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MIMO Integrated Sensing and Communication:

CRB-Rate Tradeoff

Haocheng Hua, Tony Xiao Han, and Jie Xu

Abstract

This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication

(ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate

one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We

consider two sensing target models, namely the point and extended targets, respectively. For the point

target case, the BS estimates the target angle and the reflection coefficient as unknown parameters, and

we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For

the extended target case, the BS estimates the complete target response matrix, and we consider three

different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant

of the CRB matrix for target response matrix estimation. For each of the four scenarios with different

CRB measures, we investigate the fundamental tradeoff between the estimation CRB for sensing and

the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate

(C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario,

by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB

constraint and its maximum transmit power constraint. For these problems, we obtain the optimal

transmit covariance solutions in semi-closed forms by using advanced convex optimization techniques.

For the point target case, the optimal solution is obtained by diagonalizing a composite channel matrix

via singular value decomposition (SVD) together with water-filling-like power allocation over these

decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are

obtained by diagonalizing the communication channel via SVD, together with proper power allocation

over two orthogonal sets of subchannels, one for both communication and sensing, and the other for
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dedicated sensing only. Finally, numerical results show the C-R region achieved by the optimal design in

each scenario, which significantly outperforms that by other benchmark schemes such as time switching.

Index Terms

Integrated sensing and communication (ISAC), multiple-input multiple-output (MIMO), Cramér-Rao

bound (CRB), capacity, optimization.

I. INTRODUCTION

Recently, integrated sensing and communication (ISAC) has been recognized as a candidate

key technology towards sixth-generation (6G) cellular networks to enable environment-aware

intelligent applications such as intelligent transportation and smart home (see, e.g., [2], [3]

and the references therein), in which radio signals and cellular infrastructures are reused for

both sensing and communication. Motivated by the success of multiple-input multiple-output

(MIMO) techniques in wireless communications [4]–[6] and radar sensing [7]–[9], MIMO ISAC

has recently attracted growing research interests, in which multiple antennas can be exploited to

provide the spatial multiplexing and diversity gains to increase the communication data rate and

reliability [4]–[6], as well as the waveform and spatial diversity gains to enhance the sensing

accuracy and resolution [7]–[9].

In MIMO ISAC systems, the scarce spectrum and power resources are shared between the

two functions of sensing and communication. As a result, there exists a fundamental tradeoff in

designing the transmit strategies and resource allocation to balance the sensing and communi-

cation performances. The transmit strategies design, however, is a challenging task, due to the

following two reasons in general. First, different from communication that commonly adopts

the data rate as the performance metric, the sensing performance metric may vary considerably

depending on specific sensing tasks (e.g., target detection or estimation) and specific parameters

to be estimated (for estimation tasks of our interest). Second, the transmit design principle for

MIMO communication significantly differs from that for MIMO radar, thus making it difficult

to optimize the transmit strategies for balancing the sensing and communication objectives.

In the literature, there have been various prior works investigating the multi-antenna ISAC by

employing different performance metrics for sensing design. On one hand, prior works [10]–[17]

adopted the transmit beampattern as the sensing performance metric, based on which the transmit

signal beams are focused towards the target directions to facilitate the estimation or detection. To
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be specific, the authors in [10] and [11] studied a multi-user multiple-input-single-output (MISO)

ISAC system, in which the information signal beams are reused for both sensing and commu-

nication, and the transmit information beamformers are optimized to match a sensing-oriented

beampattern and guarantee the communication performance simultaneously. Furthermore, to fully

exploit the degrees of freedom (DoFs) provided by MIMO radar, [12], [14], [15] proposed to

transmit the dedicated radar sensing signal beams in addition to the information beams, in which

the transmit information and sensing beamformers are jointly optimized. Moreover, advanced

multiple access techniques, such as rate-splitting multiple access (RSMA) [13], [16] and non-

orthogonal multiple access (NOMA) [17], were further exploited to enhance the communication

and sensing performance, in terms of data rate and sensing beampattern, respectively. On the other

hand, the Cramér-Rao bound (CRB) is another widely adopted sensing performance measure

for estimation tasks (e.g., [16], [18]–[20]), which characterizes the variance lower bound by any

unbiased estimators [21]. For instance, the work [18] studied the multi-antenna ISAC system with

multiple communication users (CUs) and one point or one extended target, in which the transmit

information beamformers and dedicated sensing beamformers were jointly optimized to minimize

the target estimation CRB, subject to a set of individual signal-to-noise-plus-interference ratio

(SINR) constraints at CUs. As compared to the sensing beampattern, the estimation CRB can

explicitly characterize the fundamental estimation error limit for target estimation tasks, which

is thus considered in this paper.

This paper investigates the MIMO ISAC system for target estimation. We focus on character-

izing the fundamental tradeoff limits between sensing and communication performances from the

estimation theory and the information theory perspectives, in which the estimation CRB and the

data rate are employed as the sensing and communication performance measures, respectively.

This problem, however, has not been well addressed in the literature yet, even for the basic

point-to-point MIMO ISAC system. To our best knowledge, only one recent work [22] studied

the so-called CRB-rate (C-R) region for a point-to-point MIMO ISAC system with one sensing

target, which is defined as the set containing all C-R pairs that can be simultaneously achieved

by sensing and communication. In particular, [22] considered a generic target estimation model

with finite sensing duration, based on which the optimal sample covariance matrix at the base

station (BS) was derived for CRB minimization and rate maximization, respectively. Accordingly,

the obtained solutions in [22] only characterized two corner points on the boundary of the C-

R region, but did not characterize the whole region boundary, especially the boundary points
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between the two corners. This thus motivates the current work.

In particular, we consider a point-to-point MIMO ISAC system, in which a multi-antenna BS

sends unified wireless signals to sense one target based on the echo signal and communicate

with a multi-antenna CU simultaneously. We consider two target models, namely the point and

extended targets. For the point target case, the BS aims to estimate the target angle and reflection

coefficient as unknown parameters, and we use the CRB for estimating the target angle as the

sensing performance metric. For the extended target case, the BS aims to estimate the complete

target response matrix, and we consider the trace, the maximum eigenvalue, and the determinant

of the CRB matrix for estimating the target response matrix, namely the Trace-CRB, MaxEig-

CRB, and Det-CRB, respectively, as three different sensing CRB metrics. For each of the four

scenarios with different CRB measures for the two target models, we aim to reveal the complete

boundary of the C-R region, by optimizing the transmit covariance matrix at the BS. The main

results of this paper are listed as follows.

• In order to characterize the Pareto boundary of the C-R region in each scenario, we first

pinpoint two corner points on each boundary by maximizing the data rate for communication

only and minimizing the estimation CRB for sensing only, respectively. Next, to find the

boundary points between the two corners on each C-R region, we formulate a new MIMO

rate maximization problem by optimizing the transmit covariance matrix at the BS, subject

to the corresponding maximum CRB constraint and the maximum transmit power constraint

at the BS.

• First, we consider the angle-CRB-constrained rate maximization problem for the point

target case. We first transform this problem into a convex form and accordingly derive its

optimal transmit covariance solution in a semi-closed form by using the Lagrange duality

method. It is shown that the optimal solution generally follows the eigenmode transmission

structure based on a composite channel matrix composed of both the communication and

sensing channels, in which the singular value decomposition (SVD) is implemented to

diagonalize the composite channel, followed by the water-filling-like power allocation over

the decomposed subchannels.

