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Abstract

Edge inference refers to the use of artificial intelligent (AI) models at the network edge to provide

mobile devices inference services and thereby enable intelligent services such as auto-driving and

Metaverse towards 6G. However, departing from the classic paradigm of data-centric designs, the 6G

networks for supporting edge AI features task-oriented techniques that focus on effective and efficient

execution of AI task. Targeting end-to-end system performance, such techniques are sophisticated as

they aim to seamlessly integrate sensing (data acquisition), communication (data transmission), and

computation (data processing). Aligned with the paradigm shift, a task-oriented over-the-air computation

(AirComp) scheme is proposed in this paper for multi-device split-inference system. In the considered

system, local feature vectors, which are extracted from the real-time noisy sensory data on devices,

are aggregated over-the-air by exploiting the waveform superposition in a multiuser channel. Then the

aggregated features as received at a server are fed into an inference model with the result used for

decision making or control of actuators. To design inference-oriented AirComp, the transmit precoders

at edge devices and receive beamforming at edge server are jointly optimized to rein in the aggregation

error and maximize the inference accuracy. The problem is made tractable by measuring the inference

accuracy using a surrogate metric called discriminant gain, which measures the discernibility of two
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object classes in the application of object/event classification. It is discovered that the conventional

AirComp beamforming design for minimizing the mean square error in generic AirComp with respect

to the noiseless case may not lead to the optimal classification accuracy. The reason is due to the

overlooking of the fact that feature dimensions have different sensitivity towards aggregation errors

and are thus of different importance levels for classification. This issue is addressed in this work via

a new task-oriented AirComp scheme designed by directly maximizing the derived discriminant gain.

However, the resultant problem of joint transmit precoding and receive beamforming is nonconvex and

difficult to solve due to the complicated form of discriminant gain and the coupling between the control

variables. We overcome the difficulty using the successive convex approximation. The performance gain

of the proposed task-oriented scheme over the conventional schemes is verified by extensive experiments

targeting the application of human motion recognition.

I. INTRODUCTION

One main function of 6G networks is to provide artificial intelligent (AI) services such as

auto-driving, eHealth, and Metaverse, at the network edge [1], [2], [3], [4], [5]. Existing data-

driven services, i.e., transmitting multi-media data like voice, text, image, and video, focus on

throughput maximization where only the communication process is considered. On the contrary,

AI services at the network edge are goal oriented and aim to achieve the required accuracy and

latency for completing a specific task (see, e.g., [6], [7], [8]). The task execution typically involves

the tight integration of three processes, i.e., sensing for real-time data acquisition, communication

for data transmission, and computation for decision making [9], [10]. Then to efficiently support

edge-intelligence services drives an ongoing paradigm shift in wireless technologies from the

traditional data-centric design toward the task-oriented design for 6G [11], [12], [13], [14]. On the

other hand, edge-intelligence services rely on the deployment of trained AI models at the network

edge for decision making and timely response to a dynamic environment [15], [16], [17]. This

gives rise to an emerging research area, called edge inference. The design of edge inference faces

two main challenges. On one hand, the task-oriented techniques for efficient edge inference must

integrate sensing, communication, and computation, and thus their designs are sophisticated and

cross-disciplinary. On the other hand, efficient edge inference has to overcome a communication

bottleneck caused by the low-latency requirements of real-time AI services (e.g., human motion

recognition in auto-driving) and the need to upload the sensory data from potentially many

devices for aggregation to suppress sensing noise. One promising solution for these challenges

is called over-the-air computation (AirComp) that leverages the waveform-superposition property
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of a multi-access channel to realize over-the-air aggregation of analog modulated sensory data

simultaneously transmitted by multiple devices. The communication-and-computing integration

and the enabled simultaneous access promise to dramatically reduce multi-access latency and

suppress communication overhead when there are many devices. In this work, we design task-

oriented AirComp techniques to support communication-efficient edge inference.

Recent years have witnessed the advancements of edge inference on different fronts. Split

inference is arguably the most popular edge-inference architecture, which divides an AI model

into two parts: one deployed on resource-limited devices for feature extraction [via, e.g., principal

component analysis (PCA) or using a convolutional neural network], and the other at an edge

server for completing the remaining computation-intensive inference task. Thereby, the avoidance

of direct data uploading helps preserve data privacy and the offloading of computation-intensive

task to the server overcomes the devices’ resource constraints. These advantages motivate us to

adopt split inference in this work. One main research focus on edge split inference is to balance

the trade-off between the computation and communication overhead on edge device via, e.g.,

compressing the feature map of the split layer [18], [19], [20], a two-step pruning strategy [21],

progressive feature transmission [22], setting early existing point [23], [24], and joint source and

channel coding using deep neural networks [25]. However, the aforementioned designs focus

on the case of a single edge device. This pertains to scenarios where the device either senses

the source in a narrow view to obtain highly accurate sensory data by focusing a single angle,

or obtains a noise-corrupted wide-view sensory data for wide angle object detection by, e.g.,

scanning from angle to angle [26]. To address the incomplete feature space caused by the narrow-

view sensing, a multi-device cooperated multi-view edge inference scheme is proposed in [10]

to maximize the inference accuracy via the design of task-oriented sensing, computation, and

communication integration. However, the issue of suppressing the noise of wide-view sensory

data for inference accuracy enhancement remains unresolved and is the theme of this paper.

In this work, a multi-device edge inference system is considered. Each device obtains a noise-

corrupted version of the ground-true wide-view sensory data and extracts from it a noisy local

feature vector using simple linear operations like PCA. To suppress the sensing noise, we adopt

a common approach, which averages out the noise via a weighted sum of all local feature vectors

[27], [28]. To this end, the technique of AirComp can be employed to enhance the communication

efficiency due to its capability in supporting fast data aggregation from a large number of devices

[29]. Specifically, in AirComp, signals from all devices are allowed to transmit simultaneously
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over the same frequency band. At the receiver, the functional value of the aggregated signals

is directly calculated using the waveform superposition property of wireless channels, instead

of first decoding the individual data stream from each device. There has been comprehensive

research for the efficient implementation of AirComp, including the design of beamforming in

multi-input-multi-output (MIMO) system (see, e.g., [30], [31], [32], [33], [34]), power control

for combating the non-uniform channel fading (see, e.g., [35]), the investigation of tradeoff

between computation and energy efficiency (see, e.g., [36]), the design of unmanned aerial

vehicle (UAV) assisted AirComp (see, e.g., [37]), etc. In view of its low-latency merit in wireless

data aggregation, AirComp has been a promising technique widely exploited in federated edge

learning for communication efficiency enhancement (see, e.g., [38], [39], [40], [41], [42]). Most

recently, researchers have proposed an AirComp based edge inference system, where the same

inference task is performed in multiple devices and a server aggregates the local inference

results and makes a final decision based on majority voting [43]. However, such existing design

builds on the traditional on-device inference, which causes huge computation overhead at the

resource-limited edge devices. It remains an uncharted area to implement edge split inference

using AirComp, and thus motivates the current work.

