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Abstract—We propose a novel uplink communication method,
coined random orthogonalization, for federated learning (FL) in
a massive multiple-input and multiple-output (MIMO) wireless
system. The key novelty of random orthogonalization comes from
the tight coupling of FL model aggregation and two unique
characteristics of massive MIMO – channel hardening and
favorable propagation. As a result, random orthogonalization can
achieve natural over-the-air model aggregation without requiring
transmitter side channel state information, while significantly
reducing the channel estimation overhead at the receiver. Theo-
retical analyses with respect to both communication and machine
learning performances are carried out. In particular, an explicit
relationship among the convergence rate, the number of clients
and the number of antennas is established. Experimental results
validate the effectiveness and efficiency of random orthogonal-
ization for FL in massive MIMO.

Index Terms—Federated Learning; Convergence Analysis;
Massive MIMO.

I. INTRODUCTION

Communication overhead is widely considered one of the
primary bottlenecks for federated learning (FL) [1], [2], as a
FL task consists of multiple learning rounds, each of which
requires uplink and downlink model exchange between clients
and the server. Compared with downlink broadcasting, uplink
communication is more challenging in FL. Due to the strigent
power constraint at edge devices, channel noise and fading
have more conspicuous impacts on uplink communications.
More importantly, the limited uplink communication resources
may severely limit the scalability of FL, negatively affecting
one of its primary features [3].

To tackle the scalability problem in FL uplink commu-
nications, several over-the-air computation (also known as
AirComp) mechanisms have been exploited in wireless FL
(see [4] and the references therein). Instead of decoding the
individual local models of each client and then aggregating,
AirComp allows multiple clients to transmit uplink signals
in a superpositioned fashion, and decodes the average model
(global model) directly at the FL server. Zhu et al. [5] propose
an analog aggregation framework which “inverts” the fading
channel at each transmitter, so that the sum model can be
directly obtained at the server. However, the fundamental
limitation of analog aggregation is that it requires channel state
information at transmitter (CSIT). The process of enabling
CSIT is complicated and the precision of CSIT is often
worse than the channel state information at receiver (CSIR).

Besides, analog aggregation essentially requires a channel
inversion power control, which is well known to “blow up”
when channel is in deep fade. Moreover, analog aggregation
does not naturally extend to multiple-input and multiple-output
(MIMO) systems where the uplink channels become vectors,
which makes channel inversions at the transmitters nontrivial.

This paper aims at designing a simple-yet-effective uplink
FL communication and model aggregation method. To address
the scalability challenge in FL, we explore another design
degree of freedom (d.o.f.) in modern wireless systems: massive
MIMO. The proposed framework only requires the BS to
estimate a summation channel, which significantly alleviates
the burden on uplink channel estimation in FL. Moreover,
this approach is agnostic to the number of clients, making
it attractive for the scalability of FL. By tightly integrating
the channel hardening and favorable propagation properties
of massive MIMO, the proposed scheme, coined random or-
thogonalization, allows the BS to directly compute the global
model via a simple linear projection operation, thus achieving
extremely low complexity and low latency. To analyze the per-
formances of random orthogonalization, we derive the Cramer-
Rao lower bounds (CRLBs) of the average model estimation
as a theoretical benchmark. Moreover, taking both interference
and noise into consideration, a novel convergence bound of
FL is derived for the proposed method over massive MIMO
channels. Notably, we establish an explicit relationship among
the convergence rate, the number of clients K, and the number
of antennas M , which provides practical design guidance for
wireless FL. Numerical results validate the effectiveness and
efficiency of the proposed method.

The potential of MIMO for wireless FL has attracted interest
recently. MIMO beamforming design to optimize FL has been
studied in [6], [7]. Coding, quantization, and compressive
sensing over a (massive) MIMO channel for FL has been
studied in [8]–[10]. Nevertheless, none of these works tightly
incorporates the unique properties of massive MIMO in the
FL uplink communication design. On the other hand, massive
MIMO can also be utilized in a straightforward manner, e.g.,
one can use traditional MIMO decoders such as zero-forcing
(ZF) or minimum mean-square-error (MMSE) to estimate each
local model, and then compute the global model. However,
this heuristic approach requires large channel estimation over-
head, especially in massive MIMO. Decoding individual local
models also makes it easier for the server to sketch the data
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distribution of a client. Moreover, matrix inversion operations
in ZF or MMSE detectors are computationally demanding,
which increases the complexity and latency.

