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Abstract—Reconfigurable intelligent surface (RIS) is a dis-
ruptive technology to enhance the performance of physical-
layer key generation (PKG) thanks to its ability to smartly
customize the radio environments. Existing RIS-assisted PKG
methods are mainly based on the idealistic assumption of an
independent and identically distributed (i.i.d.) channel model
at both the base station (BS) and the RIS. However, the i.i.d.
model is inaccurate for a typical RIS in an isotropic scattering
environment and neglecting the existence of channel spatial
correlation would possibly degrade the PKG performance. In
this paper, we establish a general spatially correlated channel
model and propose a new channel probing framework based
on the transmit and the reflective beamforming. We derive a
closed-form key generation rate (KGR) expression and formulate
an optimization problem, which is solved by using the low-
complexity Block Successive Upper-bound Minimization (BSUM)
with Mirror-Prox method. Simulation results show that compared
to the existing methods based on the i.i.d. fading model, our
proposed method achieves about 5 dB transmit power gain when
the spacing between two neighboring RIS elements is a quarter
of the wavelength. Also, the KGR increases significantly with the
number of RIS elements while that increases marginally with the
number of BS antennas.

Index Terms—Physical layer security, secret key generation,
reconfigurable intelligent surface, spatially correlated channels.

I. INTRODUCTION

In the last decades, the throughput of wireless communica-

tion systems has achieved a 1000-fold capacity increase [2].

At the same time, an enormous amount of confidential infor-

mation, including financial information and trade secrets, has

been exchanged via wireless channels. However, the broadcast

property of wireless medium makes wireless transmissions

vulnerable to security breaches, such as passive and active

attacks by potential eavesdroppers. Traditionally, security com-

munication is guaranteed by the public key cryptography
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techniques adopted in the application layer. However, the

public key in those traditional methods needs to be distributed

to the involved legitimate ends in advance, which is difficult

to realize in mobile and ad-hoc wireless networks. Alterna-

tively, physical-layer key generation (PKG) is recognized as

a promising paradigm to tackle this problem [3]. By lever-

aging the inherent random and reciprocal nature of wireless

channels, PKG naturally establishes symmetric keys between

the legitimate parties [4]. Also, due to its potential to achieve

information-theoretic security cost-effectively, PKG has been

applied to practical systems, such as WiFi, LoRa, and Zigbee,

et al [5], [6].

The general PKG procedures can be divided into four con-

secutive stages: channel sounding, quantization, information

reconciliation, and privacy amplification [7]. Specifically, for

the channel probing stage, Alice and Bob alternatingly ex-

change pilots and perform channel estimations in a coherence

time slot to extract correlated channel features. These features

are converted into binary bits in the quantization stage. Then,

in the information reconciliation stage, the mismatched bits

between Alice and Bob are corrected via error-correcting

codes. At last, during the privacy amplification stage, Alice

and Bob discard the bits that could be potentially leaked in

the previous stages. It can be observed that the feasibility

of the PKG is strongly associated with the properties of

wireless channels. Moreover, the existence of rich-scattering

and dynamically varying channels is the essential premise

to ensure the security level offered by the generated secret

key [5], [8].

Unfortunately, the above condition can hardly be satisfied in

some harsh propagation scenarios, such as shadowed environ-

ments [9]. As such, various previous works aim to enhance the

PKG performance in these propagation scenarios to a certain

extent by utilizing cooperative relaying [10]. However, the

relay-based PKG approaches admit two main demerits. First,

the key rate has limited growth unless the relay node keeps

moving all the time to introduce randomness to the secret

key [11]. Second, deploying active relays incurs high hardware

costs and energy consumption [12]. As a result, a new cost-

effective and energy-effective paradigm that is capable of

controlling the propagation environment is needed to facilitate

PKG.

As a remedy, reconfigurable intelligent surface (RIS) was

proposed to address this emerging need. In particular, RIS

is a programmable and reconfigurable metasurface consist-

ing of a large number of low-cost passive elements, e.g.,

printed dipoles and phase shifters [13], [14]. These elements

http://arxiv.org/abs/2211.03132v1
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are controlled collaboratively to alter the signal propagation

environment. Hence, RIS provides a cost-effective approach to

enable the customization of favorable wireless propagation en-

vironments for PKG while avoiding the deployment of power-

hungry and expensive cooperative relays. However, to fully un-

leash the potential of RIS for effective KGR provisioning, the

reflection coefficients of RIS elements have to be appropriately

optimized. Inspired by this, several works have been proposed

on the optimization design of RIS-assisted PKG systems, such

as [15]–[17], starting from single-user systems to multi-user

systems. In particular, the authors of [15] considered a simple

scenario with a single-user and independent eavesdropping

channels. They derived the expression of the KGR capacity

and optimized the switch states of RIS units globally when the

number of available RIS units is limited. Furthermore, RIS-

assisted PKG systems comprising multiple eavesdroppers with

correlated eavesdropping channels were investigated in [16],

where the authors designed a semidefinite relaxation (SDR)

and successive convex approximation (SCA)-based algorithm

to maximize the lower bound of the secret key capacity.

Despite the fruitful research in the literature, most of the above

works considered only the single-user case, e.g., [15], [16], and

their results are not applicable to practical cases having multi-

ple users. On the other hand, in [17], the authors introduced a

RIS-assisted multiuser key generation scheme and optimized

the RIS phase shifts in the presence of independent and

correlated eavesdropping channels. Nevertheless, all of these

works are based on the independent and identically distributed

(i.i.d.) Rayleigh fading model for the RIS-related channels.

In practice, the non-negligible spatial correlations naturally

exist among RIS elements due to their sub-wavelength sizes

and distributions. More importantly, these correlations may

jeopardize the PKG performance if they are not taken into

account in the system design [18]. In addition, only a single-

antenna BS was considered in these works, e.g., [15]–[17],

and it is not straightforward to extend these existing results

to the case of multi-antenna, which has a more complicated

model, and the reflective beamforming at RIS and transmit

beamforming at the BS need to be jointly optimized. Indeed,

the design of RIS-assisted PKG methods in multi-antenna

spatially correlated channels is of utmost importance but it

has not been studied in the existing works, yet.

To address the above issues, this paper investigates the

RIS-assisted PKG in a multiple-input single-output multiple-

eavesdropper (MISOME) system, with the consideration of

the spatial correlation at both the BS and the RIS. The main

contributions of this paper are as follows.

• We propose a transmit and reflective beamforming-based

RIS-assisted PKG framework in multi-antenna spatially

correlated channels. We derive the closed-form KGR

expression as a function of the reflective beamforming

at the RIS and the transmit beamforming at the BS. We

formulate the design of beamforming as an optimization

problem to maximize the minimum KGR for the worst-

case eavesdropper channel. Furthermore, our analysis

shows that the beamforming designed for the correlated

model outperforms that for the i.i.d. model while the

KGR gain increases with the channel correlation with

the proposed design.

• To tackle the resulting non-convex optimization problem,

we present an effective Block Successive Upper-bound

Minimization (BSUM)-based algorithm. We prove that

the BSUM algorithm yields a non-decreasing conver-

gence over iterations. Then, to solve the non-smooth

convex problem in each iteration of the BSUM algorithm

in a complexity-effective manner, we reformulate it as

an equivalent convex-concave saddle point problem and

employ the Mirror-Prox method to solve it with closed-

form updates.

• Simulation results show that compared to existing meth-

ods based on the i.i.d. fading model, the proposed design

achieves about 5 dB transmit power gain when the spac-

ing between two neighbouring RIS elements is a quarter

of the wavelength and the BS antenna correlation ρ is 0.2.

Also, the KGR gain increases with the spatial correlation

at both the BS and the RIS. Moreover, the computational

time of the proposed algorithm is reduced approximately

by two orders of magnitude compared to that of the com-

monly adopted algorithms, e.g., alternating optimization,

semidefinite relaxation, successive convex approximation

with Gaussian randomization (ASSG), while achieving a

similar KGR performance.