In the considered multi-device edge inference system, the server is equipped with multiple

antennas and all devices are equipped with one single antenna. The server aggregates all local

feature vectors in a low-latency manner via AirComp to attain a denoised feature vector for the

subsequent inference task. In such a system, the transmit precoding and receive beamforming

need to be jointly designed to rein in the aggregation error caused by AirComp and maximize the

inference accuracy. It is noteworthy that the traditional AirComp design criterion, i.e., minimum

mean square error (MMSE) used in existing literature, is no longer effective for edge split

inference systems. To be specific, the schemes based on MMSE minimize the average distortion

between aggregated data by AirComp and the ideally aggregated one without any corruption

by channel fading and noise. However, in the context of edge inference, the MSE measure

fails to respect the fact that some feature dimensions are more sensitive to the aggregation

error than the others when the ultimate inference accuracy is concerned. As an example, a

classification task is shown in Fig. 1, whose feature vector has two elements (dimensions). It is

observed that feature element 2 is more tolerant to distortion than element 1 in terms of violating

the inference accuracy. Obviously, in the case of MMSE, the non-uniform importance levels

at different feature elements are ignored and thus may lead to poor performance. To address
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1

2

Feature element 1

Feature element 2

Class 1

Class 2

Classifier

1 Tolerant distortion (element 1)

2 Tolerant distortion (element 2)

Fig. 1. Various distortion tolerance of different feature elements in classification tasks: For a distortion level δ1 obtained under

the MMSE criterion, incorrect inference occurs if it is on element 1, but the inference result is correct if it is on element 2.

this issue, the best approach is directly maximizing the inference accuracy in the AirComp

design. However, it is not tractable to measure the instantaneous inference accuracy prior to

the execution of the inference task. Alternatively, this work adopts an approximate but tractable

metric, namely discriminant gain, as the surrogate accuracy measure for classification tasks.

The metric is originally proposed in [22] building on the well-known KL divergence [44].

Specifically, for arbitrary two classes in the Euclidean feature space, discriminant gain is the

distance of their centroids normalized by their covariance. With a larger distance, the two classes

are better separated, which implies a higher inference accuracy. However, the joint design of

transmit precoding and receive beamforming in AirComp under the criterion of discriminant gain

maximization still faces the challenges due to the complicated form of the objective function,

and the coupling between the control variables.

To address the challenges above, the solution framework for inference-task-oriented AirComp

is proposed in this paper. The detailed contributions are summarized below.

• Multi-device Over-the-air Inference Systems: An AirComp based multi-device edge split

inference system is established, where the feature vector used for inference at the server is

estimated by aggregating all noisy local feature vectors via AirComp. In each time slot, two

real feature elements are linearly analog modulated into a complex scalar symbol; feature

vectors of different devices are transmitted simultaneously as blocks of symbols. Under the

system settings, the impact of the sensing noise and channel noise on the inference accuracy

is theoretically characterized by the derived discriminant gain in closed-form.



6

• Task-oriented AirComp Transceiver Design for Edge Inference: Based on the derived

discriminant gain, a joint transmit precoding and receive beamforming design problem for

the over-the-air inference system is formulated as a problem of maximizing the discriminant

gain. To tackle the challenging non-convex problem, the method of variables transformation

is first applied to convert it to an equivalent difference of convex (d.c.) form, which is further

solved via using the technique of successive convex approximation (SCA) (see e.g., [45])

to yield a sub-optimal solution.

– It is noteworthy that the sub-optimal solution meet all the Karush – Kuhn – Tucker

(KKT) conditions of the original problem, from which one can derive the insight that the

optimal beam steered by a device to the edge server has the power inversely proportional

to the sensing noise incurred by the device. This further suggests that optimal joint

beamforming design should favor those devices with good sensing quality (i.e., small

sensing noise).

• Performance Evaluation: Extensive simulations using the wireless sensing simulator pro-

posed in [46] have been performed while taking into account the specific task of wide-

view human motion recognition with two inference models, i.e., support vector machine

(SVM) and multi-layer perception (MLP) neural network, respectively. It is demonstrated

that, for both models, maximizing the discriminant gain is effective in maximizing the

inference accuracy. Furthermore, it is demonstrated that the proposed scheme significantly

outperforms the benchmarking scheme (designed using the criteria of MMSE) in terms of

inference accuracy.

II. SYSTEM MODEL

A. Network and Sensing Model

Consider an edge inference system where there is one server equipped with a multi-antenna

access point (AP) and K single-antenna sensing devices (e.g., radar sensors and cameras), as

shown in Fig. 2. The server aims at aggregating the noisy local feature vectors, which are

extracted from the real-time noise-corrupted sensory data, on all devices to form a global denoised

feature vector for completing the remaining inference task. Specifically, the noise-corrupted

sensory data obtained by device k is given as

zk = z + ek, (1)
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Fig. 2. Model of Over-the-air Computation Based Edge Inference Systems.

where z = [z1, z2, ..., zS]
T is the ground-true sensory data of the source, zk = [zk,1, zk,2, ..., zk,S]

T

is the local observation of device k, ek is the sensing noise, and S is the dimension of the raw

sensory data. According to [27], [28], different elements of the sensing noise vector follow

identical and independent zero-mean Gaussian distributions:

ek ∼ N
(
0, ε2kI

)
, (2)

where N (·, ·) is the Gaussian distribution, ε2k is the sensing noise power, and I ∈ RS×S is the

identical matrix.

The server and the sensing devices communicate via wireless links. Time-division multiple

access is adopted. The channels are assumed to be static in each time slot and varying among

different slots. The channel gain of device k is denoted as hk ∈ CN , with N being the number

of receive antennas at the server and CN being a complex vector space with the dimension of

N . Moreover, the server is assumed to work as the coordinator and has the ability to acquire

the channel gains of all devices’ uplink links.

B. Feature Generation and Distribution

In this part, the feature generation procedure is first introduced, followed by the description

of the feature distribution.
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1) Feature Generation: As transmitting the raw sensory data with large dimensions causes

large communication overhead as well as violates the data privacy, an alternative approach is to

move the feature extraction part (e.g., PCA and convolutional operations) of an AI model on

devices. In this work, PCA is adopted to extract a latent low-dimensional feature sub-space from

the raw sensory data on each device. The detailed procedure is described as follows.

• At the training stage, PCA is first performed by the server over the offline training dataset

to extract the principal dimensions of each sample. The learning model is trained using the

principal feature dimensions.