The remainder of this paper is organized as follows. Section
II introduces the FL pipeline and the uplink communica-
tion model. The proposed random orthogonalization design
is detailed in Section III. The CRLB evaluation along with
the model convergence analysis are presented in Section IV.
Experimental results are reported in Section V, followed by
the conclusion of our work in Section VI.

II. SYSTEM MODEL

A. FL Model

Consider a FL task with a central server and K clients. Each
client k ∈ [K] stores a (disjoint) local dataset Dk, with its size
denoted by Dk. The size of the total data is D ,

∑
k∈[K]Dk.

We use fk(w) to denote the local loss function at client k,
which measures how well a machine learning (ML) model
with parameter w ∈ Rd fits its local dataset. The global objec-
tive function over all K clients is f(w) =

∑
k∈[K] pkfk(w),

where pk = Dk

D is the weight of each local loss function,
and the purpose of FL is to distributively find the optimal
model parameter w∗ that minimizes the global loss function:
w∗ , arg minw∈Rd f(w). A typical wireless FL pipeline
is illustrated in Fig. 1. Specifically, this pipeline iteratively
executes the following steps at the t-th learning round.

1) Downlink communication. The BS broadcasts the cur-
rent global model wt to all devices over the downlink
wireless channel.

2) Local computation. Each client uses its local data to
train a local model improved upon the received global
model wt. We assume that mini-batch stochastic gradient
descent (SGD) is used to minimize the local loss function.
The parameter is updated iteratively (for E steps) at client
k as: wk

t,0 = wt;w
k
t,τ = wk

t,τ−1− ηt∇f̃k(wk
t,τ−1); ∀τ =

1, · · · , E;wk
t+1 = wk

t,E , where ∇f̃k(w) denotes the
mini-batch SGD operation at client k on model w.

3) Uplink communication. Each client uploads its latest
local model to the server synchronously over the uplink
wireless channel.

4) Server Aggregation. The BS aggregates the received
noisy local models w̃k

t+1 to generate a new global model:
wt+1 = Σk∈[K]pkw̃

k
t+1. For simplicity, we assume that

each local dataset has equal size, hence pk = 1
K .

This work focuses on steps 3 and 4 in the FL pipeline.
In particular, we take advantage of the unique properties of
massive MIMO to design efficient FL uplink communication
and server aggregation.

B. Communication Model

Consider a massive MIMO system equipped with M anten-
nas at the BS (server) where K single-antenna devices (clients)
are involved in the aforementioned FL task. At the uplink
step of the t-th round, each client transmits the differential
between the received global model and the computed new local

Fig. 1. The wireless FL pipeline.

model xkt = wt − wk
t+1 ∈ Rd,∀k ∈ [K] to the BS1, where

xkt , [xk1,t, · · · , xki,t, · · · , xkd,t]T . To simplify the notation,
we omit index t by using xk,i instead of xki,t barring any
confusion. We assume that each client transmits every element
of the differential model {xk,i}di=1 via d shared time slots2.
For a given element xk,i, the received signal at the BS is

yi =
√
P
∑
k∈[K]

hkxk,i + ni, ∀i = 1, · · · , d, (1)

where P is the maximum transmit power of each client,
hk ∈ CM×1 is the wireless channel between k-th client
and BS, and ni ∈ CM×1 is the uplink noise. We assume
normalized symbol power E ‖xk,i‖2 = 1, normalized Rayleigh
block fading channel3 hk ∼ CN (0, 1

M I) in d slots, and
independent and identically distributed (i.i.d.) Gaussian noise
ni ∼ CN (0, σ2I). We define the signal-to-noise ratio (SNR)
as SNR , P/σ2, and w.l.o.g. we set P = 1. Denoting
H , [h1, · · · ,hK ] ∈ CM×K and xi , [x1,i, · · · , xK,i]T ∈
RK×1,∀i = 1, · · · , d, the received signal4 can be written as

yi = Hxi + ni. (2)

Eqn. (2) is a standard MIMO model and traditional MIMO
decoders can be adopted to estimate x̂i = [x̂1,i, · · · , x̂K,i]T .
However, as discussed before, decoding {xk,i}di=1 individually
and obtaining the aggregated parameter x̃i ,

∑
k∈[K] x̂k,i

by a summation is inefficient. We propose a novel method
that allows the BS to compute x̃i directly. Note that after BS
decoding all aggregated parameter x̃t , [x̃1, · · · , x̃d]T in d
slots, it can compute the new global model as

wt+1 = wt +
1

K
x̃t. (3)

III. RANDOM ORTHOGONALIZATION

We study a wireless FL framework where the global model
can be directly obtained at the BS via a simple operation.