Note that in the conference version of this paper [1], we

considered the case where the eavesdropping channels are

independent of the legitimate channels and derived the optimal

beamforming to maximize the KGR. In this paper, we general-

ize it by taking into account the channel correlation between

Eve and the legitimate parties. We provide a general KGR

expression and formulate an optimization problem, which can

be solved by the proposed low-complexity BSUM algorithm.

Notations: In this paper, matrices and vectors are denoted by

boldface upper-case and boldface lower-case. CA×B denotes

the space of complex matrices of size A × B. ℜ(·) and

ℑ(·) stand for the real and imaginary parts of a complex

number. The imaginary unit of a complex number is denoted

by j =
√
−1. (·)∗, (·)T, and (·)H denote the conjugate,

transpose, and conjugate transpose, respectively. diag(x) is

a matrix whose main diagonal elements are the entries of

x. vec(X) denotes the vectorization of the matrix X . The

Kronecker product, Hadamard product, and Khatri-Rao prod-

uct are represented by ⊗, ◦, and ⊙, respectively. I(X ;Y )
and H(X,Y ) are the mutual information and joint entropy of

random variables X and Y , respectively. det(·) is the matrix

determinant. ||x||1, ||x||2, and ||x||∞ denote the ℓ1, ℓ2, and

ℓ∞ norms of vector x. ‖X‖F is the Frobenius norm of matrix

X . E{·} represents statistical expectation. λmax(X) is the

maximum eigenvalue of matrix X . O(·) is the big-O notation.

X � 0 means X is a positive semidefinite matrix. ∇f(·) and

∂f/∂x are the gradient operators of function f . I denotes the

identity matrix. b ∼ CN (0,Σ) denotes that b is a circularly

symmetric complex Gaussian (CSCG) vector with zero mean

and covariance matrix Σ.
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Fig. 1. The model of RIS-assisted secret key generation in MISOME systems.

II. SYSTEM MODEL

As shown in Fig. 1, we study a RIS-assisted PKG method

in a MISOME system. Assuming the time-division duplex-

ing (TDD) protocol is adopted, a multi-antenna base station

(BS), Alice, and a single-antenna user, Bob, aim to generate

symmetric keys by exploiting the reciprocity of the wireless

channel with the help of a RIS1. Meanwhile, a multi-antenna

eavesdropper, Eve, intends to obtain the secret key information

from his/her received signals.

We assume that Alice and Eve are equipped with M and

K antennas, respectively. The RIS consists of N passive

reflection elements. Equipped with a smart controller that

communicates with the BS, the RIS adapts the phase shift

of each reflecting element to enable the secret key generation

[20]. Since the spatial correlation affects the secret key rate,

we consider the general spatial correlation channel model at

both the RIS and the BS.

A. Channel Model

The direct channels of Alice-to-Bob, Eve-to-Bob, and Alice-

to-Eve are denoted by hab ∈ CM×1, heb ∈ CK×1, and

Hae ∈ CM×K , respectively. hak ∈ CM×1 denotes the

channel from Alice to Eve’s k-th antenna, k ∈ {1, · · · ,K}.
When a RIS is involved in the PKG system, it introduces

additional communication channels. Specifically, the channels

of RIS-to-Alice, RIS-to-Bob, and RIS-to-Eve are represented

as Gra ∈ CN×M , hrb ∈ CN×1, and Gre ∈ CN×K ,

respectively. hrk ∈ C
N×1 denotes the channel from the RIS to

Eve’s k-th antenna. To account for the spatial correlation, the

channel matrices are described by employing the Kronecker

correlation channel model as [21]

Gar = GT

ra = β
1
2
raR

1
2

S H̃R
1
2

I , (1)

hri = β
1
2

riR
1
2

I h̃ri, i ∈ {b, k}, (2)

haj = β
1
2

ajR
1
2

S h̃aj , j ∈ {b, k}, (3)

respectively, where RS ∈ CM×M and RI ∈ RN×N are the

spatial correlation matrices at Alice and the RIS, respectively

1The case studied in this paper can be directly extended to multi-users
scenarios, since the pilots used by different users are orthogonal to each other
in a single-cell system [19] and thus their PKG processes are independent.

[18]. In addition, H̃ ∈ CM×N , h̃ri ∈ CN×1, and h̃aj ∈
C

M×1 are random matrices with i.i.d. Gaussian random entries

of zero mean and unit variance. βra, βri, and βaj are the path

loss of the corresponding channels, respectively.

B. PKG Framework Based on Transmit and Reflective Beam-

forming

Now, we propose a new framework to take full advantage

of the RIS-assisted PKG in multi-antenna systems. In the

PKG system, Alice and Bob first perform channel probing

to acquire the reciprocal channel estimation. The process of

channel probing is described as follows.

Step 1: Uplink channel sounding. Bob transmits the publicly

known pilot su ∈ C with |su|2 = 1. Then, the equivalent

baseband signal received at Alice and Eve is expressed as

yu
l =

√
PB (GlrΦhrb + hlb) su + zl, l ∈ {a, e}, (4)

respectively, where Φ = diag{v} with each element |vn| ≤
1, ∀n ∈ {1, · · · , N}, is the reflection coefficients matrix of the

RIS. In addition, PB is the transmit power of Bob. The noise

follows the circularly symmetric complex Gaussian distribu-

tion, i.e., zl ∼ CN (0, σ2
l I), with σ2

l being the corresponding

noise variances. Then, Alice and Eve perform a standard least-

squares (LS) channel estimation [16], [17] as2

ĥu
l , s∗uy

u
l =

√
PB(GlrΦhrb + hlb) + z̃u

l , l ∈ {a, e}, (5)

respectively, where the estimation noise is z̃u
l = s∗uz

u
l and

ĥu
e = [ĥue1 , · · · , ĥueK ]T.

Step 2: Downlink channel sounding. Alice sends the down-

link publicly known pilot sd ∈ C with |sd|2 = 1 and the

signals received at Bob and Eve are

ydb = (hT

rbΦGra + hT

ab)wsd + zdb , (6)

yd
e = (GT

reΦGra +HT

ae)wsd + zd
e , (7)

respectively, where w ∈ CM×1 is the transmit beamforming

vector at Alice that satisfies ||w||22 ≤ PA with PA being the

maximum transmit power of Alice. zdb and zd
e are the additive

Gaussian noise with zdb ∼ CN
(
0, σ2

b

)
and zd

e ∼ CN
(
0, σ2

eI
)
.

After the LS estimation, Bob and Eve obtain the channel

estimates as

ĥb , s∗dy
d
b = (hT

rbΦGra + hT

ab)w + z̃b, (8)

ĥd
e , s∗dy

d
e = (GT

reΦGra +HT

ae)w + z̃u
e , (9)

respectively, where the noises are z̃db = s∗dz
d
b and z̃u

e = s∗dz
u
e ,

respectively, and ĥd
e = [ĥde1 , · · · , ĥdeK ]T.

Step 3: Reciprocal components acquisition. Since the esti-

mations obtained by Alice and Bob, as shown in (5) and (8),

are quite different in terms of both the dimensions and values,

we multiply Alice’s channel estimation ĥu
a by w to obtain the

combined reciprocal channel gain as

ĥa , wTĥu
a =

√
PBw

T(GarΦhrb + hab) + za, (10)

where the noise is za = wTz̃u
a .

Consequently, Alice’s combined channel gain, ĥa, and

Bob’s channel gains, ĥb, are highly correlated in general. After

2The LS is adopted since it has been widely used in practical systems [22].
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following the procedures of the PKG, i.e., quantization, infor-

mation reconciliation, and privacy amplification, the channel

gains are finally converted into secret keys [23]. Since these

steps are similar to those adopted in existing PKG methods,

such as [7], [5], in this paper, we focus on the channel probing

step, where the transmit and reflective beamforming are jointly

optimized to maximize the KGR.

III. PROBLEM FORMULATION AND TRANSFORMATION

In this section, based on the channel estimation acquired

in Sec. II, we derive the closed-form KGR expression and

formulate an optimization problem regarding the variables w

and v to improve the system performance.

We first formulate the KGR given Eve’s k-th antenna’s

channel estimation and maximize the minimal KGR3 [16].