• At the inference stage, before the server aggregates the local observations from each device,

the principal eigen-space is broadcast to each device. For each device, the local feature

vector is extracted by projecting the sensory data into the principal eigen-space, and then

transmitted.

Thereby, the extracted local feature vectors from the sensory data zk can be expressed as

xk = UTzk = UTz + UTek = x + dk, 1 ≤ k ≤ K, (3)

where U is a S×M real column unitary matrix representing the principal eigen-space of PCA,

M is the dimension of the principal feature eigen-space,

x = UTz = [x1, x2, ..., xM ]T , (4)

is the ground-true feature vector, and

dk = UTek, 1 ≤ k ≤ K, (5)

is the projected noise vector of device k. By substituting the distribution of ek in (2), the

distribution of dk can be derived as

dk ∼ N
(
0, ε2kI

)
, 1 ≤ k ≤ K, (6)

where the variance is derived from E
(
dTkdk

)
= E

(
UTeke

T
kU
)
= UTE(ekeTk )U = ε2kI.

2) Feature Distribution: By considering a classification inference task with L classes and

following the setting in [22], the ground-true feature vector x is assumed to follow a Gaussian

mixture as

F(x) = 1

L

L∑
`=1

F`(x), (7)
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Fig. 3. Geometric interpretation of discriminant gain in the feature space.

where F`(x) is the Gaussian distribution of x in terms of the `-th class. As PCA is performed,

different feature elements are linearly independent. Thereby, F`(x) can be written as

F`(x) = N (µ`,Σ) , 1 ≤ ` ≤ L, (8)

where µ` ∈ RM is the centroid of the `-th class, given as

µ` = [µ`,1, µ`,2, ..., µ`,M ]T , 1 ≤ ` ≤ L, (9)

and Σ ∈ RM×M is a diagonal covariance matrix, given as

Σ = diag{σ2
1, σ

2
2, ..., σ

2
M}. (10)

C. Inference Capability

In this work, the metric discriminant gain proposed in [22] is adopted as the inference accuracy

measure for classification tasks. For arbitrary two classes, the discriminant gain represents the

distance between their centroids in the Euclidean feature space under normalized covariance, as

presented in Fig. 3. That says, a larger discriminant gain between two classes means that they

are more likely to be differentiated, and thus implies a higher inference accuracy. In the sequel,

the mathematical model of discriminant gain is introduced.

Discriminant gain is derived from the well-known KL divergence proposed in [44]. Consider

an arbitrary class pair, say classes ` and `′ , and the feature space expanded by the feature vector
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x. Based on the distribution of x in (7) and according to [22], the pair-wise discriminant gain

is defined as

G`,`′ (x) = DKL

[
F`(x)

∥∥ F`′ (x)]+ DKL

[
F`′ (x)

∥∥ F`(x)] ,
=

∫
x

F`(x) log
[F`′ (x)
F`(x)

]
dx +

∫
x

F`′ (x) log
[ F`(x)
F`′ (x)

]
dx,

= (µ` − µ`′ )
T Σ−1 (µ` − µ`′ ) , ∀(`, `′),

(11)

where DKL(·‖·) is the KL divergence defined in [44]. As different feature elements are inde-

pendent, it follows that

G`,`′ (x) =
M∑
m=1

G`,`′ (xm), (12)

where xm is the m-th element in x and G`,`′ (xm) is given as

G`,`′ (xm) =

(
µ`,m − µ`′ ,m

)2
σ2
m

, 1 ≤ m ≤M, (13)

and the other notations follow that in (9) and (10). Then, the overall discriminant gain is defined

as the average of all pair-wise discriminant gains in (11), given as

G(x) =
2

L(L− 1)

L∑
`′=1

∑
`<`′

G`,`′ (x) =
2

L(L− 1)

L∑
`′=1

∑
`<`′

M∑
m=1

G`,`′ (xm) =
M∑
m=1

G(xm), (14)

where G(xm) is the discriminant gain of the m-th feature elements, given as

G(xm) =
2

L(L− 1)

L∑
`′=1

∑
`<`′

(
µ`,m − µ`′ ,m

)2
σ2
m

, 1 ≤ m ≤M. (15)

D. AirComp Model

The technique of AirComp is used to aggregate the local feature vectors {xk} from all devices,

as it can suppress the sensing noise and significantly enhance the communication efficiency.

Specifically, each device transmits a complex scalar symbol via the single antenna in each

time slot. The real part and the imaginary part of the complex scalar symbol contain one feature

element, respectively. At the server, AirComp is performed to aggregate the two feature elements

and estimate their ground-true versions. Thereby, the whole feature vector can be grouped into

different element pairs, which can be sequentially transmitted in a time-division way over several

time slots. Obviously, the design of AirComp in all time slots is the same. Without loss of

generality, in the sequel, the transmission in an arbitrary time slot is considered.
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Fig. 4. Block diagram of AirComp for Feature Aggregation.

Consider the case where the server aggregates the m1-th and m2-th local elements from

all devices, say {xk,m1 , xk,m2 , 1 ≤ k ≤ K}, to estimate the ground-true feature elements

{xm1 , xm2}. The procedure of AirComp is shown in Fig. 4 and is described as follows. For an

arbitrary device k, its local sensory data is first pre-processed by PCA to extract the principal

feature elements. Then, the m1-th and m2-th principal feature dimensions, say xk,m1 and xk,m2 ,

are combined in one symbol for transmission, as

sk = xk,m1 + jxk,m2 , 1 ≤ k ≤ K, (16)

where sk ∈ C is the transmitted symbol and j represents the imaginary unit. Next, sk is further

pre-coded with a scalar bk ∈ C and transmitted over a MIMO channel. At the server, the receive

signal is the aggregation of all transmit symbols, given as

ym =
K∑
k=1

hkbksk + n, (17)

where n is the additive white Gaussian noise with the following distribution:

n ∼ N
(
0, δ20I

)
, (18)

and δ20 is the noise variance. Next, a receive beamforming vector f ∈ CN is used to aggregate

all local symbols {sk} to generate the estimates of the ground-true feature elements xm1 and

xm2 . Specifically, the received symbol after receive beamforming can be written as

ŝ = fHym = fH
K∑
k=1

hkbksk + fHn. (19)
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It follows that the estimates are given by
x̂m1 = Re (ŝ) = Re

(
fH

K∑
k=1

hkbksk + fHn

)
,

x̂m2 = Im (ŝ) = Im

(
fH

K∑
k=1

hkbksk + fHn

)
,

(20)

where x̂m1 and x̂m2 are the estimates of xm1 and xm2 respectively, Re(·) and Im(·) are the

functions to extract real part and imaginary part of one complex number respectively, and other

notations follow that in (17). Finally, x̂m1 and x̂m2 are post-processed to output the discriminant

gain G(x̂m1) +G(x̂m2).

