑
β∈Bs

β (42)

Lastly, we convert βs into the estimated phase shift as

βs = atan2(βs). (43)

Complexity Analysis: To obtain equal-size clusters of
observations, we can resort for example to the algorithm
of [24], having complexity O(T 1.7), thus the number of
operations required by this approach is

N (N,T, ϵ) = O(T 1.7 + T0(N
3 + T0N

2 + T 2
0 )
√
N log(1/ϵ)).

(44)

D. MUSIC Angle Estimation

For comparison purposes, we consider the MUSIC algo-
rithm [25] to estimate the receive phase shift. This algorithm is
based on the SVD of the LS estimate; as for SGE, we consider
the LS-estimated interference-only correlation matrix R̂′

LS(T )
and its SVD (35). Then, the receive phase shifts {βi,ℓ} are
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Fig. 1. Interference environment with the main BS (blue dot), neighborhood
cells (white squares) with their BSs (red dots), and interferers (green dots).

estimated by finding the LNg values of θ corresponding to
the largest peaks of the frequency estimation function

PMU(θ) =
1

aH
N (θ)V V HaN (θ)

. (45)

Note that the peak is searched in a continuous space; however,
in practice, θ is sampled in a discrete space over which the
maxima are searched, thus a grid approach is obtained.

Complexity Analysis: The complexity of MUSIC then
depends on the number of points of the grid NG, and can
be written as [26]

O(N2(LNg + T +NG)). (46)

V. NUMERICAL RESULTS

We assess now the performance of the proposed interference
correlation matrix in the scenario of Fig. 1, where the main
BS (blue point) is at the center of its square cell (in yellow),
and the cell is surrounded by 4 neighboring cells (in white),
in which L = 4 interferers (green points) communicate with
their own secondary BSs (red points). The interferers are
placed along the segments between the main and the secondary
BSs, which define the average AoA for channels G(ℓ). For
simulation purposes, we draw ray amplitudes vi,ℓ from a
complex Gaussian distribution with zero mean and unitary
variance, i.e., Pi,ℓ = 1, modeling interferers in no-line-of-sight
(nLOS) condition with respect to the main BS. Note that such
a scenario is the worst-case for interference estimation since
all channel paths are weak and thus particularly challenging
to be estimated.

The main BS is equipped with N = 32 antennas, and the
channel is modeled as in Section II.A, with Ng = 3 rays.
AoAs {α(Rx)

i,ℓ } are uniformly distributed with mean given by
the angle between the transmitting interferer and the main BS
and support size π

6 , which corresponds to a cell with 12 sectors
(a higher-order sectorization, see [27]), while AoDs {α(Tx)

i,ℓ }
are uniformly distributed in the interval [0, π]. The antenna
spacings are D

(Tx)
min = D

(Rx)
min = λ

2 , for a carrier frequency
fc = 28 GHz.

The performance will be shown as a function of the ROT,
defined as the ratio between the interference power and the
noise power, i.e.,

ROT =
1
N traceR− σ2

σ2
=

1
N traceR

σ2
− 1. (47)

In particular, in the following we vary the noise power σ2

while leaving unchanged the interference power. Therefore,
from (47), we note by increasing the noise power we decrease
the ROT.

We focus on the case of single-antenna users and interferes
(NI = 1) and the received vector signal at sample t (including
also the data signal, not only noise and interference) is

r(t) = hs(t) +N(t), (48)

with h the column channel vector between the transmitter in
the main cell and the BS and s(t) the transmitted useful data
symbol at time t, assumed to be Gaussian zero-mean with
variance σ2

x. We assume here that the BS perfectly knows h.
We assume that the BS requests from the transmitter a data

rate R to be used for uplink transmission. Since the BS does
not have a perfect estimate of the interference correlation
matrix, its estimate Ĉ of the achievable rate in the uplink
channel is affected by errors. Thus, the BS will transmit at
rate R = δĈ, with δ ∈ [0, 1], suitably chosen, as detailed in
the following. Note that even with this choice, outages may
occur, when R > C, and C is the true achievable rate of the
uplink channel.

A. Performance Metrics

Performance has been compared in terms of a) MSE of the
estimate of the interference correlation matrix, b) achievable
data rate, and c) effective throughput (taking into account
outages).

MSE: The MSE of the estimate of the interference
correlation matrix is defined in (20).

Achievable Rate: To define the achievable rate and the
throughput, we first revise the operations performed at the
BS upon reception of a message. We recall that we treat
the interference as additional noise, but we explicitly exploit
the knowledge of its correlation matrix, estimated with the
techniques presented in this paper. Thus, the BS first whitens
the interference on r(t). This is achieved by decomposing the
estimated interference correlation matrix R̂ by computing its
SVD R̂ = UΛUH and then whitening the signal to obtain

r′(t) = Λ−1/2UHr(t) = gs(t) +N ′(t), (49)

where
g = Λ−1/2UHh (50)

is the equivalent channel and N ′(t) is the noise term (that
includes the noise-like interference). Note that if the estimation
of the interference correlation matrix is perfect, i.e., R̂ = R,
then N ′(t) has an identity correlation matrix. Otherwise, it is
still colored with correlation matrix

RN ′ = Λ−1/2UHRUΛ−1/2. (51)
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a) Case T = 2 samples. b) Case T = 4 samples.