• Next, we consider the Trace-CRB, MaxEig-CRB, and Det-CRB constrained rate maximiza-

tion problems for the extended target case, which are all shown to be convex. By applying

advanced optimization techniques, we derive their optimal transmit covariance solutions in

semi-closed forms. For all the three problems, the optimal solutions are obtained by first
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implementing the SVD to diagonalize the communication channel, and then performing

proper power allocation over two orthogonal sets of decomposed subchannels, one for both

communication and sensing and the other (if any) for dedicated sensing only. It is shown

that the optimal power allocation is monotonically increasing with respect to the equivalent

channel gain of the decomposed subchannel.

• Finally, we present numerical results to evaluate the C-R-region boundary achieved by the

optimal transmit covariance solutions under different CRB metrics for both the point and

extended target cases. In the point target case, our proposed optimal design is shown to

significantly outperform the benchmark scheme based on time switching between the rate-

maximization and the CRB minimization designs. In the extended target case, our proposed

optimal designs are shown to be superior to various benchmarks based on time switching

and power splitting designs.

Notations: Boldface letters refer to vectors (lower case) or matrices (upper case). For a square

matrix M , M � 0 and M � 0 mean that M is positive semidefinite and positive definite,

respectively, while tr(M ), det(M), λmax(M ), λmin(M ), λi(M), and λ(M ) denote its trace,

its determinant, maximum eigenvalue, minimum eigenvalue, i-th eigenvalue, and the set of its

eigenvalues, respectively. For an arbitrary-size matrix M , rank(M), MH , M ∗, MT , and ζi(M )

denote its rank, conjugate transpose, conjugate, transpose, and i-th singular value, respectively. ⊗,

◦, and ⊕ denote the Kronecker product, the Hadamard product, and the direct sum, respectively.

Rx×y and Cx×y denotes the spaces of real and complex matrices with dimension x× y, respec-

tively. E{·} denotes the statistical expectation. ‖x‖ denotes the Euclidean norm of a complex

vector x. |z| denote the magnitude of a complex number z. j =
√
−1 denotes the imaginary

unit. For a real number x, (x)+ = max(x, 0). diag(x1, ..., xn) denotes a diagonal matrix with

diagonal elements x1, ..., xn. For a matrix M ∈ Rx×y (or Cx×y), R(M ) and N (M) denote the

range and null space of M that are subspaces of Rx (or Cx) and Ry (or Cy), respectively.

II. SYSTEM MODEL

We consider a MIMO ISAC system, in which a BS communicates with a CU and simul-

taneously estimates a point target or an extended target, as shown in Fig. 1(a) or Fig. 1(b),

respectively. The BS is equipped with a uniform linear array (ULA) with M > 1 transmit

antennas for sending ISAC signals and Ns receive antennas for receiving echo signals for target

estimation. The CU is equipped with Nc > 1 antennas.



6

(a) Case with a point target (b) Case with an extended target

Figure 1. Illustration of the considered MIMO ISAC system.

Let x(n) denote the transmit ISAC signal by the BS transmitter (BS-Tx) at symbol n. We con-

sider the capacity-achieving Gaussian signaling, such that x(n) is a circularly symmetric complex

Gaussian (CSCG) random vector with zero mean and covariance Q = E{x(n)xH(n)} � 0, i.e.,

x(n) ∼ CN (0,Q). Let P denote the transmit power budget at the BS-Tx. We thus have the

transmit power constraint as

tr(Q) = E{‖x(n)‖2} ≤ P. (1)

In this work, we consider a quasi-static narrowband channel model, in which the wireless

channels remain unchanged over the transmission duration of our interest, as commonly adopted

in the literature [13], [18]. Let Hc ∈ CNc×M denote the channel matrix from the BS-Tx to the

CU, whose rank is denoted by r = rank(Hc) ≤ min(Nc,M). Let Hs ∈ CNs×M denote the

target response matrix from the BS-Tx to the target to the BS receiver (BS-Rx), which will be

specified later for the cases with point and extended targets, respectively.

First, we consider the point-to-point MIMO communication from the BS-Tx to the CU. The

received signal by the CU at symbol n is

yc(n) = Hcx(n) + zc(n), (2)

where zc(n) denotes the noise at the CU receiver that is a CSCG random vector with zero mean

and covariance σ2
cINc , i.e., zc(n) ∼ CN (0, σ2

cINc). In this case, with Gaussian signalling, the

achievable rate (in bps/Hz) of the MIMO channel with transmit covariance Q is

R(Q) = log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
. (3)

It is assumed that the channel matrix Hc is perfectly known at the BS, such that the BS can

design the transmit covariance Q based on Hc to optimize the achievable rate R(Q).
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Next, we consider the MIMO radar sensing over a particular coherent processing interval

(CPI) with L > M symbols. Let L = {1, . . . , L} denote the set of symbols in the CPI, and

X = [x(1), ...,x(L)] ∈ CM×L denote the transmitted signals over the CPI. It is assumed

that the CPI length L is sufficiently long such that the sample covariance matrix 1
L
XXH

can be approximated as the covariance matrix Q, which is designed for sensing performance

optimization [18]. Accordingly, the received echo signal Ys ∈ CNs×L at the BS-Rx is

Ys = HsX +Zs, (4)

where Zs ∈ CNs×L denotes the noise at the BS-Rx, with each element being an independent

and identically distributed (i.i.d.) CSCG random variable with zero mean and variance σ2
s . In

particular, we consider the point and extended target models for Hs, respectively, as detailed in

the following.

A. Point Target Model

The point target is modeled as an unstructured point that is far away from the BS [18]. The

corresponding target response matrix is

Hs = αb(θ)aT (θ) , αA(θ), (5)

where α ∈ C represents the reflection coefficient that depends on both the round-trip path-loss

and the radar cross section (RCS) of the target, θ is the angle of arrival (AoA)/angle of departure

(AoD) of the target relative to the BS, and a(θ) ∈ CM×1 and b(θ) ∈ CNs×1 denote the steering

vectors of the transmit and receive antennas, respectively. By choosing the center of the ULA as

the reference point and assuming half-wavelength spacing between adjacent antennas [18], we

have

a(θ) =
[
e−j

M−1
2

π sin θ, e−j
M−3

2
π sin θ, ..., ej

M−1
2

π sin θ
]T
, (6)

b(θ) =
[
e−j

Ns−1
2

π sin θ, e−j
Ns−3

2
π sin θ, ..., ej

Ns−1
2

π sin θ
]T
. (7)

For the point target case, the BS needs to estimate the complex coefficient α and the angle θ as

unknown parameters. As it is difficult to extract the target information from α, we focus on the

estimaton of θ [19]. In this case, the CRB for estimating θ is expressed as [18]

CRB1(Q) =
σ2
s tr
(
AH(θ)A(θ)Q

)
2|α|2L

(
tr
(
ȦH(θ)Ȧ(θ)Q

)
tr (AH(θ)A(θ)Q)−

∣∣∣tr(ȦH(θ)A(θ)Q
)∣∣∣2) , (8)
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where Ȧ(θ) = ∂A(θ)
∂θ

= b(θ)ȧT (θ) + ḃ(θ)aT (θ). Here, ȧ(θ) and ḃ(θ) denote the derivatives of

a(θ) and b(θ), respectively, i.e.,

ȧ(θ) =

[
−ja1

M − 1

2
π cos θ, ..., jaM

M − 1

2
π cos θ

]T
, (9)

ḃ(θ) =

[
−jb1

Ns − 1

2
π cos θ, ..., jbNs

Ns − 1

2
π cos θ

]T
, (10)

where ai and bi are the ith entry of a(θ) and that of b(θ), respectively. Notice that by the

symmetry of the ULA, a(θ) is orthogonal to ȧ(θ) and b(θ) is orthogonal to ḃ(θ) regardless of

θ, i.e., aH(θ)ȧ(θ) = 0 and bH(θ)ḃ(θ) = 0,∀θ.