III. PROBLEM FORMULATION AND SIMPLIFICATION

A. Problem Formulation

Different from the traditional AirComp design, which aims at minimizing the distortion

between the estimated feature elements {x̂m1 , x̂m2} and the ground-true ones {xm1 , xm2} without

taking into account the performance metric of the specific tasks, in this work, the design objective

follows the task-oriented principle and maximizes the inference accuracy measured by the sum

discriminant gains of x̂m1 and x̂m2 , given as

max G = G(x̂m1) +G(x̂m2), (21)

where x̂m1 and x̂m2 defined in (20) are the estimates of the ground-true feature elements, and

G(x̂m1) and G(x̂m2) are the corresponding discriminant gains.

Besides, there is one constraint on the transmit power of each device, given by

bkE(sksHk )bHk ≤ Pk, 1 ≤ k ≤ K, (22)

where bk is the precoding scalar at device k, bHk is the hermitian of bk, sk is the transmit symbol,

and Pk is the total transmit power of device k. The transmit symbol variance, say E(sksHk ), can

be estimated from the offline training data samples, and thus is known by the edge server as

prior information. Therefore, the power constraint in (22) can be re-written as

bkb
H
k ≤ P̂k, 1 ≤ k ≤ K, (23)

where P̂k is the maximum transmit precoding power, given as

P̂k =
Pk

E(sksHk )
, 1 ≤ k ≤ K. (24)
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In summary, the discriminant gain maximization problem can be written as

(P1)
max
{bk},f

G = G(x̂m1) +G(x̂m2),

s.t. bkbHk ≤ P̂k, 1 ≤ k ≤ K.

(25)

The formulation of (P1) follows the task-oriented principle. To be specific, the inference accuracy

measured by the discriminant gain is maximized instead of using the MMSE criterion. That’s

because the MMSE criterion ignores the fact that a same distortion level on different feature

elements has different impacts on the inference accuracy, and thus leads to poor performance. The

task-oriented formulation, however, causes new challenges. To begin with, the discriminant gain

has a complicated non-convex sum-of-ratios form. Besides, the design of the receive beamforming

f and the precoding scalars {bk} are coupled [see (20)]. Moreover, the feature elements in the

received symbol are cross coupled, i.e., each estimated feature element defined in (20) could be

a linear combination of the ground-true elements xm1 and xm2 , due to channel rotation. This

leads to a complicated distribution of x̂m1 and x̂m2 , and thus a complicated expression of the

discriminant gains G(x̂m1) and G(x̂m2).

B. Discriminant Gains with Zero-Forcing Pre-coders

To address the challenges mentioned above, we simplify (P1) with two steps in this part. The

well-known zero-forcing (ZF) precoders are first used to simplify the estimated feature elements

{x̂m1 , x̂m2}. Then, based on the ZF precoders, the discriminant gains, i.e., G(x̂m1) and G(x̂m2),

are derived to simplify the objective function.

1) ZF precoders: First, the ZF design is given by

fHhkbk = ck, 1 ≤ k ≤ K, (26)

where fH is the receive beamforming vector, hk is the channel vector of device k, bk is the

precoder of device k, and ck ≥ 0 is a real number representing the receive signal strength, or

called steering power, from device k. Then, the ZF precoders can be derived as

bk =
ckh

H
k f

hHk ffHhk
, 1 ≤ k ≤ K. (27)

It follows that the power constraint in (P1) can be re-written as

c2k ≤ P̂kh
H
k ffHhk, 1 ≤ k ≤ K. (28)
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Besides, by substituting the precoders in (27) and ŝk in (16) into the estimates x̂m1 and x̂m2

in (20), we can obtain
x̂m1 = Re

(
K∑
k=1

cksk + fHn

)
=

K∑
k=1

ckxk,m1 + Re(fHn),

x̂m2 = Im

(
K∑
k=1

cksk + fHn

)
=

K∑
k=1

ckxk,m2 + Im(fHn),

(29)

where the notations follow that in (16), (20), and (27).

2) Discriminant Gains: To achieve the discriminant gain G, in the sequel, the distributions

of the local transmit feature elements {xk,m1 , xk,m2} are first derived. Then, based on the ZF

precoders, the distribution of the received elements {x̂m1 , x̂m2} are derived. Next, the discriminant

gains are obtained, followed by the derivation of a simplified problem of (P1).

First, recall the local elements xk,m1 and xk,m2 are given by

xk,mi = xmi + dk,mi , i = 1, 2, 1 ≤ k ≤ K, (30)

where the distribution of the ground-true element xm,i is given by

xmi ∼
1

L

L∑
`=1

N
(
µ`,mi , σ

2
mi

)
, i = 1, 2, (31)

according the distribution of x in (7), (9), and (10), and the distribution of the noise dk,mi is

given by

dk,mi ∼ N
(
0, ε2k

)
, i = 1, 2, (32)

according to the distribution of dk in (6). Subsequently, the following lemma in terms of xk,mi’s

distribution can be obtained.

Lemma 1. The distribution of the local elements {xk,mi} can be derived as

xk,mi ∼
1

L

L∑
`=1

N
(
µ`,mi , σ

2
mi

+ ε2k
)
, i = 1, 2, 1 ≤ k ≤ K, (33)

Proof: Please see Appendix A.

Then, by substituting the distributions of {xk,m1 , xk,m2} in (33) and the distribution of the

channel noise n in (18) into the received feature elements {x̂m1 , x̂m2} in (29), their distributions

can be derived as shown in Lemma 2.
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Lemma 2. The distribution of the estimated feature elements {x̂k,mi} are given by

x̂mi ∼
1

L
N
(
µ̂`,mi , σ̂

2
mi

)
, i = 1, 2, (34)

where the centroids {µ̂`,mi} and the variance {σ̂2
mi
} are

µ̂`,mi =
K∑
k=1

ckµ`,mi , i = 1, 2,

σ̂2
mi

= σ2
mi

(
K∑
k=1

ck

)2

+
K∑
k=1

c2kε
2
k +

δ20
2

(
fT1 f1 + f2f2

)
, i = 1, 2,

(35)

δ20 is the channel noise power, f1 = Re(f) and f2 = Im(f) are the real part and imaginary part

of the receive beamforming f respectively, and other notations follow that in (31) and (32).

Proof: Please see Appendix B.

Next, based on the distributions in Lemma 2 and the definition of discriminant gain in (15),

the discriminant gains of {xk,m1 , xk,m2} can be derived as

G(x̂mi) =
2

L(L− 1)

L∑
`′=1

∑
`<`′

(
µ̂`,mi − µ̂`′ ,mi

)2
σ̂2
mi

, i = 1, 2, (36)

where {µ̂`,mi} and {σ̂2
mi
} are defined in (35).