Fig. 2. MSE vs raise-over-thermal (ROT) for T = 2 and T = 4 samples and various interference correlation matrix estimators.

However, the BS is not aware of the residual correlation and
cannot exploit it to compute the achievable data rate. Assuming
for the sake of simplicity a single user transmitting in the
uplink to the main BS (i.e., a resource block is assigned to
a single user), the BS then applies a maximal ratio combiner
(MRC) to obtain

r′′(t) = gHr′(t) = gHgs(t) + gHN ′(t), (52)

where now the correlation of the noise becomes gHRN ′g.
Hence, and the true achievable data rate at the BS is

C = log2

(
1 +

(gHg)2σ2
x

gHRN ′g

)
. (53)

Throughput: The throughput takes into account outages
in the uplink transmission. The estimated achievable rate at
the BS is

Ĉ = log2
(
1 + gHgσ2

x

)
. (54)

When R̂ = R, Ĉ = C and this is also the spectral efficiency
of the system, denoted as Copt: it provides an upper bound to
the achievable rate Ĉ. The throughput is then defined as

ρ =

{
0, δĈ > C,

δĈ, otherwise.
(55)

We choose δ to maximize E[ρ]: this is obtained by numerical
methods.

B. Compared Solutions

We compare the following techniques for the interference
correlation matrix:

• LS: the LS estimate of Section II-B;
• PBCE-GAE: PBCE using the GAE algorithm of Sec-

tion IV-A for the estimate of the receive phase shifts;
• PBCE-SGE: PBCE using the SGE algorithm of Sec-

tion IV-B for the estimate of the receive phase shifts;

• PBCE-GEC: PBCE using the GEC algorithm of Sec-
tion IV-C for the estimate of the receive phase shifts;

• PBCE-MUSIC: PBCE using the MUSIC algorithm of
Section IV-D for the estimate of the receive phase shifts;

• PBCE-ideal (ID): PBCE with the perfect estimate of the
receive phase shifts.

We have considered T0 = 1 and NG = 103.

C. Performance Results

First, we compare the performance in terms of MSE of the
interference correlation matrix estimate.

Fig. 2 shows the interference correlation matrix MSE (20)
as a function of the ROT for the considered estimators and
two values of the number of observed samples, namely T = 2
and 4. Note that we consider a very small number of samples
to better assess the performance of the estimators based on the
AoAs. In the following, we will also consider larger values of
T . We first observe that as the noise increases, the ROT de-
creases, and the advantage of the proposed techniques becomes
more evident since they distinguish noise from interference
better than the LS technique. When comparing the various
PBCE algorithms, we note that the PBCE-SGE provides only
a partial improvement with respect to the LS estimator, while
other approaches further reduce the MSE and achieve similar
performance. Fig. 2 shows also the MSE obtained with the
analysis of Section III-A, which well matches the simulation
results.

We now consider both the achievable rate and the through-
put as performance metrics.

Fig. 3 shows both the achievable rate and the throughput as a
function of the ROT for T = 2 samples and various correlation
estimation methods. We observe that the LS estimate for
such a small value of T provides a very low achievable rate,
much lower than that achieved when using PBCE techniques
for the interference correlation matrix estimation. Indeed, all
PBCE methods achieve a rate close to the capacity Copt, all
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a) Achievable rate b) Throughput

Fig. 3. Achievable rate (a) and throughput (b) vs ROT using T = 2 samples and various interference correlation matrix estimators.

Fig. 4. Achievable rate vs ROT with T = 5 samples and various interference
correlation matrix estimators.

with similar performance, except for the PBCE-SGE method,
showing a higher sensitivity to the interference and yielding an
achievable rate close to LS for high ROT values. Lastly, note
that all PBCE techniques exhibit an achievable rate reduction
as the ROT increases, since the overall interference increases.
For the LS technique, the estimation is very bad and the
slight increase of the rate with the ROT is due to the fact
that interference is structured and the whitening becomes a
bit more effective. When comparing Fig. 2 and Fig. 3, we
conclude that the MSE of the correlation matrix estimate is
not indicative of the data rate performance, as the correlation
matrix is used for whitening (see (50) and (53)) and the impact
of correlation matrix estimation errors is not linear on the data
rates.

Fig. 4 shows the achievable rate as a function of the ROT,
when T = 5 samples, for various correlation estimation
methods. The trend is similar to that of Fig. 3, with the PBCE
solutions getting closer to the upper bound, and the PBCE-

Fig. 5. Throughput vs T with ROT = −10 dB and various interference
correlation matrix estimators.

SGE approach significantly increasing the achievable rate and
aligning with the other techniques. Even the LS approach
yields a higher achievable rate but is still considerably reduced
with respect to that of the PBCE techniques. The LS method
is still significantly affected by the estimation error, providing
a very low achievable rate: indeed, the estimation error is so
dominant that it turns out to be almost insensitive to the ROT.