1The parameter normalization and de-normalization procedure in wireless
FL follows the same as that in the Appendix of [5].

2In general, differential model parameters can be transmitted over any d
shared time-frequency resources. For simplicity, we use d time slots here.

3Large-scale pathloss and shadowing effect is assumed to be taken care of
by, e.g., open loop power control [11].

4For simplicity, we assume real signals {xk,i}di=1 are transmitted in this
paper. It can be easily extended to complex signals by stacking two real model
parameters into a complex signal, so that the full d.o.f. is utilized.



Fig. 2. An illustration of the proposed uplink FL design with massive MIMO.

By exploring favorable propagation and channel hardening
in massive MIMO, our proposed FL framework obtains the
global model by the following three main steps.
(1) Uplink channel summation. The BS first schedules
all participating clients to transmit a common pilot signal s
synchronously. The received signal at the BS is

ys =
∑
k∈[K]

hks+ ns,

so that the BS can estimate the summation of channel vectors
hs ,

∑
k∈[K] hk from the received signal ys (e.g., via a

maximum likelihood estimator). For simplicity, we assume
perfect sum channel estimation at the BS.
(2) Uplink model transmission. All clients transmit model
differential parameters {xk,i}di=1 to the BS in d time slots.
The received signal for each differential model element is

yi =
∑
k∈[K]

hkxk,i + ni, ∀i = 1, · · · , d.

(3) Receiver computation. The BS estimates each aggre-
gated parameter via a simple linear projection operation:

x̃i = hHs yi =
∑
k∈[K]

hHk
∑
k∈[K]

hkxk,i +
∑
k∈[K]

hHk ni

(a)
=
∑
k∈[K]

hHk hkxk,i︸ ︷︷ ︸
Signal

+
∑
k∈[K]

∑
j∈[K],j 6=k

hHk hjxj,i︸ ︷︷ ︸
Interference

+
∑
k∈[K]

hHk ni︸ ︷︷ ︸
noise

(b)
≈
∑
k∈[K]

xk,i, ∀i = 1, · · · , d. (4)

The above three-step procedure is illustrated in Fig. 2. Based
on Eqn. (4), BS then computes the global model via Eqn. (3)
and begins the next communication round. As shown in part
(a) of Eqn. (4), inner product hHs yi can be regarded as the
combination of three parts: signal, interference, and noise.
We next show that, taking advantage of two fundamental
properties of massive MIMO, the approximation (b) in Eqn. (4)
is asymptotically error-free, as the number of antennas at the
BS M goes to infinity.
Channel hardening. Since each element of hk is i.i.d.
complex Gaussian, by the law of large numbers, massive
MIMO enjoys channel hardening [12]:

hHk hk → 1, as M →∞.

In practical systems, when M is large but finite, we have

Eh

 ∑
k∈[K]

hHk hkxk,i

 =
∑
k∈[K]

xk,i, (5)

and

Varh

 ∑
k∈[K]

hH
k hkxk,i

 =

∑
k∈[K] x

2
k,i

M
(6)

for the signal part of (4).

Favorable propagation. Since channels between different
users are independent random vectors, massive MIMO also
offers favorable propagation [12]:

hHk hj → 0, as M →∞, ∀k 6= j.

Similarly, when M is finite, we have

Eh

 ∑
k∈[K]

∑
j∈[K],j 6=k

hH
k hjxj,i

 = 0, (7)

and

Varh

 ∑
k∈[K]

∑
j∈[K],j 6=k

hH
k hjxj,i

 =
(K − 1)

∑
k∈[K] x

2
k,i

M
. (8)

Furthermore, the expectation of the noise part in (4) is
zero. Therefore, x̃i in Eqn. (4) is an unbiased estimate of the
average model. For a given K, the variances of both signal
and interference decrease in the order of O(1/M), which
shows that massive MIMO offers random orthogonality
for analog aggregation over wireless channels. In particular,
the asymptotic element-wise orthogonality of channel vector
ensures channel hardening, and the asymptotic vector-wise
orthogonality among different wireless channel vectors pro-
vides favorable propagation, which make the linear projection
operation hHs yi an ideal fit for FL.