Finally, by substituting the discriminant gains of {xk,m1 , xk,m2} in (36) and the power constraint

in (28) into (P1), it can be equivalently derived as

(P2)
max
{ck},f1,f2

G =
2

L(L− 1)

2∑
i=1

L∑
`′=1

∑
`<`′

(
µ̂`,mi − µ̂`′ ,mi

)2
σ̂2
mi

,

s.t. c2k ≤ P̂kh
H
k

(
f1f

T
1 + f2f

T
2

)
hk, 1 ≤ k ≤ K,

(37)

where the notations follow that in (35).

IV. JOINT POWER CONTROL AND RECEIVE BEAMFORMING FOR TASK-ORIENTED AIRCOMP

In this section, variables transformation is first applied to derive (P2) into an equivalent d.c.

problem. Then, the method of SCA is adopted to address it and obtain the joint design of

steering power control and receive beamforming. Finally, the struction of the obtained solution

is investigated.
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A. An Equivalent D.C. Problem

In this part, to simplify (P2), the following variables are first defined:

α`,`′ ,mi =

(
µ̂`,mi − µ̂`′ ,mi

)2
σ̂2
mi

, ∀(`, `′ ,mi), (38)

where α`,`′ ,mi represents the per class pair discriminant gain of the mi-th received element x̂mi .

It follows that (P2) can be equivalently derived as

max
{ck},f1,f2,

{
α
`,`
′
,mi

} G =
2

L(L− 1)

2∑
i=1

L∑
`′=1

∑
`<`′

α`,`′ ,mi ,

s.t. c2k ≤ P̂kh
H
k

(
f1f

T
1 + f2f

T
2

)
hk, 1 ≤ k ≤ K,(

µ̂`,mi − µ̂`′ ,mi
)2

= α`,`′ ,miσ̂
2
mi
, ∀(`, `′ ,mi),

(39)

where (
µ̂`,mi − µ̂`′ ,mi

)2
=

(
K∑
k=1

ck

)2 (
µ`,mi − µ`′ ,mi

)2
,∀(`, `′ ,mi), (40)

and

σ̂2
mi

=

σ2
mi

(
K∑
k=1

ck

)2

+
K∑
k=1

c2kε
2
k +

δ20
2

(
fT1 f1 + fT2 f2

) , ∀(`, `′ ,mi). (41)

Then, it can be shown that using symmetric real and imaginary receive beamformers can

achieve the optimal solution of the probelm in (39), as presented in the following lemma.

Lemma 3 (Symmetric Receive Beamformers). Symmetric real and imaginary receive beamform-

ers, as in (42), will not influence the optimality of the problem in (39).

f1 = f2 = f̂ . (42)

Proof: Please see Appendix C.

Besides, it can be further proved that extending the feasible region of the second constraint

of the problem in (39), i.e., the equality constraint, has no influence on its optimal solution, as

equality should be achieved to obtain the optimum, as presented in Lemma 4.

Lemma 4 (Equivalent Extended Feasible Region). A problem, which extends the feasible region

of the second constraint of the problem in (39) as(
K∑
k=1

ck

)2 [(
µ`,mi − µ`′ ,mi

)2
α`,`′ ,mi

− σ2
mi

]
≥

K∑
k=1

c2kε
2
k + δ20 f̂

T f̂ , ∀(`, `′ ,mi), (43)
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and keeps the other constraints and the objective function, achieves the same optimal solution

to the problem in (39).

Proof: Please see Appendix D.

Next, based on Lemmas 3 and 4, the problem in (39) can be equally derived as

(P3)

max
{ck},f̂ ,{α`,`′ ,mi

}
G =

2

L(L− 1)

2∑
i=1

L∑
`′=1

∑
`<`′

α`,`′ ,mi ,

s.t. c2k −Rk(f̂) ≤ 0, 1 ≤ k ≤ K,

K∑
k=1

c2kε
2
k + δ20 f̂

T f̂ + σ2
mi

(
K∑
k=1

ck

)2

−Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
≤ 0, ∀(`, `′ ,mi),

where Rk(f̂) and Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
are the functions defined as

Rk(f̂) = 2P̂kh
H
k f̂ f̂Thk, q ≤ k ≤ K,

Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
=

(
K∑
k=1

ck

)2

×
(
µ`,mi − µ`′ ,mi

)2
α`,`′ ,mi

, ∀(`, `′ ,mi).
(44)

Although (P3) is non-convex due to the two constraints therein, it is a d.c. problem as presented

in the following lemma.

Lemma 5. (P3) is a d.c. problem, since c2k, Rk(f̂),
K∑
k=1

c2kε
2
k+δ

2
0 f̂
T f̂+σ2

mi

(
K∑
k=1

ck

)2

, Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
,

and the objective function are differentiable and convex.

Proof: See Appendix E.

In the sequel, the SCA method is used to get a sub-oprimal solution based on Lemma 5.

B. SCA Based Solution Approach

In this part, the SCA approach is used to address (P3) for obtaining a sub-optimal solution

based on Lemma 5 by iterating over the following two steps:

• Convex relaxation: Based on a feasible reference point, (P3) is relaxed into a convex

problem, whose feasible region is a subset of that of (P3). Hence, the solution to the

relaxed problem is guaranteed to be feasible for (P3).

• Reference point updating: The solution of the relaxed convex problem is used as the new

reference point for the next iteration.
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This process iterates till convergence and the final result can be guaranteed to satisfy the KKT

conditions of (P3) [45]. In the sequel, the approach of convex relaxation is first presented,

followed by the summary of the overall joint steering power control and receive beamforming

algorithm.

1) Convex Relaxation of (P3): Consider an arbitrary SCA iteration (t+1), the reference point

is the solution of the relaxed problem in the previous iteration and is denoted as {f̂ [t], c[t]k , α
[t]

`,`′ ,mi
}.

According to Lemma 5, Rk(f̂) and Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
are differntiable and convex, and hence

are no less than their corresponding first-order Taylor expansions at the reference point:
Rk

(
f̂
)
≥ R̂

[t]
k

(
f̂
)
,

Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
≥ Q̂

[t]

`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
, ∀(`, `′ ,mi).