Lastly, Figs. 5 and 6 show the throughput as a function
of the number of samples T , for ROT = −10 and 0 dB,
respectively. As expected, a larger number of samples used for
the estimation provides higher throughput. However, the PBCE
approaches show a much faster increase of the throughput
with the number of samples than the LS approach, which
is a significant advantage of the proposed solutions. Indeed,
the LS approach suffers from the increased interference and
requires more samples to achieve values close to the optimal
when the ROT increases, and even when using more than 10
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Fig. 6. Throughput vs T with ROT = 0 dB and various interference
correlation matrix estimators.

Fig. 7. Complexity comparison among the techniques.

samples, the throughput improvement is very slow. Note also
that for high values of ROT, the PBCE method based on GEC
outperforms PBCE-MUSIC providing a 10% increase in the
throughput.

In summary, we note that the proposed GEC methods
outperform both the LS and the MUSIC techniques, at least
at certain values of ROT. Moreover, GEC offer a faster
convergence than MUSIC.

D. Complexity Comparison

We have also compared the complexity of the various
receive phase-shift estimation algorithms, as shown in Fig. 7
that reports the asymptotic (O(·)) number of operations re-
quired as a function of T , with all other parameters set as
in the other performance figures. We note that PBCE-GAE
has the highest complexity, which also grows fast with T ,
while both PBCE-SGE and PBCE-GEC have a complexity
independent of T , as indeed it is related to T0 and S, which are
here kept constant. The MUSIC algorithm exhibits the lowest
complexity, as expected. From the figure we first appreciate the
reduction of complexity achieved by PBCE-SGE and PBCE-

GEC with respect to PBCE-GAE. Then, taking into account
the performance (in terms of throughput) achieved by the
proposed PBCE techniques, we note that this advantage over
MUSIC comes at the cost of higher complexity.

VI. CONCLUSIONS

In this paper, we have proposed three techniques for the
estimation of the interference correlation matrix in a cellular
system. The approaches are based on the estimation of the
AoAs of interference signals for channels with few rays. The
investigation of several techniques for the estimation of the
receive phase shift and their performance comparison in a sim-
ulated environment has shown that the GAE algorithm is very
effective and that the sub-optimal (and less complex) solution
GEC is also well-performing, especially when more symbols
are available for the interference correlation estimate. A future
study related to our proposed estimators may be devoted to
the design of interference correlation matrix estimators when
hybrid analog-digital receive structures are employed: in this
case, the constraints on the number of radio-frequency chains
and thus the accessible signals call for specific solutions that
exploit both the geometry of the receive antennas and their
grouping.
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APPENDIX

Let x and y be zero-mean jointly circularly symmetric
complex Gaussian variables, with powers σ2

x and σ2
y , cross-

correlation E[xy∗] = ξσxσy , and ξ = ξR + jξI . We now aim
at computing the variance of the random variable xy∗.

Variable y can be written as a function of x as

y = ξ∗
σy

σx
x+

√
σ2
y − |ξσy|2w, (56)

with w zero-mean unitary-variance circularly symmetric com-
plex Gaussian variable, independent of x.

Then the variance of the random variable xy∗ is

E[|xy∗ − ξσxσy|2] = E[|xy∗|2) + |ξσxσy|2+
− 2E(ℜ{xy∗ξ∗σxσy}].

(57)

Since we have

E[|xy∗|2] = E[|x|4]|ξ|2
σ2
y

σ2
x

+ (σ2
y − |ξσy|2)σ2

x

= 2σ4
x|ξ|2

σ2
y

σ2
x

+ (σ2
y − |ξσy|2)σ2

x,

(58)

E [ℜ{xy∗ξ∗σxσy}] = σxσy[ξRℜ{xy∗} − ξIℑ{xy∗}] =
σ2
xσ

2
y|ξ|2,

(59)

we obtain

E[|xy∗ − ξσxσy|2] = 2|ξ|2σ2
xσ

2
y

+ σ2
xσ

2
y(1− |ξ|2)− 2σ2

xσ
2
y|ξ|2 + |ξ|2σ2

xσ
2
y = σ2

xσ
2
y.

(60)
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Madrid, Madrid, Spain, in 1996 and 2001. In
2000, she joined Universidad Carlos III de Madrid,
Madrid, where she has been an Associate Pro-
fessor since 2009 teaching several undergraduate
and graduate courses (M.Sc. and Ph.D.) related to
communication theory and digital communications.
Previously, she was a Telecommunication Engineer
with Telefónica. She performed several research

stays at the Information and Telecommunication Technology Center, The
University of Kansas, Lawrence (1998), Bell Laboratories, Crawford Hill, NJ
(2003-2006, 2015), Centre Tecnologic de Telecomunicacions de Catalunya,
Barcelona, Spain (2007), and Princeton University, Princeton, NJ (2011).
Her current research interests are signal processing for wireless commu-
nications, multiple-input multiple-output techniques, channel modeling in
wireless communications and game theory and machine learning techniques
applied to communications. In these fields, she has (co)authored more than
50 contributions to international journals and conferences.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3291917

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