Specifically, the KGR for Eve’s k-th antenna is defined as the

conditional mutual information of the legitimate parties’ chan-

nel estimations given the observation of Eve’s k-th antenna [7],

i.e., Rk = I
(
ĥa; ĥb | ĥdek , ĥuek

)
. Since Eve is located close to

Bob but locates far away from Alice, the channel estimated by

Eve in the uplink channel sounding is statistical independent

with the legitimate parties’ channel estimations [24]. Thus, we

have I
(
ĥa; ĥb | ĥdek , ĥuek

)
= I

(
ĥa; ĥb | ĥdek

)
. Therefore, the

KGR given Eve’s k-th antenna is given by [25], [26]

Rk = log2
det (RaekRbek )

det (Rabek)Rekek

, (11)

where the covariance matrices are denoted as

Ruek =

[
Ruu Ruek

Reku Rekek

]
, u ∈ {a, b}, (12)

Rabek =




Raa Rab Raek

Rba Rbb Rbek

Reka Rekb Rekek



 , (13)

respectively. Rxy = E

{
ĥxĥ

H

y

}
, x, y ∈ {a, b, ek} denotes the

channel covariances of the corresponding channel estimations.

Substituting the channel estimations into (11) and assuming

σ2
a = σ2

b = σ2
ek

= σ2, k ∈ {1, · · · ,K} for simplicity [16],

[17], we provide the following lemma to characterize the KGR.

Lemma 1. The KGR between Alice and Bob, given the chan-

nel estimation at Eve’s k-th antenna, is expressed as (14) at the

top of this page, where gu = (wTRSw
∗)(βrv

HR̃Iv + βab),
gkue = (wTRSw

∗)vHR̃r
bkv
√
βrβk

r + wTR̃d
bkw

∗
√
βabβak,

gke = (wTRSw
∗)(βk

r v
HR̃Iv + βak), R̃r

bk =

((R
1
2

I )
TRr

bk(R
1
2

I )
T) ◦ RI , R̃d

bk = R
1
2

SR
d
bkR

1
2

S , and

R̃I = RT

I ◦ RI . Also, βr = βraβrb, β
k
r = βraβrk, and the

covariance matrices are defined as Rr
bk

∆
= E{h̃∗

rkh̃
T

rb} and

Rd
bk

∆
= E{h̃abh̃

H

ak}.
Proof: See Appendix A.

Remark 1. From the KGR expression in (14), we can observe

that the KGR is only related to the beamforming vectors and

3The KGR expression and the beamforming design in this paper can also
be applied to the scenario with multiple single-antenna eavesdroppers.

statistical channel information, i.e., the covariance matrices.

Since the covariance matrices alter slowly in dense scattering

environments [21], we assume that these matrices have been

obtained from the previous several time slots by using existing

methods, such as the general maximum-likelihood estimation

in [27], and we focus on the beamforming optimization to

improve the PKG performance.

Remark 2. If the existing i.i.d. channel model assumptions are

adopted to optimize the RIS reflection coefficients, the spatial

correlation matrices RS and RI will be the identity matrices.

Hence, the wTRSw
∗ and vHR̃Iv in (14) are calculated as

PA and N , respectively. For the case of Rr
bk = ρkIN×N

and Rd
bk = ρkIM×M , where ρk is the channel correlation

between Eve and Bob, the beamforming design is considered

to be independent of the KGR. This observation highlights the

importance of taking into account the spatial correlation.

Thus, the beamforming design for spatially correlated chan-

nel models could be formulated as

max
w,v

min
k

{
I
(
ĥa; ĥb | ĥek

)}

s.t. C1: ||w||22 ≤ PA,

C2: |vn| ≤ 1, ∀n ∈ {1, · · ·N}, (15)

where C1 indicates the transmit beamforming is constrained

by the maximum transmit power budget at the BS, while

C2 represents the modulus constraint of each RIS reflection

coefficient.

It could be found that in problem (15), the variables w and

v are in high-order and coupled in the objective function. To

tackle this problem, we first simplify the optimization problem

by using the following lemma.

Lemma 2. The original problem (15) is equivalent to the

following problem:

max
w̄,v

min
k
{fk(w̄,v)}

s.t. C1,C2, (16)

where fk(w̄,v) = w̄HRSw̄vHR̄uv −
|w̄HRSw̄vHR̄r

bk
v+w̄HR̄d

bk
w̄|2

w̄HRSw̄vHR̄kv+σ2 , R̄u = βrR
T

I ◦ RI + βab

N
I,

R̄r
bk =

√
βrβk

r R̃
r
bk, R̄d

bk =
√
βabβakR̃

d
bk,

R̄k = βk
rR

T

I ◦ RI + βak

N
I, and the variable is defined

as w̄
∆
= w∗ for the sake of notational simplicity.

Proof: It can be proved by using Appendix B in [1] and

defining x = fk(w̄,v).
An intuitive solution to tackle problem (16) is to apply the

existing ASSG algorithm. Specifically, the ASSG algorithm

can be applied to alternatingly solve for w and v while fixing

the other variable, yielding two subproblems with respect to

w and v, respectively. In each subproblem, SDR-SCA with

Gaussian randomization in [16] can be then leveraged to

convexify the problem. However, in the ASSG algorithm, a

series of SDP problems generated by the SCA method need

to be solved at each alternating iteration. In fact, the number

of optimization variables in each SDP problem is the square of

the number of RIS elements or the BS antennas, contributing
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Rk = log2

((
PBgug

k
e + (PBgu + gke ||w||2)σ2 + ||w||22σ4 − PB|gkue|2

) (
gug

k
e + (gu + gke )σ

2 + σ4 − |gkue|2
)

[(PB + ||w||22) (gugke + (gu + gke )σ
2 + σ4 − |gkue|2)− PBσ2(gke + σ2)] (gke + σ2)σ2

)
. (14)

to a high-dimensional optimization problem [28]. At the same

time, in RIS-assisted wireless communication systems, the

RIS is often equipped with a large number of elements [29].

The required computational effort may be unaffordable when

ASSG is applied to solve Problem (16), which motivates us

to develop a new low-complexity algorithm for RIS-assisted

PKG systems.

IV. IMPACT OF DIFFERENT BEAMFORMING METHODS ON

PKG PERFORMANCE

Before solving Problem (16), in this section, we aim to com-

pare the PKG performance under the existing assumptions of

the i.i.d. channel model [15]–[17] and the spatially correlated

model when Eve experiences independent fading channels.

Lemma 3. In the case where the eavesdropping channels are

independent of the legitimate channels, the KGR increases

monotonically with w̄HRSw(βrv
HR̃Iv + βab).

Proof: See Lemma 1 in [1].

Remark 3. We first note that the channel correlation

between the uplink and downlink channels is Rab =√
PBw̄

HRSw(βrv
HR̃Iv + βab). Thus, when optimizing the

KGR, the overall channel correlations is increased with the

assistance of RIS. In addition, since w̄HRSw and βrv
HR̃Iv+

βba are both non-negative, solving Problem (16) is equivalent

to maximize these two terms separately. Thus, the optimal

solution to Problem (16) is w̄opt =
√
PAuλmax

and vn = ejθn

with θn = θ, ∀n ∈ {1, · · · , N}, where uλmax
is the dominant

eigenvector of the matrix RS corresponding to its maximum

eigenvalue λmax and θ could take on any value in the interval

of [0, 2π).

A. KGR under Different Assumptions of Channel Model at BS

As shown in Lemma 3, the KGR is proportional to

w̄HRSw̄. Under the assumption of the i.i.d. model, the spatial

correlation matrix RS is the identity matrix. In this case, the

design of transmit beamforming is independent of KGR. As

such, random beamforming w̃ =
√
PAw̃0/||w̃0||2 is applied

without loss of generality and optimality, where the entries

in w̃0 are i.i.d. random variables with zero mean. Then, the

expectation of w̃HRSw̃ can be calculated as E{w̃HRSw̃} =
PA, which is independent of the antenna number and the

spatial correlation at the BS. To investigate the performance

loss caused by the design based on the i.i.d. channel assump-

tion, we focus on a typical implementation model of multiple

antennas for massive multiple-input multiple-output (MIMO).