B. Extended Target Model

In general, the extended target is modeled as the combination of a large number of K

distributed point-like scatterers. In this case, Hs is expressed as [18]

Hs =
K∑
k=1

αkb (θk)a
T (θk) , (11)

where αk denotes the reflection coefficient of the k-th scatterer, θk denotes its associated AoA/AoD

relative to the BS, and a (θk) and b (θk) denote the corresponding transmit and receive steering

vectors given in (6) and (7), respectively. As the number of scatterers K may not be available

a priori, the objective of sensing is to estimate the complete target response matrix Hs with

MNs complex parameters, based on which the BS may extract the parameters of each scatterer

using algorithms such as the multiple signal classification (MUSIC) [23] and the amplitude and

phase estimation (APES) [24]. In this case, the CRB matrix for estimating Hs is given by [18]

CRB(Q) = J(Q)−1, (12)

where J(Q) is the Fisher information matrix given by [18]

J(Q) =
L

σ2
s

QT ⊗ INs . (13)

Note that CRB(Q) in (12) is a complex matrix with dimension MNs×MNs, with the (M(i−

1) + j)-th diagonal element representing the lower bound of variance for unbiasedly estimating

the (i, j)-th element of Hs, 1 ≤ i ≤ Ns, 1 ≤ j ≤ M . To facilitate the ISAC system design,

we adopt three different types of scalar CRB metrics based on the trace, maximum eigenvalue,

and determinant of the CRB matrix CRB(Q) [20], namely Trace-CRB, MaxEig-CRB, and
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Det-CRB, which are defined in (14), (15), and (16), respectively.

CRB2(Q) = tr(CRB(Q)) =
σ2
sNs

L
tr(Q−1) (14)

CRB3(Q) = λmax(CRB(Q)) =
σ2
s

L
λmax(Q

−1) (15)

CRB4(Q) = det(CRB(Q)) = (
σ2
s

L
)MNs det(Q−1)Ns (16)

Intuitively, minimizing the Trace-CRB (i.e., CRB2(Q) in (14)) corresponds to minimizing the

sum CRB for estimating the elements of Hs. Next, minimizing the MaxEig-CRB (i.e., CRB3(Q)

in (15)) ensures the fairness for estimating different elements of Hs by minimizing the upper

bound of the worst-case CRB. Furthermore, as det(CRB(Q)) =
∏MNs

i=1 λi(CRB(Q)), mini-

mizing the Det-CRB (CRB4(Q) in (16)) is equivalent to minimizing
∑MNs

i=1 lnλi(CRB(Q)),

which ensures the proportional fairness for estimating different elements of Hs [6].

For notational convenience, we define the point target case with CRB1(Q) in (8) as Scenario

1, and the three extended target cases with CRB2(Q) in (14), CRB3(Q) in (15), and CRB4(Q)

in (16) as Scenarios 2, 3, and 4, respectively. We will characterize the C-R regions for the four

scenarios next.

III. C-R REGION CHARACTERIZATION

Our objective is to reveal the fundamental tradeoff between the data rate R(Q) in (3) for

communication and the estimation CRB CRBi(Q) for sensing in Scenario i ∈ {1, ..., 4}. To start

with, we define the C-R region, which is a set containing all C-R pairs that can be simultaneously

achieved by the ISAC system under the given transmit power constraint in (1). Mathematically,

the C-R region with power budget P in Scenario i ∈ {1, 2, 3, 4} is defined as

CC-R
i (P ) ,

{
(Γ̄, R̄) : Γ̄ ≥ CRBi(Q), R̄ ≤ log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
, tr(Q) ≤ P,Q � 0

}
.

We are particularly interested in finding the Pareto boundary of C-R region CC-R
i (P ), i ∈

{1, 2, 3, 4}. Towards this end, we consider the following CRB-constrained rate maximization

problem (Pi) for each scenario i ∈ {1, 2, 3, 4}.

(Pi) : max
Q�0

log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
, s.t. CRBi(Q) ≤ Γi, tr(Q) ≤ P. (17)

To facilitate the whole boundary characterization for each of the four different scenarios and

gain more insights, in the following, we first pinpoint two corner points on the boundary of each

C-R region CC-R
i (P ), which correspond to rate maximization for communication only and CRB

minimization for sensing only, respectively.
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A. Rate-Maximization Corner Point for Communication Only

First, we find the rate-maximization corner point with communication only for each of the four

scenarios. Towards this end, we maximize the achievable rate R(Q) by optimizing the transmit

covariance Q, subject to the transmit power constraint, i.e.,

max
Q�0

log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
, s.t. tr(Q) ≤ P. (18)

To facilitate the derivation, we express the SVD of Hc as Hc = U cΣcV
H
c , where U c ∈ CNc×Nc

and V c ∈ CM×M with UH
c U c = U cU

H
c = INc and V H

c V c = V cV
H
c = IM , and Σc ∈ CNc×M

is an all-zero matrix except the first r diagonal elements being the r non-zero singular values

ζ1(Hc) ≥ ... ≥ ζr(Hc) > 0. It has been well established in [4] that the optimal solution to

problem (18) is given by Q∗c = V cΛcV
H
c , where Λc = diag(p∗c,1, ..., p

∗
c,r, 0, ..., 0) denotes the

water-filling power allocation matrix with its first r diagonal elements given by

p∗c,k =

(
ν − σ2

c

ζ2
k(Hc)

)+

,∀k ∈ {1, . . . , r}. (19)

In (19), ν is the water level that can be obtained based on
∑r

k=1 p
∗
c,k = P .

At the obtained Q∗c , let Rmax = R(Q∗c) =
∑r

k=1 log2(1 +
ζ2k(Hc)p∗c,k

σ2
c

) denote the maximum

achievable rate and CRBC,i = CRBi(Q
∗
c) denote the correspondingly achieved estimation CRB

in Scenario i ∈ {1, 2, 3, 4}. As a result, we obtain the rate-maximization corner point on the

boundary of C-R region CC-R
i (P ) as (CRBC,i, Rmax), i ∈ {1, 2, 3, 4}.

Remark 1. Note that for Scenario 1 with point target, it follows from (8) that CRBC,1 will

become undefined if a∗(θ) is orthogonal to the range space of rate-maximization covariance Q∗c ,

i.e., R(Q∗c). In practice, however, Hc is generally drawn following certain random distributions

due to channel fading, and thus a∗(θ) will be non-orthogonal to R(Q∗c) with probability one.

In this case, CRBC,1 is well defined and bounded, and therefore, the parameter θ is estimable.