To gain some insight of random orthogonality, we ap-
proximate the average signal-to-interference-plus-noise-ratio
(SINR) after the operation in Eqn. (4) as

E[SINRi] ≈

Eh,x

∥∥∥∑k∈[K] h
H
k hkxk,i

∥∥∥2
Eh,n,x

∥∥∥∑k∈[K]

∑
j∈[K],j 6=k h

H
k hjxj,i +

∑
k∈[K] h

H
k ni

∥∥∥2
=

M

K − 1 + 1/SNR
,

(9)



which grows linearly with M for a fixed K. We note that
Eqn. (9) is an approximate expression for SINR but it sheds
light into the relationship between K and M . This approxi-
mation, however, is not used in the convergence analysis of
FL with random orthogonalization in Section IV-B.

Remark 1. Unlike the analog aggregation method in [5],
random orthogonalization does not require any CSIT, and only
requires the receiver to estimate a summation channel hs,
which is 1/K of the channel estimation overhead compared
with the AirComp method in [6] and traditional MIMO
decoders. Moreover, the global model is obtained after a single
linear projection, which improves the privacy and reduces the
system latency.

Remark 2. The proposed framework assumes a perfect esti-
mation of hs and requires channel hardening and favorable
propagation. In practical systems, to improve the accuracy
of the estimate ĥs, BS can adopt multiple pilots for channel
estimation. We will provide more details on the robustness
of the proposed scheme over imperfect ĥs and evaluate the
circumstances where channel hardening and favorable prop-
agation are not fully offered, e.g. correlated channels, in the
journal version.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performances of random or-
thogonalization in FL. We first derive CRLBs of the estimates
of global model parameters as the theoretical benchmark of
the proposed method. Then, by an ML model convergence
analysis, we investigate the relationship between the number
of involved clients K and the number of BS antennas M .
We show that random orthogonalization has the potential to
achieve nearly the same convergence rate as the interference-
free case in massive MIMO systems.

A. Cramer-Rao Lower Bounds

Recall that the received signal is yi = Hxi +ni. Denoting
µ = Hxi, we have that yi ∼ CN (µ, 1

SNRI). The Fisher
information matrix (FIM) of the estimation of xi is

F = 2 · SNR · Re
[
∂Hµ(xi)

∂xi

∂µ(xi)

∂xi

]
.

After inserting ∂µ(xi)
∂xi

= H into FIM, we have F = 2 ·
SNR · Re(HHH). The CRLBs are given by the inverse of
the FIM Cx̂i

= F−1. CRLB expresses a lower bound on the
variance of unbiased estimators, stating that the variance of
any such estimator is at least as high as the inverse of the
FIM. Eqn. (4) has shown that the proposed method leads to
an unbiased estimation of the global model; hence we can use
the sum of all diagonal elements of Cx̂ as the lower bound of
the mean squared error (MSE) E ‖xi − x̂i‖2 to evaluate the
performance of global model estimation.

B. Convergence analysis

To simplify the analysis, we assume5 E = 1, which is
also referred to as parallel SGD [13], and make the following
standard assumptions that are commonly adopted in the con-
vergence analysis of FEDAVG and its variants; see [13]–[16].

Assumption 1. L-smooth: ∀ v and w, ‖fk(v)− fk(w)‖ ≤
L ‖v −w‖;

Assumption 2. µ-strongly convex: ∀ v and w,
〈fk(v)− fk(w),v −w〉 ≥ µ ‖v −w‖2;

Assumption 3. Unbiased SGD: ∀k ∈ [K], E[∇f̃k(w)] =
∇fk(w);

Assumption 4. Uniformly bounded gradient: ∀k ∈ [K],

E
∥∥∥∇f̃k(w)

∥∥∥2 ≤ H2 for all mini-batch data.

Lemma 1 (One-step convergence). Based on Assumptions 1-
4 and selecting learning rate ηt ≤ 1/(2µ), ∀t ∈ [T ], the
following inequality holds for parallel SGD:

E ‖wt+1 −w∗‖2 ≤ (1− 2µηt)E ‖wt −w∗‖2

+ η2t

[
1 +

K + 1/SNR

M

]
H2

K
.