We consider a general uniform planar array (UPA) model,

where the spatial correlation matrix can be approximated as

RS ≈ Rh ⊗ Rv [30], where Rh � 0 and Rv � 0 are the

covariance matrices of the horizontal and the vertical uniform

linear array (ULA), respectively. The ULA spatial correlation

is modeled as a Toeplitz matrix with each element [Rl]i,j =
ρ|i−j|, l ∈ {h, v}, where 0 ≤ ρ ≤ 1 is the correlation index

among the antennas. Given the optimal transmit beamforming

w̄opt, we further characterize w̄H

optRSw̄opt via the following

lemma.

Lemma 4. For a UPA model, the upper and lower bounds for

w̄H
optRSw̄opt are given by

fl(N
t
H, N

t
V, ρ) ≤ w̄H

optRSw̄opt ≤ fu(N t
H, N

t
V, ρ), (17)

where fl(N
t
H, N

t
V, ρ) = PA

(

Nt

H(1−ρ2)−2ρ(1−ρN
t
H )

)

Nt

H
Nt

V
(1−ρ)4 ×(

N t
V(1− ρ2)− 2ρ(1− ρNt

V)
)

and fu(N
t
H, N

t
V, ρ) =

PA
(1+ρ2)(1−ρN

t
H

−1)(1−ρN
t
V

−1)
(1−ρ)2 . N t

H and N t
V are the number

of antennas at horizontal and vertical domains, respectively.

Proof: See Lemma 3 in the conference version of this

paper [1].

This lemma shows that both the upper and lower bounds

increase monotonically with the correlation coefficients ρ,

the number of antennas N t
H, and N t

V. This is because the

SNR of the combined channel gain increases with the spatial

correlation. Specifically, when ρ = 0, the bounds are fl =
fu = PA, which means the optimal transmit beamforming and

random beamforming achieve the same PKG performance in

the i.i.d. fading channels. In addition, it can be observed that

both the upper and lower bounds converge to PA(
1+ρ
1−ρ

)2 as

N t
H → ∞ and N t

V → ∞. This means that when the BS is

equipped with a large number of antennas, the KGR depends

only on the correlations among the antennas of the BS for a

given power. Also, the KGR increases monotonically with the

correlation coefficient ρ. The limit of w̄H
optRSw̄opt for ρ = 1

is PAN
t
HN

t
V, which is bounded by the transmit power and the

antenna numbers at the BS.

B. KGR under Different Assumptions of Channel Model at RIS

In Lemma 3, the KGR is proportional to vHR̃Iv. Under

the assumption of the i.i.d. channel model adopting in existing

works, e.g., [15]–[17], the spatial correlation matrix is R̃I =
I. By employing random reflection, the expectation of ṽHR̃I ṽ

is E{ṽHR̃I ṽ} = N, where each phase in ṽ can be drawn from

the uniform distribution, i.e., θ̃i ∼ U [0, 2π), i ∈ {1, · · · , N}.
Taking the spatial correlation model into account, the max-

imum value of vHR̃Iv is ||RI ||2F . In isotropic scattering

environments, the spatial correlation of RIS is expressed as

[18]

[RI ]n,m = sinc
2 ‖un − um‖2

λ
, ∀n,m ∈ {1, · · · , N}, (18)

where ‖un − um‖2 denotes the distance between the n-th RIS

element and the m-th RIS element, λ is the wavelength. Since

the sinc function sinc(x) = sinc(πx)/(πx) is monotonically

decreasing in interval [0, 1), the entries in R̃I is larger as the
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inter-element spacing becomes smaller, when the distance be-

tween each element pair fulfills ‖un − um‖2 ≤ λ
2 . Moreover,

the optimal value of vHR̃Iv satisfies ||RI ||2F > N because the

correlation between the elements always exists in practical RIS

systems [18]. Hence, the KGR performance of the proposed

reflective beamforming is better than the counterpart adopting

the assumption of the i.i.d. channel model.

C. Security Analysis

In the above analysis, we assume the channels between

Bob and Eve are independent. However, in reality Eve may

experience correlated channels w.r.t. Bob if Eve’s antennas are

close to Bob [23]. Therefore, we first analyze the information

leakage to Eve if the correlation between eavesdropping chan-

nels and legitimate channels is not considered when optimizing

w and v. To this end, we have the following Lemma.

Lemma 5. Assume that ρk is the cross channel correla-

tion between Bob and Eve [23], i.e., Rr
bk = ρkIN×N and

Rd
bk = ρkIM×M . Given the w̄opt and vopt in Remark 3, the

amount of information leaked to Eve increases with the spatial

correlation at the BS and the RIS grows.

Proof: Given the w̄opt and vopt, the second term in (16)

is denoted as

fe
k = ρ2k (λmax(RS))

2

(
‖RI‖2F

√
βrβk

r +
√
βabβak

)2

λmax(RS)(βk
r ‖RI‖2F + βak) + σ2

.

(19)

Since
∂fe

k

∂(λmax(RS)) ≥ 0 and
∂fe

k

∂(‖RI‖2
F
)
≥ 0, the amount of

information leaked to Eve is monotonically increasing for

λmax(RS) and ‖RI‖2F . Also, λmax(RS) and ‖RI‖2F increase

with the spatial correlation at the BS and the RIS, respectively.

This completes the proof.

Lemma 5 states the connections between spatial correlation

and security when the correlation between Bob and Eve’s

channels are ignored. In the following section, we will con-

sider a more general case, i.e., Problem (16), and propose an

effective algorithm to tackle it.

V. BSUM ALGORITHM FOR MAXIMUM KEY GENERATION

RATE

In this section, we propose an BSUM-based algorithm to

tackle Problem (16). We decompose the optimization vari-

ables, i.e., w̄ and v, into independent blocks and update the

blocks by successively maximizing a sequence of approxima-

tions of the objective function in (16).

A. The BSUM Algorithm for Problem (16)

For the simplicity of algorithm design, we first convert

Problem (16) from the complex domain to the real domain4.

By defining ṽ =
[
ℜ{v}⊤,ℑ{v}⊤

]⊤ ∈ R2N and w̃ =

4We transform the problem into the real domain since the modulus operator
of complex number in (16) makes the problem intractable.

[
ℜ{w̄}⊤,ℑ{w̄}⊤

]⊤ ∈ R2N , the optimization problem (16)

is equivalent to

max
w̃,ṽ

min
k

{
f̃k(w̃, ṽ)

}

s.t. C1: ‖w̃‖22 ≤ PA,

C2: ṽ2n + ṽ2n+N ≤ 1, ∀n ∈ {1, · · ·N}, (20)

where f̃k(w̃, ṽ) = w̃TR̃Sw̃ṽTR̃uṽ −
(w̃TR̃Sw̃ṽTQ̃r

k
ṽ+w̃TQ̃d

k
w̃)2

w̃TR̃Sw̃ṽTR̃kṽ+σ2
− (w̃TR̃Sw̃ṽTP̃ r

k
ṽ+w̃TP̃ d

k
w̃)2

w̃TR̃Sw̃ṽTR̃kṽ+σ2
,

Q̃l
k =

[
ℜ{ R̄

l

bk
+(R̄l

bk
)H

2 } −ℑ{ R̄
l

bk
+(R̄l

bk
)H

2 }
ℑ{ R̄

l

bk
+(R̄l

bk
)H

2 } ℜ{ R̄
l

bk
+(R̄l

bk
)H

2 }

]
,

P̃ l
k =

[
ℜ{ R̄

l

bk
−(R̄l

bk
)H

2j } −ℑ{ R̄
l

bk
−(R̄l

bk
)H

2j }
ℑ{ R̄

l

bk
−(R̄l

bk
)H

2j } ℜ{ R̄
l

bk
−(R̄l

bk
)H

2j }

]
, l ∈ {r, d},

and Ã =

[
ℜ{Ā} −ℑ{Ā}
ℑ{Ā} ℜ{Ā}

]
, Ã ∈

{
R̃S , R̃u, R̃k

}
. Then,

since w̃ and ṽ are coupled in Problem (20), we utilize the

BSUM algorithm [31] to decompose them into independent

blocks. Specifically, in each iteration, the BSUM algorithm

updates a single block of variables by solving an approximate

problem of the original problem. If each approximated

problem fulfills some conditions as in [32], the sequence

of the objective values converges and first-order optimality

holds upon convergence. Specifically, according to Sec. III-C

in [32], given w̃(i) in the i-th iteration of BSUM, we could

construct a lower bound of f̃k(w̃
(i), ṽ) as

f̃k(w̃
(i), ṽ) ≥ f̃k(w̃(i), ṽ(i)) +

(
∇ṽ f̃k(w̃

(i), ṽ(i))
)T

×
(
ṽ − ṽ(i)