On the other hand, in the case with extended target, it follows from (14), (15), and (16) that if

Q∗c is rank-deficient (i.e., rank(Q∗c) < M ), then CRBC,i →∞, i ∈ {2, 3, 4}. This means that Hs

is not estimable in this case due to the lack of DoFs, and the corresponding rate-maximization

corner point becomes (∞, Rmax) for Scenarios 2, 3, and 4. In general, this happens when the

communication channel Hc is rank-deficient (i.e., rank(Hc) = r < M ) or the transmit power

at the BS is smaller than a certain threshold (i.e., P ≤ P0 ,
∑M−1

i=1 ( σ2
c

ζ2M (Hc)
− σ2

c

ζ2i (Hc)
)) under

rank(Hc) = M .
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B. CRB-Minimization Corner Point for Scenario 1 with Point Target

Next, we find the other CRB-minimization corner point on the Pareto boundary of each C-R

region. We first consider Scenario 1 for the point target case in this subsection, and will address

Scenarios 2-4 for the extended target case in the next subsection. For the point target case, we

formulate the CRB minimization problem as

min
Q�0

CRB1(Q), s.t. tr(Q) ≤ P. (20)

We have the optimal solution to problem (20) given in Proposition 1 in the following, in which

we rewrite a(θ) as a for notational convenience. Note that Proposition 1 has been proved in

[20], for which the detailed proof is omitted for brevity.

Proposition 1. The optimal solution to problem (20), denoted by Q∗s,1, is given as follows by

considering three cases.

• When Ns > M or ‖ḃ‖ > ‖ȧ‖, we have Q∗s,1 = P
‖a‖22

a∗aT ;

• When Ns = M or ‖ḃ‖ = ‖ȧ‖, we have Q∗s,1 = Pη ȧ∗ȧT

‖ȧ‖22
+ (1−η)P a∗aT

‖a‖22
for any 0 ≤ η < 1;

• When Ns < M or ‖ḃ‖ < ‖ȧ‖, we have Q∗s,1 = Pη ȧ∗ȧT

‖ȧ‖22
+ (1− η)P a∗aT

‖a‖22
with η → 1.

Remark 2. According to Proposition 1, the minimum CRB is obtained as CRB1,min , CRB1(Q∗s,1).

Notice that when Ns > M , Q∗s,1 is unique with rank(Q∗s,1) = 1, and the correspondingly

achieved data rate is given as R1,S = R(Q∗s,1). When Ns = M , Q∗s,1 is not unique and we can

optimize 0 ≤ η < 1 to obtain R1,S = max0≤η<1R(Q∗s,1). When Ns < M , however, R1,S can

only be asymptotically achieved, i.e., R1,S = limη→1R(Q∗s,1). Combining the above, the CRB-

minimization corner point on the Pareto boundary of CC-R
1 (P ) is obtained as (CRB1,min, R1,S).

C. CRB-Minimization Corner Point for Scenarios 2-4 with Extended Target

In this subsection, we obtain the CRB-minimization corner point on the boundary of each

C-R region CC-R
i (P ), i ∈ {2, 3, 4}, with the extended target. Towards this end, we have the CRB

minimization problem for Scenario i ∈ {2, 3, 4} as

min
Q�0

CRBi(Q), s.t. tr(Q) ≤ P. (21)

We then have the following proposition.

Proposition 2. The optimal solutions to the three problems in (21) are identical, given by

Q∗s,i = P
M
IM ,∀i ∈ {2, 3, 4}.

Proof. See Appendix A.
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Based on Proposition 2, the achieved Trace-CRB, MaxEig-CRB, and Det-CRB are given

by CRB2,min = σ2
sNsM

2

PL
, CRB3,min = Mσ2

s

LP
, and CRB4,min = (Mσ2

s

LP
)MNs for Scenario 2, 3,

and 4, respectively. The corresponding communication data rate are identical for the three

scenarios, i.e., Ri,S =
∑r

k=1 log2

(
1 +

ζ2k(Hc)P

σ2
cM

)
, i ∈ {2, 3, 4}. As a result, the CRB-minimization

corner points for C-R region CC-R
2 (P ) , CC-R

3 (P ), and CC-R
4 (P ) are obtained as (CRB2,min, R2,S),

(CRB3,min, R3,S), and (CRB4,min, R4,S), respectively.

IV. OPTIMAL SOLUTION TO PROBLEM (P1) WITH POINT TARGET

In this section, we address problem (P1) with point target. By defining Γ̃1 = 2Γ1L|α|2
σ2
s

, problem

(P1) is reformulated as

(P1.1) : max
Q�0

log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
(22a)

s.t.

 tr
(
ȦHȦQ

)
− 1

Γ̃1
tr
(
ȦHAQ

)
tr
(
AHȦQ

)
tr
(
AHAQ

)
 � 0 (22b)

tr(Q) ≤ P, (22c)

where (22b) is equivalent to the CRB constraint in (17) with CRB1(Q) given in (8), and we omit

θ for notational convenience. Problem (P1.1) is convex, since the objective function is concave

and the constraints are convex. To gain more insights, we use the Lagrange duality method to

obtain a well-structured optimal solution to (P1.1).

Let ZP = [αd, βd + jγd; βd − jγd, νd] � 0 and λ ≥ 0 denote the dual varaibles associated

with the constraints in (22b) and (22c), respectively. The Lagrangian of (P1.1) is

L(Q, λ,ZP ) = log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
− λ(tr(Q)− P )+

tr

 αd βd + jγd

βd − jγd νd

 tr
(
ȦHȦQ

)
− 1

Γ̃1
tr
(
ȦHAQ

)
tr
(
AHȦQ

)
tr
(
AHAQ

)


= log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
+ λP − αd

Γ̃1

− tr (C(λ,ZP )Q) ,

where C(λ,ZP ) , λI − (αdȦ
HȦ + (βd + jγd)Ȧ

HA + (βd − jγd)AHȦ + νdA
HA). By using

the fact that aH ȧ = 0, bHḃ = 0, and Ȧ = bȧT + ḃaT , C(λ,ZP ) can be further simplified as

C(λ,ZP ) =λI − (αd(ȧ
∗ȧT‖b‖2

2 + ‖ḃ‖2
2a
∗aT )

+ (βd + jγd)‖b‖2
2ȧ
∗aT + (βd − jγd)‖b‖2

2a
∗ȧT + νd‖b‖2

2a
∗aT ), (23)
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with rank(C(λ,ZP )) ≥M − 2. The Lagrange dual function of (P1.1) is

g(λ,ZP ) = max
Q�0
L(Q, λ,ZP ). (24)

The corresponding dual problem is

(D1.1): min
λ≥0,ZP�0

g(λ,ZP ). (25)

Notice that since problem (P1.1) is a convex optimization problem and meets the Slater’s

condition, the strong duality holds between (P1.1) and its dual problem (D1.1) [25]. Therefore,

primal problem (P1.1) can be solved by equivalently solving dual problem (D1.1) as follows.

A. Finding Dual Function g(λ,ZP ) under Given λ and ZP

First, consider problem (24) under given λ and ZP , which is equivalent to solving the following

problem by skipping the constant terms.

max
Q�0

log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
− tr(C(λ,ZP )Q) (26)

The eigenvalue decomposition (EVD) of C(λ,ZP ) is given by

C(λ,ZP ) =

[
U1︸︷︷︸
M×rc

U0︸︷︷︸
M×(M−rc)

] ∆rc 0rc×(M−rc)

0(M−rc)×rc 0(M−rc)×(M−rc)

 UH
1

UH
0

 = U1∆rcU
H
1 ,

(27)
where rc = rank(C(λ,ZP )) ≥ M − 2 and ∆rc = diag(λ1(C(λ,ZP )), ..., λrc(C(λ,ZP ))).