(10)

Proof. We introduce an auxiliary error-free global model
w̄t+1 = 1

Kwk
t+1. We first have

E ‖wt+1 −w∗‖2 = E ‖wt+1 − w̄t+1 + w̄t+1 −w∗‖2

= E ‖wt+1 − w̄t+1‖2︸ ︷︷ ︸
A1

+E ‖w̄t+1 −w∗‖2︸ ︷︷ ︸
A2

+ 2E 〈wt+1 − w̄t+1, w̄t+1 −w∗〉︸ ︷︷ ︸
A3

.

(11)

Note that E[A3] = 0. Then, E[A2] can be obtained from a
well-known result [14]:

E ‖wt+1 −w∗‖2 ≤ (1− 2µηt)E ‖wt −w∗‖2 + η2t
H2

K
. (12)

We finally focus on E[A1]. Based on (6) and (8), we have

E ‖wt+1 − w̄t+1‖2 = E

∥∥∥∥∥∥ 1

K

∑
k∈[K]

xk −
1

K

∑
k∈[K]

x̂k

∥∥∥∥∥∥
2

=
1

K2
E

∥∥∥∥∥∥
∑

k∈[K]

hH
k hkxk +

∑
k∈[K]

∑
j∈[K],j 6=k

hH
k hjxj

+
∑

k∈[K]

hH
k ni −

∑
k∈[K]

xk

∥∥∥∥∥∥
2

= η2t

∑
k∈[K] E

∥∥∥∇f̃k(w)
∥∥∥2

K2

(
K + 1/SNR

M

)
≤ η2t

H2

K

(
K + 1/SNR

M

)
.

(13)

Plugging (12) and (13) back to (11) completes the proof.

5We will address the general case of E > 1 in the journal version.



Building on Lemma 1, we next present a complete con-
vergence upper bound for random orthogonalization. Due to
space limitation, the proof of Theorem 1 is omitted and will
be reported in the journal version.

Theorem 1 (Convergence for random orthogonalization).
With Assumptions 1-4, for some γ ≥ 0, if we select the
learning rate as ηt = 2

µ(t+γ) , we have

E[f(wt)]− f∗ ≤
L

2(t+ γ)

[
4B

µ2
+ (1 + γ) ‖w0 −w∗‖2

]
,

(14)
for any t ≥ 1, where

B ,

[
1 +

K + 1/SNR

M

]
H2

K
. (15)

Lemma 1 and Theorem 1 illustrate that there are two main
factors that influence the convergence rate of FL: variance re-
duction and channel interference. In particular, the definition
of B in (15), which appears in both Lemma 1 and Theorem
1, captures the joint impact of both factors. The nature of
distributed SGD suggests that, for a fixed mini-batch size at
each client, involving K devices enjoys a 1

K variance reduction
of stochastic gradient at each SGD iteration [17], which is
captured by the H2

K term in (10) and (14). However, due to the
existence of interference, the convergence rate is determined
by both variance reduction and channel interference, shown
as H2

K and (K+1/SNR)H2

MK terms in (15). This suggests that
the desired variance reduction may be adversely impacted
if channel interference dominates the convergence bound. In
particular, when M >> K, we have 1

K >> K+1/SNR
MK , and

the system enjoys almost the same variance reduction as the
interference-free case. However, in the case of K >> M ,
we have (K+1/SNR)

MK ≈ 1
M >> 1

K , and H2

M dominates the
convergence bound. In this case, blindly increasing the number
of clients is unwise, as it does not bring the advantage of
variance reduction.

Remark 3. In massive MIMO, a BS is usually equipped with
hundreds of antennas. Although there may exist large number
of users participating in FL, only a small number of them
are simultaneously active [6], especially in millimeter wave
cells whose coverage are usually small. Both factors indicate
that K << M often holds in typical massive MIMO systems.
The analysis reveals that our proposed framework enjoys
nearly the same interference-free convergence rate with low
communication and computation overhead in massive MIMO
systems.

V. EXPERIMENTS

We evaluate the performances of random orthogonalization
for uplink FL communications through numerical experiments.
From a communication performance perspective, we compare
the proposed method with the traditional MIMO detector to
compute the global model. Then, we use a real-world FL task
to evaluate the learning performance of the proposed method.
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Fig. 3. NMSE of the global ML model parameters versus SNR.
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Fig. 4. Training loss and test accuracy of a SVM FL task of random
orthogonalization and MMSE.