)
− 1

2
(ṽ − ṽ(i))TM

(i)
k (ṽ − ṽ(i))

= −1

2
ṽTM

(i)
k ṽ +

(
p
(i)
k

)T
ṽ + q

(i)
k , (21)

where M
(i)
k = L̄

(i)
k I2N×2N that satisfies M

(i)
k �

−∇2
ṽ f̃k(w̃

(i), ṽ), and L̄
(i)
k is calculated as

L̄
(i)
k =

N

σ2

(
4((q̃

(i)
w +Nλmax(Q̂

(i)
k ))2 + (p̃

(i)
w +Nλmax(P̂

(i)
k ))2)

σ4

×(m(i)
w )2Nλmax

(
R̃kR̃k

)
+ 2N

(
λmax

(
Q̂

(i)
k (Q̂

(i)
k + (Q̂

(i)
k )T)

)

+λmax

(
P̂

(i)
k (P̂

(i)
k + (P̂

(i)
k )T)

))
+
(
q̃(i)w +Nλmax

(
Q̂

(i)
k

))

×λmax

(
Q̂

(i)
k + (Q̂

(i)
k )T

)
+
(
p̃(i)w +Nλmax

(
P̂

(i)
k

))

×λmax

(
P̂

(i)
k + (P̂

(i)
k )T

))
, (22)

where m
(i)
w = (w̃(i))TR̃Sw̃

(i), q̃
(i)
w = (w̃(i))TQ̃d

kw̃
(i), p̃

(i)
w =

(w̃(i))TP̃ d
k w̃

(i), Q̂
(i)
k = m

(i)
w Q̃r

k, P̂
(i)
k = m

(i)
w P̃ r

k . In addition,

p
(i)
k =

(
∇ṽ f̃k(w̃

(i), ṽ(i))
)T

ṽ(i) + L̄
(i)
k ṽ(i), and q

(i)
k =

f̃k(w̃
(i), ṽ(i)) −

(
∇ṽ f̃k(w̃

(i), ṽ(i))
)T

ṽ(i) − L̄
(i)
k (ṽ(i))Tṽ(i).

As a result, we have

min
k

{
f̃k(w̃, ṽ)

}
≥ min

k

{
−1

2
ṽTM

(i)
k ṽ + (p

(i)
k )Tṽ + q

(i)
k

}
,

(23)
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and the optimal solution ṽ(i+1) can be obtained by solving

the nonsmooth convex problem

max
ṽ

min
k

{
−1

2
ṽTM

(i)
k ṽ + (p

(i)
k )Tṽ + q

(i)
k

}

s.t. C2. (24)

Similarly, when the beamforming vector ṽ(i) is fixed in

the i-th iteration, we could construct the lower bound of

f̃k(w̃, ṽ
(i)) with respect to w̃ as

f̃k(w̃, ṽ
(i)) ≥ f̃k(w̃(i), ṽ(i)) +

(
∇ṽ f̃k(w̃

(i), ṽ(i))
)T

×
(
w̃ − w̃(i)

)
− 1

2
(w̃ − w̃(i))TL

(i)
k (w̃ − w̃(i))

= −1

2
w̃TL

(i)
k w̃ + (a

(i)
k )Tw̃ + b

(i)
k , (25)

where L
(i)
k = L̃

(i)
k I2M×2M and L̃

(i)
k is calculated as

L̃
(i)
k =

2PA

σ2

(
λmax

(
Q̄

(i)
k (Q̄

(i)
k + (Q̄

(i)
k )T) + (Q̄

(i)
k )T

×(Q̄(i)
k + (Q̄

(i)
k )T)

)
+ λmax

(
Q̄

(i)
k

)

×λmax

(
Q̄

(i)
k + (Q̄

(i)
k )T

)
+ (m(i)

v )2
4P 3

A

σ4
λmax

(
R̃SR̃S

)

×(λ2max

(
Q̄

(i)
k

)
+ λ2max

(
P̄

(i)
k

)
) + λmax

(
P̄

(i)
k

)

×λmax

(
P̄

(i)
k + (P̄

(i)
k )T

)
+ λmax

(
Q̄

(i)
k (Q̄

(i)
k + (Q̄

(i)
k )T)

+(Q̄
(i)
k )T(Q̄

(i)
k + (Q̄

(i)
k )T)

))
, (26)

where Q̄
(i)
k = ṽ(i)Q̃r

kṽ
(i)R̃S + Q̃d

k, P̄
(i)
k =

ṽ(i)P̃ r
k ṽ

(i)R̃S + P̃ d
k , m

(i)
v = (ṽ(i))TR̃kṽ

(i). Also,

a
(i)
k =

(
∇w̃f̃k(w̃

(i), ṽ(i))
)T

w̃(i) + L̄
(i)
k w̃(i), and

b
(i)
k = f̃k(w̃

(i), ṽ(i)) −
(
∇w̃ f̃k(w̃

(i), ṽ(i))
)T

w̃(i) −
L̄
(i)
k (w̃(i))Tw̃(i). Then, we have mink

{
f̄k(w̃, ṽ

(i))
}
≥

mink

{
− 1

2w̃
TL

(i)
k w̃ + (a

(i)
k )Tw̃ + b

(i)
k

}
and the convex

problem to find the optimal transmit beamforming w̃(i+1)

can be described as

max
w̃

min
k

{
−1

2
w̃TL

(i)
k w̃ + (a

(i)
k )Tw̃ + b

(i)
k

}

s.t. C1. (27)

B. Convergence Analysis

The overall BSUM algorithm for solving Problem (20) is

summarized as Algorithm 1. After obtaining the optimized

vectors ṽ∗ and w̃∗, we convert them to the complex domain.

The convergence analysis of the BSUM algorithm is shown

as the following lemma.

Lemma 6. The objective values of Problem (20) achieved by

the iteration sequence {ṽ(i), w̃(i)}∞i=0 are non-decreasing and

convergence.

Proof: See Appendix B.

Algorithm 1 The BSUM Algorithm for Problem (20).

Require: Threshold ε0 and covariance matrices

R̃S , R̃u, Q̃
r
k, Q̃

d
k, P̃

r
k , P̃

d
k , k ∈ {1, · · · ,K};

1: Set: i = 0;

2: Initial: ṽ(0) and w̃(0);

3: repeat

4: Update ṽ(i+1) by solving Problem (24);

5: Update w̃(i+1) by solving Problem (27);

6: Calculate the objective value of Problem (20) as

R(i+1) = min
k
f̃k(w̃

(i+1), ṽ(i+1)); (28)

7: i← i+ 1;

8: until |R(i) −R(i−1)| ≤ ε0;

C. Computational Complexity

In the proposed BSUM algorithm, solving the non-smooth

convex problems in (24) and (27) in each iteration contributes

to the most computational cost. The standard method to solve

non-smooth max-min convex problems is to introduce an

auxiliary variable r that yields the problem

max
ṽ,r

r

s.t. C2,C9: − 1

2
ṽTM

(i)
k ṽ + (p

(i)
k )Tṽ + q

(i)
k ≥ r. (29)

Problem (29) is a convex QCQP problem that can

be solved by the standard interior-point method [33].

However, the computational complexity of interior-

point method to obtain an ǫ-optimal solution is

O
((

2N3 +KN2
) (√

N +K log 2(N+K)
ǫ

))
. Thus, the

overall computational cost to solve the original problem is

still expensive, especially in the case of large N , M , or K .