(45)

In the equation above, R̂[t]
k

(
f̂
)

and Q̂[t]

`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
are the corresponding first-order linear

expansion functions, given by

R̂
[t]
k

(
f̂
)
= R(f̂ [t]) + 4P̂k(f̂ − f̂ [t])H

(
hHk f̂ [t]hk

)
, 1 ≤ k ≤ K, (46)

and

Q̂
[t]

`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
=Q

(
{c[t]k }, α

[t]

`,`′ ,mi

)
+

K∑
k=1

A
[t]
k

(
ck − c[t]k

)
+B

[t]

`,`′ ,mi
(α`,`′ ,mi − α

[t]

`,`′ ,mi
),

(47)

where 

A
[t]
k =

∂Q

∂ck

∣∣∣∣
ck=c

[t]
k

=
2
∑K

k=1 c
[t]
k

(
µ`,mi − µ`′ ,mi

)2
α
[t]

`,`′ ,mi

,

B
[t]

`,`′ ,mi
=

∂Q

∂α`,`′ ,mi

∣∣∣∣
α
`,`
′
,mi

=α
[t]

`,`
′
,mi

= −


(∑K

k=1 c
[t]
k

) (
µ`,mi − µ`′ ,mi

)
α
[t]

`,`′ ,mi

2

.

(48)

Next, by substituting the inequalities in (44) into (P3), a relaxed problem can be derived as

(P4)

max
{ck},f̂ ,{α`,`′ ,mi

}
G =

2

L(L− 1)

2∑
i=1

L∑
`
′
=1

∑
`<`
′

α`,`′ ,mi ,

s.t. c2k ≤ R̂
[t]
k

(
f̂
)
, 1 ≤ k ≤ K,

Q̂
[t]

`,`
′
,mi

(
{ck}, α`,`′ ,mi

)
−
(

K∑
k=1

ck

)2

σ2
mi
≥

K∑
k=1

c2kε
2
k + δ20 f̂

T f̂ , ∀(`, `′ ,mi),
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where R̂
[t]
k

(
f̂
)

and Q̂
[t]

`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
are defined in (46) and (47), respectively. (P4) is

convex. The proof is straightforward and hence omitted. To address (P4), the well-known CVX

toolbox can be used [47].

2) Task-oriented AirComp Design: Based on the convex relaxation approach above, (P3) can

be addressed by using the SCA method, which iteratively solves the relaxed convex problem

(P4), and updates the reference point using the obtained solution. The detailed procedure is

summarized in Algorithm 1.

Algorithm 1: Joint Power Control and Receive Beamforming for Task-oriented AirComp
1: Input: Channel gains {hk}.
2: Initialize t = 0 and {f̂ [0], c[0]k , α

[0]

`,`′ ,mi
}, which is in the feasible region of (P3).

3: Loop

4: t = t+ 1.

5: Derive (P4), based on the reference point {f̂ [t−1], c[t−1]k , α
[t−1]
`,`′ ,mi

}.
5: Solve (P4) and obtain the optimum as {f̂ [t], c[t]k , α

[t]

`,`′ ,mi
}.

6: Until Convergence

7: The solution is

f̂∗ = f̂ [t],
{
c∗k = c

[t]
k , 1 ≤ k ≤ K

}
,
{
α∗
`,`′ ,mi

= α
[t]

`,`′ ,mi
, ∀(`, `′ ,mi)

}
.

8: Output: f̂∗, {c∗k}, and {α∗
`,`′ ,mi

}.

C. A Property of Transmit Power Control

As mentioned, the SCA based solution obtained by Algorithm 1 satisfies the KKT conditions

[45]. In this part, some of these conditions are used to find the structure of the solved steering

power of each device. To begin with, the Lagrangian function of (P3) is given by

LP3 = −
2

L(L− 1)

2∑
i=1

L∑
`′=1

∑
`<`′

α`,`′ ,mi +
K∑
k=1

βk

(
c2k − 2P̂kh

H
k f̂ f̂Thk

)

+
2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,mi

 K∑
k=1

c2kε
2
k + δ20 f̂

T f̂ + σ2
mi

(
K∑
k=1

ck

)2

−Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

) , (49)

where {βk ≥ 0} and {λ`,`′ ,mi ≥ 0} are Lagrange multipliers.
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Some useful KKT conditions are given by

∂LP3

∂ck
= 0, 1 ≤ k ≤ K,

c2k ≤ 2P̂kh
H
k f̂ f̂Thk, 1 ≤ k ≤ K,

βk

(
c2k − 2P̂kh

H
k f̂ f̂Thk

)
= 0, 1 ≤ k ≤ K.

(50)

From the first condition, we can obtain

βkck +
2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,mi

[
ckε

2
k +

(
K∑
k=1

ck

)(
σ2
mi
−
(
µ`,mi − µ`′ ,mi

)2
α`,`′ ,mi

)]
= 0, (51)

for all 1 ≤ k ≤ K. By using a normalized steering power as c′k = ck/(
∑K

k=1 ck) and substituting

βk in (51), the above condition can be further derived as

c
′

k =

∑2
i=1

∑L
`′=1

∑
`<`′ λ`,`′ ,mi

(
(µ`,mi − µ`′ ,mi)2/α`,`′ ,mi − σ2

mi

)
βk +

∑2
i=1

∑L
`′=1

∑
`<`′ λ`,`′ ,miε

2
k

, 1 ≤ k ≤ K. (52)

From the second condition in (50), we have

ck ≤
√

2P̂khHk f̂ f̂Thk, (53)

where the equality is achieved when βk 6= 0 according to the third condition in (50). Then,

togethering with (52), the normalized steering power of device k is given as

c
′

k =



2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,mi
(
(µ`,mi − µ`′ ,mi)2/α`,`′ ,mi − σ2

mi

)
2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,miε
2
k

, if βk = 0,

√
2P̂khHk f̂ f̂Thk

K∑
k1=1, k1 6=k

ck1 +
√
2P̂khHk f̂ f̂Thk

, if βk 6= 0,

(54)

where ck1 with k1 6= k is irrelevant to the channel gain and sensing noise power of device k

according to (52) and (53). Several observations can be made from (54). If the transmit power

or the channel magnitude is large enough, i.e., βk = 0 and the equality in (53) is not achieved,

the normalized steering power of device k, say c
′

k, is inversely proportional to its sensing data

noise power ε2k. Otherwise (i.e., βk 6= 0), c′k is an increasing function of its channel magnitude.
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V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Communication model: In this experiment, a multi-user single-input multiple-output net-

work is considered, where K single-antenna devices are distributed randomly within a circle

with a radius of 50 meters. The multi-antenna AP (edge server) is located at the circle cen-

ter. For the k-th device, the channel gain hk is modeled as hk = |ϕkρk|2, where ϕk and

ρk stand for the large-scale and small-scale fading propagation coefficients, respectively. The

large-scale propagation coefficient (in dB) is modeled as [ϕk]dB = −[PLk]dB + [ζk]dB, where

[PLk]dB = 128.1 + 37.6 log10 distk (distk is the distance in kilometer) is the path loss in dB, and

[ζk]dB accounts for the shadowing in dB. In the simulation, [ζk]dB is a Gauss-distributed random

variable with mean zero and variance σ2
ζ . Besides, Rayleigh small-scale fading is assumed, i.e.,

ρk ∼ CN (0, I).