Without loss of generality, any feasible solution to problem (26) can be expressed as

Q =

[
U1︸︷︷︸
M×rc

U0︸︷︷︸
M×(M−rc)

] Q11 QH
01

Q01 Q00

 UH
1

UH
0


= U1Q11U

H
1︸ ︷︷ ︸

Qll

+U0Q01U
H
1 +U1Q

H
01U

H
0 +U0Q00U

H
0︸ ︷︷ ︸

Q⊥

. (28)

Notice that both Qll and Q⊥ are hermitian. It is then easy to see that tr(C(λ,ZP )Q) =

tr(Q11∆rc). Recall that the SVD of Hc is Hc = UcΣcV
H
c = [Uc1,Uc0] Σc [Vc1,Vc0]H . We

then have the following lemma.

Lemma 1. In order for the optimal value of problem (26) or equivalently g(λ,ZP ) to be bounded

from above, it must hold that C(λ,ZP ) � 0 and R(Vc1) ⊆ R(U1).

Proof. We prove this lemma by contradiction. First, suppose that C(λ,ZP ) is not positive semi-

definite, and let v− denote the eigenvector corresponding to any one negative eigenvalue. In

this case, we can choose Q = ξ−v−v
H
− with ξ− > 0. By setting ξ− → ∞, we accordingly

have g(λ,ZP ) → ∞, thus resulting in a contradiction. Next, suppose that R(Vc1) ⊆ R(U1)
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does not hold, and thus there exists a vector vc such that vc ∈ R(Vc1) and vc /∈ R(U1).

As R(U0) ⊕ R(U1) = CM , we have vc ∈ R(U0). In this case, we set Q11 = Q01 = 0,

and U0Q00U
H
0 = ξcvcv

H
c or equivalently Q00 = ξcU

H
0 vcv

H
c U0. By letting ξc → ∞, we have

g(λ,ZP )→∞, which is a contradiction again. This completes the proof.

According to Lemma 1, we only need to deal with problem (26) in the case withC(λ,ZP ) � 0

and R(Vc1) ⊆ R(U1). In this case, problem (26) is simplified as the optimization of Q11:

max
Q11�0

log2 det

(
INc +

1

σ2
c

HcU1Q11U
H
1 H

H
c

)
− tr(Q11∆rc). (29)

Let Q̃11 , ∆
1
2
rcQ11∆

1
2
rc . Problem (29) is transformed as

max
Q̃11�0

log2 det

(
INc +

1

σ2
c

HcU1∆
− 1

2
rc Q̃11∆

− 1
2

rc U
H
1 H

H
c

)
− tr(Q̃11). (30)

Let the SVD of W , HcU1∆
− 1

2
rc ∈ CNc×rc be expressed as UWΣWV

H
W . Then, we introduce

Q̄11 , V H
W Q̃11VW , and accordingly reformulate problem (30) as

max
Q̄11�0

log2 det

(
Irc +

1

σ2
c

Σ2
W Q̄11

)
− tr(Q̄11), (31)

where Σ2
W , ΣH

WΣW = diag(ζ2
1 (W ), ..., ζ2

rc(W )). By applying the Hadamard’s inequality [26],

it follows that the optimal solution to problem (31) is diagonal, i.e., Q̄∗11 = diag(p̄∗1,1, ..., p̄
∗
1,rc).

By further applying the Karush-Kuhn-Tucker (KKT) conditions, the optimal {p̄∗1,k} follows the

water-filling-like structure, i.e.,

p̄∗1,k =

(
1

ln 2
− σ2

c

ζ2
k(W )

)+

, ∀k ∈ {1, 2, ..., rc}. (32)

The optimal solution to problem (29) is thus expressed as

Q∗11 = ∆
− 1

2
rc VW diag(p̄∗1,1, ..., p̄

∗
1,rc)V

H
W ∆

− 1
2

rc . (33)

Based on Lemma 1, it is clear that g(λ,ZP ) only depends on Qll or Q∗11 in (28) and we thus

have g(λ,ZP ) = L(Q∗, λ,ZP ) with Q∗ = U1Q
∗
11U

H
1 . Note that Q∗ is non-unique in general.

B. Optimal Solution to (D1.1)

Next, we solve dual problem (D1.1). Based on Lemma 1, (D1.1) is further reexpressed as

(D1.1): min
λ≥0,ZP�0

g(λ,ZP ), s.t. C(λ,ZP ) � 0. (34)

As problem (D1.1) has a convex but in general non-differentiable objective function with linear

matrix inequality constraints, it is convex and can be solved optimally by applying subgradient-

based methods, e.g., the ellipsoid method [25]. Towards this end, we need to obtain the subgra-

dients of the objective function and the constraint functions in (D1.1). First, for the objective
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function g(λ,ZP ), the subgradient ∂g at (λ, αd, βd, γd, νd) is given by[
P − tr(Q∗), tr(ȦHȦQ∗)− 1

Γ̃1

, tr((ȦHA + AHȦ)Q∗), tr(j(ȦHA−AHȦ)Q∗), tr(AHAQ∗)

]T
,

(35)
where Q∗ denotes the optimal solution to maxQ�0 L(Q, λ,ZP ) under given λ and ZP . Next,

given fixed (λ, αd, βd, γd, νd), we denote the eigenvector of ZP corresponding to its minimum

eigenvalue as z = [z1, z2]T and that of C(λ,ZP ) as q. The constraints ZP � 0 and C(λ,ZP ) �

0 are thus equivalent to zHZPz ≥ 0 and qHC(λ,ZP )q ≥ 0, respectively. Therefore, for

constraint function zHZPz, the subgradient is [0, |z1|2, z̄1z2 + z1z̄2,−jz1z̄2 + jz̄1z2, |z2|2]
T , and

for constraint function qHC(λ,ZP )q, the subgradient is [25][
qHq,−qHȦHȦq,−qH(ȦHA + AHȦ)q, qH(−jȦHA + jAHȦ)q,−qHAHAq

]T
. (36)

By implementing the ellipsoid method based on the obtained subgradients, the optimal solution

to (D1.1), denoted by λopt and Zopt
P , is obtained.

C. Optimal Solution to Primal Problem (P1.1) or (P1)

Finally, with λopt and Zopt
P at hand, we obtain the optimal primal solution Qopt

1 to (P1.1).

Based on (33), the optimal solution of Q11 to problem (24) or (26) under λopt and Zopt
P is

Qopt
11 = {∆opt

rc }
− 1

2V opt
W diag(p̄opt

1,1, ..., p̄
opt
1,rc){V

opt
W }

H{∆opt
rc }
− 1

2 , (37)

where ∆opt
rc , V opt

W , and (p̄opt
1,1, ..., p̄

opt
1,rc) are decided based on C(λopt,Zopt

P ) = U opt
1 ∆opt

rc {U
opt
1 }H via

(33). Note that if C(λopt,Zopt
P ) � 0, we have Qopt

1 = Qopt
ll = U opt

1 Qopt
11 {U

opt
1 }H , or equivalently,

Qopt
1 = C(λopt,Zopt

P )−1/2V opt
G diag(popt

1,1, ..., p
opt
1,M){V opt

G }
HC(λopt,Zopt

P )−1/2, (38)

where V opt
G contains the right singular vectors of Gopt , HcC(λopt,Zopt

P )−1/2, i.e., Gopt =

U opt
G Σopt

G {V
opt
G }H with {Σopt

G }HΣopt
G = diag(ζ2

1 (Gopt), ..., ζ2
M(Gopt)) and popt

1,k =
(

1
ln 2
− σ2

c

ζ2k(Gopt)

)+

,

∀k ∈ {1, ...,M}. However, if C(λopt,Zopt
P ) � 0 is not positive definite, we need to further

determine Qopt
01 ,Q

opt
00 under given Qopt

ll by solving the following feasibility problem:

Find {Q01,Q00}, s.t. (22b), (22c), (28). (39)

In this case, we have the optimal primal solution to problem (P1) as Qopt
1 = Qopt

ll +Qopt
⊥ , where

Qopt
⊥ = U opt

0 Qopt
01 {U

opt
1 }H +U opt

1 {Q
opt
01 }H{U

opt
0 }H +U opt

0 Qopt
00 {U

opt
0 }H .