Another algorithm to solve the problems in (24) and (27)

is the projected sub-gradient methods [34], [35]. Although

these methods have low complexity in each iteration, they

suffer from a slow convergence rate in general. Specifically,

the required iterations to attain an ǫ-optimal solution is no

less than O
(

1
ǫ2

)
. To address these issues, we further propose

a computationally efficient algorithm with a fast convergence

rate to solve the problems in (24) and (27).

VI. MIRROR-PROX METHOD FOR SOLVING PROBLEMS

(24) AND (27)

In this section, we transform the problems in (24) and

(27) to convex-concave saddle point problems and apply the

Mirror-Prox method [36] to solve the resulting problems more

efficiently.

A. Mirror-Prox Method for Problems (24) and (27)

First, we can transform the non-smooth max-min problem

in (24) into the following equivalent smooth min-max problem

by using the primal-dual transformation [37]

min
ṽ

max
y

ψ(i)(ṽ,y)
∆
=
(
τ̄ (i)‖ṽ‖22 +P(i)ṽ + q(i)

)T
y

s.t. C2,C10: yk ≥ 0,

K∑

k=1

yk = 1,y ∈ R
K×1, (30)
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where τ̄ (i) = 1
2 [L̄

(i)
1 , L̄

(i)
1 · · · , L̄

(i)
K ]T and the objective func-

tion ψ(i)(ṽ,y) is convex in ṽ and concave in y. Then, the op-

timal solution ṽopt and yopt corresponds to the saddle point of

objective function ψ(i)(ṽ,y) [38]. By defining z = [ṽT,yT]T

and Ψ(i)(z) = [∇ṽψ
(i)(ṽ)T,−∇ṽψ

(i)(y)T]T, the problem

(30) is equivalent to solve the following variational inequality

problem

Find zopt

s.t. Ψ(i)(zopt)
T(z − zopt) ≥ 0. (31)

By analyzing the saddle-point operator Ψ(i)(z), we have the

following Lemma.

Lemma 7. The operator Ψ(i)(z) is monotone and Lv-

Lipschitz continuous, where the Lipschitz parameter is Lv =
2
√
N‖τ̄ (i)‖2 +maxk ‖p(i)

k ‖2.

Proof: See Appendix C

Now, we apply the Mirror-Prox method to solve the Problem

(31). The Mirror-Prox method solves the variational inequality

problem optimally with O(1
ǫ
) convergence rate. We now

briefly outline the Mirror-Prox method and the details of this

algorithm could be found in [36].

Algorithm 2 Mirror-Prox Method for Solving the Convex-

concave Saddle Point Problem (24).

Require: Threshold ǫ, stepsize α = 1
2Lv

, and operator

Ψ(i)(·);
1: Set: l = 0;

2: Initial: z0 = [ṽT

0 ,y
T

0 ]
T;

3: repeat

4: ∇φ(r′

l+1) = ∇φ(zl)− αΨ(i)(zl),

5: r
′

l+1 = ∇φ−1(∇φ(zl)− αΨ(i)(zl)),

6: rl+1 = arg minz̃Dφ(z, r
′

l+1),

7: ∇φ(z′

l+1) = ∇φ(zl)− αΨ(i)(rl+1),

8: z
′

l+1 = ∇φ−1(∇φ(zl)− αΨ(i)(rl+1)),

9: zl+1 = argminz̃Dφ(z, z
′

l+1);
10: Set: l← l + 1;

11: until D(zl, zl+1) ≤ ε;
12: Set: zopt ← 1

L

∑L
l=1 zl.

The Mirror-Prox algorithm is a variant of the mirror descent

algorithm [37], [39]. By denoting α = 1/ (2Lv), the overall

Mirror-Prox algorithm is comprosed of two iterations of Mirror

Descent. As shown in Algorithm 2, steps 4-6 correspond to

the first mirror descent step, which starts from z̃l to rl+1.

Then, steps 7-9 follow the similar procedures and start from

z̃l to z̃l+1, using an operator evaluation at rl+1. In each

mirror descent, the projection is done by the Bregman distance

Dφ(z, z
′

), which is to monitor the local geometry of the

constraints to improve the algorithm performance [40]. The

Bregman distance is defined as

Dφ(z, z
′

) = φ(z) − φ(z′

)−∇φ(z′

)T(z − z
′

), (32)

where φ(z) is the mapping function. According to the struc-

ture of C2 and C10, we select the mapping function as

φ(z) = 1
2‖ṽ‖2 +

∑K
k=1 yk ln yk [41], where the first

term is the mirror map for the Euclidean space C2, and

the second term denotes the mirror map for the simplex

space C10. Thus the ∇φ(z) and ∇−1φ(z) is expressed as

∇φ(z) = [ṽ, ln y1 + 1, · · · , ln yK + 1]
T

, and ∇−1φ(z̃) =
[ṽ, exp (y1 − 1) , · · · , exp (yK − 1)]

T
. Hence, the Bregman

distance in (32) can be expressed as

Dφ(z, z
′

) =
1

2
‖ṽ − ṽ

′‖2 +
K∑

k=1

yk ln
yk

y
′

k

−
K∑

k=1

(yk − y
′

k).

(33)

Based on (33), the non-Euclidean projection problem in step 6

can be solved by minimizing the first term in (33) with respect

to ṽ and the others terms in (33) with respect to y separately.

Specifically, the closed-form solution of ṽ to the problem in

step 6 is expressed as

ṽi =






ṽ′

i

((̃v′

i
)2+(ṽ′

N+i
)2)

1
2

, u2i + u2N+i ≥ 1,

ṽ′i, otherwise,
(34)

and the optimal solution of y is yopt = y′

‖y′‖1
[42]. The

above implementation details can be applied to steps 7-9 in

Algorithm 2 directly.

Similarly to the above steps that tackle the problem in

(24), we can apply Algorithm 2 to tackle the problem in (27)

by replacing M
(i)
k , p

(i)
k , and q

(i)
k with L

(i)
k , a

(i)
k , and b

(i)
k ,

respectively.

B. Computational Complexity

For Algorithm 2, the mirror projections are all closed-form

operations. The computation cost to solve problem (24) is

dominated by the computation of Ψ(i)(·), where the complex-

ity is O(NK). Also, the complexity to tackle problem (27)

is O(MK). In Sec. VII, we will present the specific running

time comparison to verify the effectiveness of our proposed

algorithm.

VII. SIMULATION RESULTS

In this section, we provide simulation results to illustrate

the PKG performance of the proposed method and the impact

of spatial correlation on KGR.

A. Simulation Settings

We consider a three-dimensional coordinate system where

the central point of Alice, Bob, and RIS are located at (5

m, 0 m, 20 m), (3 m, 100 m, 0 m), and (0 m, 60 m, 2 m),

respectively [16]. We assume that Alice is equipped with a

UPA located in x − z plane, and the RIS is equipped with a

uniform rectangular array (URA) located in y − z plane. The

UPA at the BS has N t
H = 5 antennas per row and N t

V =M/5
antennas per column. The RIS has N r

H = 5 elements per

row and N r
V = N/5 elements per column. The antennas

of Eve are randomly distributed within a circle of radius

R centered at Bob and the channel correlation coefficient is

ρk = [J0(2πd/λ)]
2, where d is the distance and J0 is the

first-kind of Bessel function [16]. The channel between Alice

and Bob is generated by (3) and the large-scale path loss
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Fig. 2. Convergence behavior of the BSUM algorithm under different N when
PA = PB = 20 dBm, M = 15, ρ = 0.3, the spacing of two neighbouring
RIS elements is λ/4, and K = 10.

βba =
√
ζ0d

−αba

ba , where dba, ζ0, and αba are the distance,

path loss at 1 m, and the path loss exponent, respectively.

The simulation settings are αba = αeka = 4, αar = 3.5,

αbr = αekr = 2, ζ0 = −30 dB, σ2 = −80 dBm, and

ǫ = 10−4 [16]. The results in the following subsections were

averaged over 1000 random channel realizations.

B. Convergence of the Proposed Algorithms

First, we evaluate the convergence behavior of the proposed

BSUM with Mirror-Prox algorithm. Fig. 2 depicts the average

minimum KGR versus the number of iterations for various

RIS elements, i.e., for N = 20, 40, and 60. It can be

observed that having more RIS elements leads to a slightly

slower convergence speed. As more optimization variables are

involved, the more iterations are required for convergence due

to the enlarged solution space. However, for different values

of N , the proposed algorithm converges within 15 iterations

on average, which illustrates the practicality of the proposed

algorithm.