2) Inference task: A concrete classification task of human motion recognition to identify four

distinct human motions, i.e., child walking, child pacing, adult walking, and adult pacing, is

considered. The wireless sensing simulator proposed in [46] is adopted to generate the datasets

for this task. Using similar settings as [48], the heights of adults and children are assumed to be

uniformly distributed in the intervals [1.6m, 1.9m] and [0.9m, 1.2m], respectively. The speeds of

standing, walking, and pacing are set as 0 m/s, 0.5H m/s, and 0.25H m/s, respectively, where

H is the height value. The heading of the moving human is set to be uniformly distributed in

[–180◦, 180◦].

3) Inference model: Two AI models based on SVM and MLP neural networks are used for

the inference task. The neural network model consists of two hidden layers, each with 80 and

40 neurons. The total number of training data samples is 6400, which are assumed to have

no noise corruption during the training of both AI models. The testing dataset includes 1600

noise-corrupted data samples, where the noise power is determined by the three schemes.

Unless specified otherwise, other simulation parameters are stated in Table I. All experiments

are implemented using Python 3.8 on a Linux server with one NVIDIA® GeForce® RTX 3090

GPU 24GB and one Intel® Xeon® Gold 5218 CPU.

B. Inference Algorithms

For comparison, we consider three schemes as follows.
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TABLE I

SIMULATION PARAMETERS

Parameter Value Parameter Value

Number of ISAC devices, K 3 Channel noise variance, δ20 1

feature noise variance, ε2k 0.4 Number of receive antennas, Nr 8

Number of dimension after PCA, NK 12 Number of classes, L 4

Training data sizes, B 6400 Transmit power, Pk 12 mdB

Variance of shadow fading, σ2
ζ 8 dB Communication channel noise power, δ2c 10−11 W
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Fig. 5. Inference accuracy versus discriminant gain.

• Baseline: In this scheme, random receive beamformer is first used, and then the transmit

precoders are selected to satisfy the constraint in (P1).

• Weighted subspace centroid: All the parameters are allocated following the AirComp scheme

in [31], where the design criterion is MMSE and channel equalization of all devices is

performed.

• Joint design of transmit precoding and receive beamforming (our proposal): All parameters

are set to follow the proposed scheme Algorithm 1.

C. Experimental Results

This part starts from presenting the relation between the discriminant gain and the corre-

sponding inference accuracy of the two models. Then, the three schemes are compared for both

models in terms of the changing number of devices and transmit power. Finally, the influence

of feature elements’ number on the inference accuracy is shown.
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(a) Inference accuracy with SVM versus number of devices
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(b) Inference accuracy with MLP versus number of devices

Fig. 6. Inference accuracy comparison among different models under differenct number of devices.

1) Inference accuracy v.s. discriminant gain: In Fig. 5, the relation between inference ac-

curacy and discriminant gain for the SVM model and the MLP neural network is presented.

To investigate the relation, different values of discriminant gain are obtained by using different

transmit power on devices. From the figure, for both models, it is seen that the inference accuracy

increases as the discriminant gain grows. Additionally, the SVM beats the neural network, as the

training of the latter is overfitting, which has a complex model compared to the simple dataset.

2) Inference accuracy v.s. number of devices: The inference accuracy of both models is

shown in Fig. 6 in terms of a changing number of devices. It is observed that our proposed

scheme has the best performance. Besides, the performance of the weighted subspace centroid

scheme decreases with the number of devices. The reason is as follows. Channel equalization

is performed among all devices under the target of MMSE in this scheme. As a result, with a

growing number of devices, the possibility of deep fading channels increases, which leads to

a higher distortion level. Better inference accuracy is obtained in the baseline scheme and our

proposed scheme, as the number of devices increases. This is because under the task-oriented

principle, different steering powers are permitted for different devices, and thus the data diversity

provided by more devices can be fully exploited.

3) Inference accuracy v.s. transmit power: The inference accuracy of both models under

various transmit powers is shown in Fig. 7. In both cases, improved inference accuracy is acquired

as the transmit power rises, since larger transmit powers can more effectively suppress the channel

noise. As well, our proposed scheme outperforms the other two schemes.
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(a) Inference accuracy with SVM versus transmit power
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(b) Inference accuracy with MLP versus transmit power

Fig. 7. Inference accuracy comparison among different models under different transmit power.
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(a) Inference accuracy with SVM versus PCA dimension
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(b) Inference accuracy with MLP versus transmit power

Fig. 8. Inference accuracy comparison among different models under differenct PCA dimension.

4) Inference accuracy v.s. number of feature elements: The inference accuracy of both models

in terms of the number of used feature elements in the task is shown in Fig 8. Specifically,

the number of used feature elements is sequentially increased following the order of the PCA

dimensions from the largest to the least. From the figure, the inference accuracy increases as

the number of used feature elements in the inference task. That’s because more feature elements

increase the dimensions of feature space so that different classes can be better differentiated

and a better discriminant gain can be achieved. In addition, the accuracy turns to be saturate at

a large number of feature elements, since the added least important feature elements have less

contribution to the discriminant gain and the inference accuracy.
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The extensive experimental results presented above demonstrate the best performance of the

proposed optimal scheme and verify our theoretical analysis.

VI. CONCLUSION

To enhance the performance of multi-device edge inference systems, this paper proposed a

task-oriented AirComp scheme. To alleviate the influence of sensing noise on the inference

accuracy, it aggregated the noise-corrupted local feature vectors to generate a global one at the

server for completing the task. Instead of using the conventional design criterion MMSE, the

task-oriented AirComp scheme aimed at directly maximizing the inference accuracy measured

by an approximate but tractable metric, called discriminant gain, which represents the averaged

centroids distances of different class pairs normalized by their covariance in the Euclidean feature

space. A larger discriminant gain means that the classes are better separated, and thus indicates

a higher inference accuracy. This task-oriented problem, however, was non-convex due to the

complicated form of discriminant gain as well as the couple of transmit precoding and receive

beamforming. To tackle this problem, variables transformation was first applied to derive an

equivalent d.c. problem. Then, a joint scheme of transmit precoding and receive beamforming

was proposed to address the d.c. problem based on the SCA approach. The performance of the

proposed scheme was verified using extensive numerical results of a concrete classification task

of human motion recognition.

It is noteworthy that the theoretical analysis presented in this work holds for all types of the

AI models, from general linear models like SVM to deep neural networks (DNNs), but highly

depends on the assumption that the feature vector follows a mixture of Gaussians distribution.