Notice that Qopt
ll is used for both sensing and communication in general and Qopt

⊥ is used for

sensing only. However, in most practical cases with random target directions and communication

channels, R(Vc1) ⊆ R(U1) holds with R(U1) = CM . In this case, we have C(λopt,Zopt) � 0

according to Lemma 1 and thus Qopt
1 can be directly obtained from (38). As a result, it is
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interesting to see from (38) that the optimal solution is obtained by first implementing SVD to

diagonalize the composite channel HcC(λopt,Zopt
P )−1/2, followed by the water-filling-like power

allocation over the decomposed subchannels.

V. OPTIMAL SOLUTIONS TO PROBLEMS (P2)-(P4) WITH EXTENDED TARGET

This section addresses problems (P2)-(P4) for Scenarios 2-4 with extended target to find the

whole Pareto boundary of CC-R
2 (P ), CC-R

3 (P ), and CC-R
4 (P ).

A. Optimal Solution to Problem (P2) with Trace-CRB

First, we consider problem (P2). By defining Γ̃2 ,
LΓ2

σ2
sNs

, problem (P2) is re-expressed as

(P2.1) : max
Q�0

log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
, s.t. tr(Q−1) ≤ Γ̃2, tr(Q) ≤ P. (40)

Note that problem (P2.1) is convex. To solve this problem, we first define Q̃ , V H
c QV c, where

Vc stems from the SVD of Hc given by Hc = U cΣcV
H
c . Accordingly, (P2.1) is equivalently

reformulated as

(P2.2): max
Q̃�0

log2 det

(
IM +

1

σ2
c

Σ2
cQ̃

)
, s.t. tr(Q̃−1) ≤ Γ̃2, tr(Q̃) ≤ P, (41)

where Σ2
c , ΣH

c Σc = diag(ζ2
1 (Hc), ..., ζ

2
r (Hc), 0, ..., 0) ∈ RM×M . Here, the objective function

in (41) is obtained based on det(INc + 1
σ2
c
HcQH

H
c ) = det(IM + 1

σ2
c
Σ2
cQ̃), and the constraints in

(41) follow from the constraints in (40) since tr(Q−1) = tr((V cQ̃V
H
c )−1) = tr(V cQ̃

−1
V H

c ) =

tr(V H
c V cQ̃

−1
) = tr(Q̃

−1
) and tr(Q) = tr(V cQ̃V

H
c ) = tr(V H

c V cQ̃) = tr(Q̃). Next, we have

the following proposition.

Proposition 3. The optimal solution to problem (P2.2) is a diagonal matrix with strictly positive

diagonal elements, i.e., Q̃2 = diag(p2,1, p2,2, ..., p2,M), where p2,k > 0, ∀k ∈ {1, . . . ,M}.

Proof. See Appendix B.

Based on Proposition 3, problem (P2.2) is equivalently reformulated as

(P2.3): max
{p2,k≥0}

r∑
k=1

log2

(
1 +

ζ2
k(Hc)p2,k

σ2
c

)
, s.t.

M∑
k=1

1

p2,k

≤ Γ̃2,

M∑
k=1

p2,k ≤ P. (42)

Proposition 4. The optimal power allocation solution to (P2.3) is obtained as

popt
2,k =


−topt

1,k + 3

√
−topt

2,k +
√

(topt
2,k)

2 + (topt
3,k)

3 + 3

√
−topt

2,k −
√

(topt
2,k)

2 + (topt
3,k)

3, ∀k ∈ {1, . . . , r},√
µopt

2 /vopt
2 , ∀k ∈ {r + 1, . . . ,M}.

(43)
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where topt
1,k = bopt

k /(3a
opt), topt

2,k = (27(aopt)2dopt
k − 9aoptbopt

k c
opt + 2(bopt

k )3)/(54(aopt)3), topt
3,k =

(3aoptcopt − (bopt
k )2)/(9(aopt)2) with aopt = vopt

2 , bopt
k = vopt

2
σ2
c

ζ2k(Hc)
− 1

ln2 , c
opt = −µopt

2 , and dopt
k =

−µopt
2

σ2
c

ζ2k(Hc)
. Here, µopt

2 and vopt
2 are the optimal dual variables associated with the CRB constraint

and the power constraint in (42), respectively.

Proof. See Appendix C.

Finally, combining Propositions 3 and 4, the optimal solution to (P2) is obtained as Qopt
2 =

VcQ̃
opt
2 V

H
c , where Q̃opt

2 = diag(popt
2,1, . . . , p

opt
2,M), with {popt

2,k} given in Proposition 4.

B. Optimal Solution to Problem (P3) with MaxEig-CRB

Next, we consider problem (P3) with MaxEig-CRB in Scenario 3, which is re-expressed as

(P3) : max
Q�0

log2 det

(
INc +

1

σ2
c

HcQH
H
c

)
, s.t. λmax(CRB(Q)) ≤ Γ3, tr(Q) ≤ P. (44)

Notice that CRB(Q)−1 = J(Q) = L
σ2
s
QT ⊗ INs , and as a result, λmax(CRB(Q)) ≤ Γ3 is

equivalent to λmin(J(Q)) ≥ 1
Γ3

. Furthermore, according to the eigenvalue property of Kronecker

product, i.e., λ( L
σ2
s
QT ⊗ INs) = {βiγj : βi ∈ λ( L

σ2
s
QT ), γj ∈ λ(INs)}, the minimum eigenvalue

of J(Q) is equivalent to the minimum eigenvalue of L
σ2
s
QT . Thus, problem (P3) is equivalently

reformulated as

(P3.1) : max
Q̃�0

log2 det

(
IM +

1

σ2
c

Σ2
cQ̃

)
, s.t. Q̃ � σ2

s

LΓ3

IM , tr(Q̃) ≤ P, (45)

where Q̃ , V H
c QVc. We have the following proposition.

Proposition 5. The optimal solution to problem (P3.1) is a diagonal matrix with strictly positive

diagonal elements, i.e., Q̃3 = diag(p3,1, p3,2, ..., p3,M), where p3,k > 0, ∀k ∈ {1, ...,M}.

Proof. See Appendix D.

Based on Proposition 5 and defining Γ̃e ,
σ2
s

LΓ3
, we further simplify problem (P3.1) as

(P3.2) : max
{p3,k≥0}

r∑
k=1

log2

(
1 +

ζ2
k(Hc)p3,k

σ2
c

)
, s.t. p3,k ≥ Γ̃e,∀k ∈ {1, ...,M},

M∑
k=1

p3,k ≤ P.

(46)

Proposition 6. The optimal power allocation solution of {popt
3,k}Mk=1 to problem (P3.2) is

popt
3,k =

max{ 1
v

opt
3 ln 2

− σ2
c

ζ2k(Hc)
, Γ̃e}, ∀k ∈ {1, . . . , r},

Γ̃e, ∀k ∈ {r + 1, . . . ,M}.
(47)

Here, vopt
3 denotes the optimal dual variable associated with the power constraint in (46).
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Proof. See Appendix E.