C. KGR versus the Transmit Power

In Fig. 3, the average minimum KGR versus the transmit

power under different algorithms and channel assumptions is

plotted. First, it can be observed that the KGR at all the settings

increases with the transmit power, since the negative impacts

of noises in the channel estimation and key generation are

reduced. For comparison, some benchmarks are provided: (1)

the ASSG algorithm based on different channel models; (2)

the case without RIS. It is noted that the proposed design

outperforms these benchmarks. In particular, the BSUM with

Mirror-Prox and ASSG algorithms under correlated channel

model assumption lead to a higher KGR than the benchmarks

under i.i.d. channel model assumptions. Specifically, when

P ≥ 30 dBm, the proposed setting achieves about 5 dB and 6
dB transmit power gain compared to the beamforming scheme

under the i.i.d. channel assumption and the optimal transmit

beamforming without RIS, respectively. This is because when
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Fig. 3. Average minimum KGR achieved by different algorithms with
different channel assumptions when PA = PB = P , N = 60, M = 15,
K = 5, ρ = 0.2, and the spacing of two neighbouring RIS elements is λ/4.

correlations exist between the BS antennas and the RIS

elements, the i.i.d. model fails in capturing this important char-

acteristic which degrades the KGR performance. In contrast,

the proposed scheme can effectively exploit the properties

of the channels to perform a more precise beamforming. It

can also be observed that the beamforming design under the

i.i.d. assumption at the RIS achieves a higher KGR gain than

that under the i.i.d. assumption at the BS. This is because

when ρ = 0.2 and the neighbouring RIS element spacing

is λ/4, having the optimal w is more effective than that

of v in combating the noises in Rk. Finally, we observe

that in spatially correlated channels, the BSUM with Mirror-

Prox algorithm and ASSG algorithm achieve almost the same

KGR under different transmit powers, since both algorithms

guarantee to converge to a stationary point. However, Gaussian

randomization is applied in ASSG algorithm to obtain a rank-1

solution, which results in slight KGR degradation on average.

D. Computation Time Comparision

In Fig. 4, we present the ratio of the average computation

time of the BSUM algorithm to that of the ASSG algorithm.

As can be observed, the BSUM with Mirror-Prox algorithm

consumes much shorter computation time than the ASSG

algorithm and the ratio decreases as the number of the BS

antennas or the RIS elements increases. This is because the

dimension of the optimization variable is the square of the

BS antennas, i.e., M2 or N2, in the ASSG algorithm, while

the BSUM algorithm optimizes the M or N -dimensional

vector directly. The above results verify the computational

effectiveness of the proposed algorithm.

E. The Impact of RIS Elements Number and Size

Fig. 5 shows the KGR of different RIS neighbour elements

spacing versus the number of RIS elements adopting the

proposed algorithm. As can be observed, the KGR of all of

these cases increases with the number of RIS elements. This

is because with more RIS elements in place, the proposed
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Fig. 5. Average KGR achieved for different N when PA = 30 dBm, PB =

20 dBm, M = 15, K = 5, and ρ = 0.2.

design becomes more flexible to create pencil-like energy

focusing beams at the RIS to realize better KGR performance.

In addition, it is noted that with the RIS elements spacing

becoming smaller, the minimum KGR increases significantly.

The reason behind this is that with smaller elements spacing,

the values of the spatial correlation RI are larger, e.g., (18),

contributing to a higher KGR. Finally, it is found that even

with λ/2 RIS element spacing, the KGR of the proposed

method is still slightly superior than that adopting the i.i.d.

channel assumption. In fact, the correlation among the RIS

elements is weak in λ/2 spacing, although it always exists if

N r
H > 1 or N r

V > 1, which can be exploited by the proposed

method.

F. The Impact of BS Antennas Number and Correlation

Fig. 6 shows the KGR versus the number of the antennas

at the BS. The beamforming vectors are optimized by the

proposed BSUM with Mirror-Prox algorithm. As can be

observed, the KGR of the design method based on the i.i.d.

fading model is identical to that of the proposed design when
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Fig. 6. Average KGR versus different M when PA = 30 dBm, PB = 20

dBm, K = 5, and the spacing of two neighbouring RIS elements is λ/2.
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Fig. 7. Comparison of the average minimum KGR for different channel
assumptions versus the Eve’s distribution radius R when PA = PB = 30

dBm, N = 60, M = 20, ρ = 0.4, and the spacing of two neighbouring RIS
elements is λ/4.

ρ = 0, which is independent of the antenna numbers at the

BS. For the cases of ρ > 0, the proposed method can always

achieve higher KGR gain, since the upper and lower bounds

of the KGR both increase with the spatial correlation between

antennas. Moreover, with the number of antennas increases,

the KGR increases with diminishing returns. This is due to

channel hardening [18] and the limited transmit power at the

BS. Indeed, the greater correlation coefficient ρ contributes to

higher converged value, which is consistent with Lemma 4.

G. The Impact of Eve Antennas Number and Location

In Fig. 7, the average minimum KGR versus the number and

the location of the eavesdropper’s antennas is plotted. First, the

KGR decreases when there are more antennas for Eve. This is

due to the fact that more antennas at Eve create better quality

in the eavesdropping channels. In addition, Fig. 7 also reports

that the radius of Eve’s antennas location, R, has a significant

impact on the KGR. With a larger radius of Eve’s distribution,

the average minimum correlation between Eve’s antennas and



11

0 10 20 30 40
10-5

10-4

10-3

10-2

10-1

100
B

D
R

Spatially correlated assumption
I.i.d. assumption at RIS
I.i.d. assumption at BS
I.i.d. assumption at BS and RIS
Without RIS

Fig. 8. Comparison of the average BDRs for different channel assumptions
versus the transmit power P .

Bob decreases, that contributes to higher KGR. Finally, as

expected, the KGR of the proposed algorithm outperforms

those benchmarks that adopt the i.i.d. channel assumption at

the BS or the RIS. The results above verify the effectiveness of

the proposed method under different eavesdropping conditions.

H. BDR Comparison and Randomness Evaluation

After the channel probing stage, Alice and Bob quantize

their combined channel gains into raw key bits. The bit

disagreement ratio (BDR) denotes the ratio of the number

of disagreements bits to the number of total quantized bits.

When the BDR becomes higher, the legitimate ends have to

consume larger signaling overhead to correct these inconsistent

bits. Fig. 8 presents the BDR performance under different

channel assumptions using the proposed algorithm and the

1-bit Cumulative Distribution Function (CDF)-based quanti-

zation method [43] under 106 times channel probings. As

shown in Fig. 8, the algorithm that designed under the spatially

correlated channel model achieves lower BDR than that under

the benchmarks. Indeed, the optimized beamforming design

improves the ratio of the power of the combined reciprocal

component to the noise. Finally, we conduct the National

TABLE I
NIST RANDOM TEST RESULT

Pass ratio P-value

Approximate entropy 0.9833 0.4862

Runs 0.9893 0.4979

Ranking 0.9901 0.4959

Longest runs of ones 0.9899 0.4959

Frequency 0.9900 0.5047

FFT 0.9853 0.4825

Block frequency 0.9887 0.5013

Cumulative sums 0.9908 0.5197

Serial 0.9901 0.5275, 0.4917

Institute of Standards and Technology (NIST) randomness

test [44] on the quantized bits to verify the randomness of

the obtained bit sequences for cryptographic applications. The

output of the NIST is called p-value and the tested bits pass the

NIST test if the p-value is greater than the threshold 0.01. In

the simulation, we perform 9 kinds of NIST tests for 10, 000
trials. The test results are shown in Table I, where the pass

ratio denotes the ratio of the number of passed trials to the

number of all trials. From this table, the pass ratio of 9 NIST

tests is higher than 0.9 and the average p-value is greater than

0.01. These results indicate the excellent randomness of the

bits generated by the proposed method.