A. Communication performance

We consider a massive MIMO BS with M = 256, 512,
and 1024 antennas, with K = 8 active users participating in
a FL task. We assume a Rayleigh fading channel model, i.e.,
hk ∼ CN (0, 1

M I), for each user, and use the normalized mean
square error (NMSE) of the computed global model to evaluate
the system performance. All NMSE results in the simulation
are obtained from 2, 000 Monte Carlo experiments. Fig. 3
compares the NMSE performance of the proposed scheme
with a MMSE decoder as well as CRLB under different
system SNRs. As illustrated in Fig. 3, the proposed method
performs nearly identically to the MMSE decoder in low
and moderate SNRs under different antenna configurations
(see SNR ≤ 12 dB). As the SNR increases, the dominant
factor affecting system performances becomes the interference
among different users. Unlike the MMSE decoder that can
cancel all interferences when K ≤ M at high SNR, Eqn. (9)
shows that, for a given K and M , the proposed framework
has a fixed (approximate) SIR = K−1

M as SNR → ∞,
which explains why the performance of the proposed scheme



TABLE I
COMPUTATION TIME COMPARISON BETWEEN RANDOM

ORTHOGONALIZATION AND MMSE DECODER

# antennas Total CPU time (second)
(M) Proposed MMSE Proposed/MMSE
256 0.0186 2.7141 0.68%
512 0.0303 12.4155 0.24%

1024 0.0448 82.3530 0.05%

deteriorates compared with MMSE at high SNR. However,
this issue disappears naturally as the number of BS antennas
increases. It can be seen in Fig. 3 that the performance gap
between the proposed method and MMSE reduces, from about
5 dB when M = 256 to about 2 dB when M = 1024 at
SNR = 20 dB. Note that our method only requires 1/K of
channel estimation overheard compared with MMSE, and this
advantage is more significant when the BS is equipped with
larger number of antennas.

We next focus on the low-latency benefit of random or-
thogonalization. Table I compares the computation time of the
proposed scheme and MMSE decoder with SNR = 10 dB.
The total CPU time is the cumulative time of each algorithm
over 2, 000 Monte Carlo experiments. We see that the time
consumption of random orthogonalization is less than 1% of
the MMSE baseline. Especially, when M = 1024, despite the
0.3 dB NMSE performance loss compared with the MMSE
decoder (as shown in Fig. 3), the computation time of the
proposed method is only 0.05% of the MMSE baseline. The
results suggest that the random orthogonalization framework
is attractive in massive MIMO systems, because it has nearly
identical NMSE performance to CRLB but requires much less
channel estimation overhead and achieves extremely lower
system latency than the MMSE decoder.

B. Learning performance

We use a classification task to evaluate the ML model
accuracy and convergence rate of the proposed random orthog-
onalization approach. In particular, we implement a support
vector machine (SVM) to classify even and odd numbers in
the MNIST handwritten-digit dataset [18], with d = 784. We
consider a BS with M = 256 antennas and K = 8 active
clients involved in this task. The size of the local training
set at each client is 500, the size of the test set is 2, 000,
and we set E = 1. Fig. 4 reports the training loss and test
accuracy of the proposed method and MMSE decoder with
SNR = 10 dB. Although the MSE of the global model at the
BS during the learning process is about 2 dB worse for random
orthogonalization as shown in Fig. 3, the actual learning
performances of the two methods are nearly identical, further
validating the effectiveness of random orthogonalization.

VI. CONCLUSION

Leveraging the unique characteristics of channel hardening
and favorable propagation in massive MIMO, we have pro-
posed a novel uplink communication and processing method,

coined random orthogonalization, that significantly reduces
the channel estimation overhead while achieving natural over-
the-air model aggregation without requiring transmitter side
channel state information. Theoretical performance analyses,
from both communication (CRLB) and machine learning
(model convergence rate) perspectives, have been carried out.
The theoretical results suggested that random orthogonaliza-
tion asymptotically achieves the same convergence rate as
vanilla FL with perfect communications, and were further
validated with numerical experiments. More importantly, ran-
dom orthogonalization improves the scalability of FL, which
is a critical feature that is often bottlenecked by the limited
wireless resources.
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