Finally, with Propositions 5 and 6, the optimal solution to (P3) is obtained asQopt
3 = VcQ̃

opt
3 V

H
c ,

where Q̃opt
3 = diag(popt

3,1, . . . , p
opt
3,M), with {popt

3,k} given in Proposition 6.

C. Optimal Solution to Problem (P4) with Det-CRB

Next, we consider problem (P4) with Det-CRB in Scenario 4, which is re-expressed as

(P4.1) : max
Q̃�0

log2 det

(
IM +

1

σ2
c

Σ2
cQ̃

)
, s.t. ln det(Q̃) ≥ Γ̃d, tr(Q̃) ≤ P, (48)

where Γ̃d ,M ln σ2
s

L
− 1

Ns
ln Γ4 and Q̃ , V H

c QV c. We have the following proposition.

Proposition 7. The optimal solution to problem (P4.1) is a diagonal matrix with strictly positive

diagonal elements, i.e., Q̃4 = diag(p4,1, p4,2, ..., p4,M), where p4,k > 0, ∀k ∈ {1, . . . ,M}.

Proof. This proposition can be verified by applying the Hadamard’s inequality [26] to the

objective function and the CRB constraint in (48), for which the details are omitted.

Based on Proposition 7, (P4.1) is further simplified as

(P4.2) : max
{p4,k≥0}

r∑
k=1

log2

(
1 +

ζ2
k(Hc)p4,k

σ2
c

)
, s.t.

M∑
k=1

ln p4,k ≥ Γ̃d,
M∑
k=1

p4,k ≤ P. (49)

Proposition 8. The optimal solution to (P4.2) is obtained as

popt
4,k =


−(v

opt
4

σ2c
ζ2
k
(Hc)

−µopt
4 −

1
ln 2

)+

√
(v

opt
4

σ2c
ζ2
k
(Hc)

−µopt
4 −

1
ln 2

)2+4v
opt
4 µ

opt
4

σ2c
ζ2
k
(Hc)

2v
opt
4

, ∀k ∈ {1, . . . , r},

µopt
4 /vopt

4 , ∀k ∈ {r + 1, . . . ,M}.
(50)

Here, µopt
4 and vopt

4 are the optimal dual variables associated with the CRB constraint and the

power constraint in (49), respectively.

Proof. The optimal solution to (P4.2) is obtained by the Lagrange duality method. The derivation

is similar to that in Appendix C, for which the details are omitted for brevity.

Finally, with Propositions 7 and 8, the optimal solution to (P4) is obtained asQopt
4 = VcQ̃

opt
4 V

H
c ,

where Q̃opt
4 = diag(popt

4,1, . . . , p
opt
4,M), with {popt

4,k} given in Proposition 8.

D. Optimal Solution Structures

To gain more insights, this subsection discusses the structure of the optimal transmit covariance

solution Qopt
i ’s for Scenarios 2-4 under Trace-CRB, MaxEig-CRB, and Det-CRB, respectively.

In particular, we express Vc as Vc = [V̄c, V̂c], where V̄c ∈ CM×r consists of the first r right
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singular vectors of Hc, and V̂c ∈ CM×(M−r) consists of the other M − r ones. It thus follows

that Qopt
i for Scenario i ∈ {2, 3, 4} can be equivalently written as

Qopt
i = V̄cQ̄

opt
i V̄

H
c + V̂cQ̂

opt
i V̂

H
c , (51)

where Q̄opt
i = diag(popt

i,1 , . . . , p
opt
i,r ) and Q̂opt

i = diag(popt
i,r+1, . . . , p

opt
i,M) with {popt

2,k}Mk=1, {popt
3,k}Mk=1,

and {popt
4,k}Mk=1 given in Propositions 4, 6, and 8 for Scenarios 2, 3, and 4, respectively.

It is interesting to observe from (51) that for each Scenario i, the transmit covariance Qopt
i is

separated into two parts, i.e., V̄cQ̄
opt
i V̄

H
c for both communication and sensing and V̂cQ̂

opt
i V̂

H
c

for dedicated sensing only. Notice that the right singular matrix Vc = [V̄c, V̂c] diagonalizes Hc

into r parallel subchannels. It is thus clear that {popt
i,k}rk=1 corresponds to the optimized power

allocation over the r parallel subchannels for both communication and sensing, and {popt
i,k}Mk=r+1

corresponds to that over the other orthogonal M − r dedicated sensing subchannels.

Proposition 9. The optimal power allocations under Trace-CRB, MaxEig-CRB, and Det-CRB

all satisfy popt
i,1 ≥ ... ≥ popt

i,r ≥ popt
i,r+1 = ... = popt

i,M > 0,∀i ∈ {2, 3, 4}.

Proof. See Appendix F.

Proposition 9 shows that for any Scenario i ∈ {2, 3, 4}, the power allocations {popt
i,k}rk=1 are

monotonically increasing with respect to the subchannel gains {ζ2
k(Hc)}rk=1, which is similar as

the conventional water-filling power allocation in (19) for rate maximization. By contrast, the

power allocations {popt
i,k}Mk=r+1 are constant over dedicated sensing subchannels, similarly as that

for CRB minimization (see Proposition 2). As a result, the optimal power allocation for ISAC

unifies the conventional power allocations for communication only and sensing only, respectively.

Finally, we discuss the optimal power allocation when P → ∞, where the equal power

allocation is also employed over the subchannels for both communication and sensing.

Proposition 10. When P →∞, the optimal power allocations for problems (P2.3), (P3.2), and

(P4.2) with Trace-CRB, Max-Eig-CRB, and Det-CRB are given by

popt
2,k →


1
r
(P − (M−r)2

Γ̃2
), 1 ≤ k ≤ r

M−r
Γ̃2

, r + 1 ≤ k ≤M
, (52)

popt
3,k =


1
r
(P − (M − r)Γ̃e), 1 ≤ k ≤ r

Γ̃e, r + 1 ≤ k ≤M
, (53)
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and

popt
4,k →


P
r
, 1 ≤ k ≤ r

0, r + 1 ≤ k ≤M
. (54)

Proof. We present the proof of {popt
2,k} for Trace-CRB in Appendix G. The other two cases can

be verified similarly and thus are omitted.

VI. NUMERICAL RESULTS

This section provides numerical results to validate the performances of the proposed designs

in the cases with point and extended targets. In the simulation, the BS-Tx, the BS-Rx, and the

CU are each equipped with a ULA with half-wavelength spacing between consecutive antennas.

We consider Rician fading for the communication channel, i.e., Hc =
√

Kc
Kc+1

H los
c +

√
1

Kc+1
Hw

c ,

where Hw
c is normalized to be a CSCG random matrix with zero mean and unit variance for

each element, and H los
c = acr(θ

c
r)a

c
t
T (θct ). Here, acr(θ

c
r) and act(θ

c
t ) denote the steering vectors at

the CU receiver and the BS-Tx, θcr and θct denote the AoA at the CU and the AoD at the BS-Tx,

respectively, where we set θcr = θct = π
6
. Furthermore, the noise power σ2

c at the CU and σ2
s at

the BS-Rx are normalized to be unity, and the number of antennas at the BS-Rx is Ns = 12.