VIII. CONCLUSION

In this paper, we introduced a transmit and reflective

beamforming-based RIS-assisted PKG framework in multi-

antenna spatially correlated channels. Based on this frame-

work, we derived the general closed-form KGR expression and

formulated an optimization problem to maximize the minimum

KGR. We designed a BSUM with a Mirror-Prox algorithm

to tackle the non-convex optimization problem. Our analysis

proved that the KGR increases with the spatial correlation

between the BS antennas and RIS elements. In particular, the

KGR can be improved significantly with the increase of RIS

elements, while it increases with diminishing returns when the

number of BS antennas is sufficiently large. Numerical results

showed that our method achieves higher KGR and lower

BDR compared to the benchmarks in the same eavesdropping

condition.

APPENDIX

A. Proof of Lemma 1

First, we calculate the covariance of channel estimation ĥa
as

Raa = PBw
T
E{GarΦhrbh

H

rbΦ
HGH

ar}w∗

+ PBw
T
E{habh

H

ab}w∗ + ||w||22σ2
a. (35)

By exploting the channel correlations in (1)–(3), the first term

in (35) is given by

E{GarΦhrbh
H

rbΦ
HGH

ar} (36)

= βrRSE{vec{h̃H

rbR
1
2

I Φ
HR

1
2

I }Hvec{h̃H

rbR
1
2

I Φ
HR

1
2

I }}
(37)

(a)
= βrRSE{vH((R

1
2

I )
T ⊙ (R

1
2

I ))
H(h̃∗

rb ⊗ IN )

× (h̃T

rb ⊗ IN )((R
1
2

I )
T ⊙ (R

1
2

I ))v} (38)

= βrRSv
H((R

1
2

I )
T ⊙ (R

1
2

I ))
H((R

1
2

I )
T ⊙ (R

1
2

I ))v

= βrRsv
H(RT

I ◦RI)v = βrRSv
HR̃Iv. (39)

(a) follows from vec(ABC) = (CT ⊗ A)vec(B) and

vec(Adiag(d)C) = (CT⊙A)d. Then, the second term of the
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right-hand side of (35) is calculated as E{habh
H

ab} = βabRS .

Similarly, we have

Rbb = βrw
TRSw

∗vHR̃Iv + βabw
TRSw

∗ + σ2
b , (40)

Rab =
√
PBβrw

TRSw
∗vHR̃Iv +

√
PBβabw

TRSw
∗

= Rba, (41)

Rekek = βk
rw

TRSw
∗vHR̃Iv + βakw

TRSw
∗ + σ2

ek
, (42)

Rbek =
√
βrβk

r v
H

[
((R

1
2

I )
TRr

k(R
1
2

I )
T) ◦RI

]
vwTRSw

∗

+
√
βabβakw

TR
1
2

SR
d
kR

1
2

Sw
∗

= RH

ekb
= Raek/

√
PB = RH

eka
/
√
PB. (43)

Then, we can calculate the two determinants in (11) and obtain

the KGR as (14).

B. Proof of Lemma 6

We denote the objective value of Problem (20) as ϕ(w̃, ṽ) =
mink f̃k(w̃, ṽ). By denoting the objective value of the sub-

problem in (24) and the subproblem in (27) as ϕ̄(w̃, ṽ)

and ϕ̃(w̃, ṽ), respectively, we have ϕ(w̃(i+1), ṽ(i+1))
(b)

≥
ϕ̄(w̃(i+1), ṽ(i+1))

(c)
= ϕ̃(w̃(i+1), ṽ(i+1))

(d)

≥ ϕ̃(w̃(i), ṽ(i+1)),
where inequality (b) holds because ϕ̄(w̃, ṽ) is a lower bound

of ϕ(w̃, ṽ), inequality (c) holds since ϕ̃(w̃, ṽ) is a local

approximation of ϕ̄(w̃, ṽ) at the point (w̃(i+1), ṽ(i+1)). The

inequality (d) holds since w̃(i+1) = argmaxw̃ ϕ̃(w̃, ṽ(i+1)).

Similarly, we have ϕ̃(w̃(i), ṽ(i+1))
(e)

≥ ϕ̄(w̃(i), ṽ(i+1))
(f)

≥
ϕ̄(w̃(i), ṽ(i))

(g)
= ϕ(w̃(i), ṽ(i)), where (e) holds since

ϕ̄(w̃, ṽ(i+1)) is an lower bound of ϕ̃(w̃, ṽ(i+1)), (f ) holds

because ṽ(i+1) = argmaxṽ ϕ̄(w̃
(i), ṽ), and (g) holds

since ϕ̄(w̃, ṽ) is a local approximation of ϕ(w̃, ṽ) at the

point (w̃(i), ṽ(i)). Therefore, we have proved the equal-

ity ϕ(w̃(i+1), ṽ(i+1)) ≥ ϕ(w̃(i), ṽ(i)), i.e., the sequence

{ϕ(w̃(i), ṽ(i))}∞i=0 is non-increasing over iterations. In addi-

tion, assuming the channel gain is finite and the transmit power

PA and PB is limited, the solution set is compact and the

KGR has an upper bound. Consequently, the objective values

of Problem (20) are non-increasing and convergence.

C. Proof of Lemma 7

According to [36], the function Ψ(i)(·) is monotone and

Lipschitz continuous. Then, Ψ(i)(·) is defined as L-Lipschitz

if it satisfies with the following constraints [39]
∥∥∥∇ṽψ

(i)(ṽ,y)−∇ṽψ
(i) (ṽ′,y)

∥∥∥
2
≤ L ‖ṽ − ṽ′‖2 , (44)

∥∥∥∇yψ
(i)(ṽ,y)−∇yψ

(i) (ṽ,y′)
∥∥∥
∞
≤ L ‖y − y′‖1 , (45)

∥∥∥∇ṽψ
(i)(ṽ,y)−∇ṽψ

(i)
(t) (ṽ,y

′)
∥∥∥
2
≤ L ‖y − y′‖1 , (46)

∥∥∥∇yψ
(i)(ṽ,y)−∇yψ

(i) (ṽ′,y)
∥∥∥
∞
≤ L ‖ṽ − ṽ′‖2 . (47)

First, the equality in (44) holds because∥∥∇ṽψ
(i)(ṽ,y)−∇ṽψ

(i) (ṽ′,y)
∥∥
2
≤ ‖2(τ̄ (i))Ty‖2‖ṽ −

ṽ′‖2 ≤ L‖ṽ − ṽ′‖2, which follows the Cauchy-

Schwarz inequality. Then, the equality in (45) holds since

∇yψ
(i)(ṽ,y) = ∇yψ

(i)(ṽ,y′) = τ̄ (i)ṽ⊤ṽ + P(i)ṽ + q(i),

which is irrelevant to the variable y. In addition, the inequality

in (46) holds due to
∥∥∥∇ṽψ

(i)(ṽ,y)−∇ṽψ
(i) (ṽ,y′)

∥∥∥
2

(48)

≤ 2‖(τ̄ (i))Ty − (τ̄ (i))Ty′‖2‖ṽ‖2 + ‖PTy −PTy′‖2 (49)

≤ 2

(
‖τ̄ (i)‖2

√
N +

(
max

k
‖p(i)

k ‖2
))
‖y − y′‖1 (50)

= L‖y − y′‖1, (51)

where (49) follows the triangle inequality. At last, the inequal-

ity (47) holds as
∥∥∥∇yψ

(i)(ṽ,y)−∇yψ
(i) (ṽ′,y)

∥∥∥
∞

≤ ‖τ̄ (i)ṽ⊤ṽ − τ̄ (i)(ṽ′)⊤ṽ′‖∞ + ‖P(i)ṽ −P(i)ṽ′‖∞ (52)

≤ ‖τ̄ (i)‖∞‖ṽ + ṽ′‖∞‖ṽ − ṽ′‖∞ +max
k

{
|(p(i)

k )T(ṽ − ṽ′)|
}

(53)

≤
(
‖τ̄ (i)‖2(‖ṽ‖∞ + ‖ṽ′‖∞) + max

k

{
‖(p(i)

k )‖2
})
‖(ṽ − ṽ′)‖2

(54)

= L‖(ṽ − ṽ′)‖2. (55)
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