We remark that, in some AI tasks, this assumption may not strictly hold, since either the raw data

generated by the source or the feature maps generated by the intermediate layers of a DNN may

not follow Gaussian distribution. To tackle this issue, a practical approach is to first fit the data to

a mixture of Gaussians distribution approximating the ground-truth. Then, the proposed scheme

can be extended to these AI tasks, and its performance is verified via extensive experiments

based on a high-fidelity human-motion recognition dataset (Please refer to Section V).

This work opens several interesting directions. One is the device selection for further accuracy

enhancement by excluding the devices with a weak channel or high sensing noise. Another is

to extend the current design to the case where devices are equipped with multi antennas.
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APPENDIX

A. Proof of Lemma 1

First, according to (30), xmi can be decomposed into the avegrage of L indepdent Gaussian

variables, as xmi =
1

L

L∑̀
=1

x`,mi , i = 1, 2, where the distribution of xmi,` is

x`,mi ∼ N
(
µ`,mi , σ

2
mi

)
, 1 ≤ ` ≤ L, i = 1, 2. (55)

Then, by substituting the above equation into the local elements defined in (31), we have

xk,mi =
1

L

L∑
`=1

x`,mi + dk,mi , 1 ≤ k ≤ K, i = 1, 2. (56)

It follows that

xk,mi =
1

L

L∑
`=1

x`,k,mi , 1 ≤ k ≤ K, i = 1, 2. (57)

where x`,k,mi = x`,mi + dk,mi . Next, by substituting the distributions of x`,mi in (55) and the

distribution of dk,mi in (32), the distribution of x`,k,mi can be derived as

x`,k,mi ∼ N
(
µ`,mi , σ

2
mi

+ ε2k
)
, 1 ≤ k ≤ K, & ≤ ` ≤ L, & i = 1, 2. (58)

It follows that the distribution of xk,mi can be derived as

xk,mi ∼
1

L

L∑
`=1

N
(
µ`,mi , σ

2
mi

+ ε2k
)
, i = 1, 2, & 1 ≤ k ≤ K. (59)

B. Proof of Lemma 2

First, for the received symbol ŝ in (19), the received noise can be derived as

fHn = (f1 + jf2)
H(n1 + jn2) = fT1 n1 + fT2 n2 + j(fT1 n2 − fT2 n1), (60)

where f1 and f2 are the real part and imaginary part of f respectively, and n1 and n2 are the

real part and imaginary part of the Guassian noise n respectively. Specifically, we have

n1 ∼ N
(

0,
δ20
2

I

)
, n2 ∼ N

(
0,
δ20
2

I

)
(61)

where δ20 is the noise variance. Then, for the real part of the received noise, its expectation can

co-variance can be derived as

E
[
Re(fHn)

]
= E

[
fT1 n1 + fT2 n2

]
= 0, (62)

and

C =
[
Re(fHn)

]
= E

[(
fT1 n1 + fT2 n2

) (
fT1 n1 + fT2 n2

)T]
=
δ20
2

(
fT1 f1 + fT2 f2

)
. (63)
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That’s to say,

Re(fHn) ∼ N
(

0,
δ20
2

(
fT1 f1 + fT2 f2

))
. (64)

Similarly, it can be derived that the imaginary part of the received noise has the same distribution:

Im(fHn) ∼ N
(

0,
δ20
2

(
fT1 f1 + fT2 f2

))
. (65)

By substituting the noise distributions in (64) and (65) into the global estimates in (20) and using

the similar method in Appendix A, i.e., decomposing the local estimate xk,mi into the average

of L independent Gaussia variables, the distributions of the global estimates can be derived as

in (34).

C. Proof of Lemma 3

The Lagrange function of the problem in (39) can be written as

L =− 2

L(L− 1)

2∑
i=1

L∑
`′=1

∑
`<`′

α`,`′ ,mi +
K∑
k=1

βk

[
c2k − P̂khHk

(
f1f

T
1 + f2f

T
2

)
hk

]

+
2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,mi

[
α`,`′ ,miσ̂

2
mi
−
(
µ̂`,mi − µ̂`′ ,mi

)2]
,

(66)

where
(
µ̂`,mi − µ̂`′ ,mi

)2 is defined in (40) and σ̂2
mi

is defined in (41). KKT conditions are

necessary to achieve the optimal solution. Some useful KKT conditions are given below.

∂L
∂f1

= −2
K∑
k=1

βkP̂kh
H
k hkf1 +

2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,miα`,`′ ,miδ
2
0f1 = 0,

∂L
∂f2

= −2
K∑
k=1

βkPkh
H
k hkf2 +

2∑
i=1

L∑
`′=1

∑
`<`′

λ`,`′ ,miα`,`′ ,miδ
2
0f2 = 0.

(67)

It is observed from the above equations that f1 = f2 won’t influence the optimality of the problem.

D. Proof of Lemma 4

First, the second constraint in (39) can be equally written as(
µ̂`,mi − µ̂`′ ,mi

)2 ≥ α`,`′ ,miσ̂
2
mi
, ∀(`, `′ ,mi), (68)

The reason is as follows. In (68), if the equality is not achieved, the value of α`,`′ ,mi can be

increased to make the objective function in (39) larger. In other words, it’s necessary to achieve
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equality for obtaining the optimal solution. Then, by substituting
(
µ̂`,mi − µ̂`′ ,mi

)2 in (40) and

σ̂2
mi

in (41) into (68), it can be derived as(
K∑
k=1

ck

)2 (
µ`,mi − µ`′ ,mi

)2 ≥ α`,`′ ,mi

σ2
mi

(
K∑
k=1

ck

)2

+
K∑
k=1

c2kε
2
k + δ20 f̂

T f̂

 , ∀(`, `′ ,mi),

It follows that(
K∑
k=1

ck

)2 [(
µ`,mi − µ`′ ,mi

)2
α`,`′ ,mi

− σ2
mi

]
≥

K∑
k=1

c2kε
2
k + δ20 f̂

T f̂ , ∀(`, `′ ,mi). (69)

E. Proof of Lemma 5

It is straightforward that the objective function, c2k, Rk(f̂), and
K∑
k=1

c2kε
2
k+δ

2
0 f̂
T f̂+σ2

mi

(
K∑
k=1

ck

)2

are convex and differentiable, since they are either linear or combination of quadratic functions.

In the sequel, we show that Q`,`′ ,mi

(
{ck}, α`,`′ ,mi

)
, are convex and differentiable. To begin

with, Q
(
{ck}, α`,`′ ,mi

)
can be linearly transformed from the convex function, say f(x, y) =

x2

y
, x > 0, y > 0. As linear transformation preserves convexity, Q

(
{ck}, α`,`′ ,mi

)
is convex and

differentiable.
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[40] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Trans. Wireless Commun., vol. 19,

no. 5, pp. 3546–3557, 2020.
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