A. Point Target Case

This subsection considers the point target case. For comparison, we consider the time switching

scheme as a benchmark. In this scheme, each CPI with duration L is divided into two parts with

durations L1 and L2, in which the BS adopts transmit covariance Q∗c and Q∗s,1 for rate maxi-

mization and CRB minimization, respectively, where L1 +L2 = L. Define Qts = L1

L
Q∗c+ L2

L
Q∗s,1.

We then have the resulting estimation CRB as CRB1(Qts) and the resulting communication rate

as Rts = L1

L
Rmax + L2

L
R1,S . By adjusting L1 and L2, we can get different boundary points to

balance the tradeoff between the estimation CRB and the communication rate.

In the simulation, we set the number of antennas at the BS-Tx M = 8, the number of antennas

at the CU Nc = 6, and the angle of the point target θ = −0.2803π. We set the coefficient

α = 10−3, P = 800, and the Rician factor as Kc = 100. Fig. 2(a) shows the obtained C-R-

region boundary. It is observed that the optimal design outperforms the time switching scheme.

Fig. 2(b) shows the rate versus the signal-to-noise ratio (SNR) (i.e., P
σ2
c
) with the CRB threshold

being CRB1 ≤ Γ1 = 0.01, based on which problem (P1) is only feasible when the SNR becomes

higher than 17.3 dB. We also consider the CRB minimization design and the rate maximization
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Figure 2. Point target case with M = 8 < Ns, r = Nc = 6, and the AoA/AoD of the point target θ = −0.2803π.

design as the rate performance lower bound and upper bound, respectively. When the SNR is

close to 17.3 dB, the optimal design and the time switching scheme are observed to perform

similar as the rate lower bound by the CRB minimization design. When the SNR becomes high,

the optimal design and the time switching scheme are observed to perform close to the rate

upper bound by rate maximization. This is due to the fact that the CRB constraint may become

inactive in this case, and thus both schemes become identical to the rate maximization.

B. Extended Target Case

This subsection evaluates the performance of our proposed designs in the extended target case,

as compared to the following benchmark schemes.

• Time switching: For each Scenario i ∈ {2, 3, 4}, the BS time switches between the two

transmit covariancesQ∗c andQ∗s,i for rate maximization and CRB minimization, respectively,

similarly as that in the previous subsection. Notice that this scheme is only applicable when

Q∗c is of full rank, since otherwise CRBC,i = CRB(Q∗c) → ∞,∀i ∈ {2, 3, 4} follows

according to Remark 1.

• Power splitting with equal power allocation (EP): The BS sets the transmit covariance

as QEP = VcQ̃
EPV H

c , in which Q̃EP = diag(pEP
1 , . . . , p

EP
M ) denotes the power allocation. The

BS splits the transmit power P into two parts, βP for the first r ISAC subchannels and

(1−β)P for the M − r dedicated sensing subchannels, with 0 ≤ β ≤ 1 denoting the power

splitting factor that is a variable to be optimized. Following the equal power allocation, we
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have pEP
1 = . . . = pEP

r = βP
r

and pEP
r+1 = . . . = pEP

M = (1−β)P
M−r . Notice that if r = M , then we

set β = 1.

• Power splitting with strongest eigenmode transmission (SEM): The BS sets QSEM =

VcQ̃
SEMV H

c , in which Q̃SEM = diag(pSEM
1 , . . . , pSEM

M ). The BS splits the transmit power P

into two parts, βP for the the dominant ISAC subchannel and (1− β)P for the remaining

M − 1 subchannels, i.e., pSEM
1 = βP and pSEM

2 = . . . = pEP
M = (1−β)P

M−1
, with 0 ≤ β ≤ 1 to be

optimized.

First, we consider the scenario where M = 8, Nc = 6, Kc = 100, and P = 800. In this case,

we have r < M , such that Q∗c is rank-deficient and CRBC,i → ∞,∀i ∈ {2, 3, 4}, for which

the time switching is not applicable. Figs. 3(a), 3(b), and 3(c) show the resultant C-R regions

with Trace-CRB, MaxEig-CRB, and Det-CRB, respectively. It is observed that for all the three

sensing performance measures, the C-R-region boundary curve achieved by the optimal design

outperforms those by the power splitting designs with equal power allocation and strongest

eigenmode transmission. It is also observed that when the CRB is low (or the CRB constraint

becomes tight), the curves obtained from the two suboptimal designs approach the optimal C-

R-region boundary curve. Furthermore, when the CRB is high (or the CRB constraint becomes

relaxed), the C-R-region boundary curve is observed to approach the capacity without sensing

(i.e., Rmax). This is consistent with the result in Remark 1.
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Figure 3. The C-R region in the case with M = 8 and r = Nc = 6.

Figs. 4(a), 4(b), and 4(c) show the optimal power allocation by the optimal designs with

Trace-CRB, MaxEig-CRB, and Det-CRB, where Γ2 = 0.0152, Γ3 = 8×10−4, and ln Γ4 = −900,

respectively. The water-filling power allocation for rate maximization and the equal power allo-

cation for CRB minimization are considered for comparison. It is observed that for each scenario,

the proposed optimal power allocations over the first six ISAC subchannels are monotonically
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non-increasing, which are higher than the constant power allocated to the last two sensing

subchannels. This is consistent with Proposition 9. It is also observed that the proposed optimal

power allocations over the first five communication subchannels are lower than the corresponding

water-filling power allocations, as more power should be allocated to other subchannels for

sensing. By contrast, the proposed optimal power allocations over the last two subchannels are

observed to be higher than the corresponding water-filling power allocations (which are zero),

in order to meet the sensing requirement.
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(a) Trace-CRB with Γ2 = 0.0152.
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(b) MaxEig-CRB with Γ3 = 8 × 10−4.
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(c) Det-CRB with ln Γ4 = −900.

Figure 4. The power allocation by the proposed optimal designs with M = 8 and r = Nc = 6.
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Figure 5. The power allocation under the three scenarios when the rate R = 26.5 bps/Hz.

Fig. 5 compares the optimal power allocation by our proposed designs under the three sensing

performance measures, where the resultant data rate is set as R = 26.5 bps/Hz for fair compari-

son. In particular, look at the transmit power allocated to subchannels 7-8 for dedicated sensing.

It is observed that the allocated power to subchannels 7-8 in Scenario 2 is lowest among the three

scenarios, as allocating more power to ISAC subchannels 1-6 is also beneficial in minimizing

the Trace-CRB. Next, it is observed that the allocated power to subchannels 7-8 in Scenario 3 is

highest among the three scenarios, as the design based on MaxEig-CRB ensures that the upper
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bound of the worst-case CRB is minimized. Finally, the allocated power to subchannels 7-8 in

Scenario 4 is observed to lie between the above two scenarios, as the Det-CRB metric ensures

the CRB minimization among different elements in a proportional fair manner.
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Figure 6. Rate versus SNR in the case with r = M = Nc = 6.

Figs. 6(a), 6(b), and 6(c) show the rate versus SNR in Scenarios 2-4 with Trace-CRB, MaxEig-

CRB, Det-CRB, where Γ2 = 0.1, Γ3 = 8× 10−4, and ln Γ4 = −900, respectively. It is observed

that for each scenario, the optimal design performs best over the whole SNR regime. In the high

SNR regime, the rate achieved by the power splitting with equal power allocation is observed to

approach that by the optimal design. This can be explained by Proposition 10. In the low SNR,

the power splitting with strongest eigenmode transmission is observed to approach the optimal

design.
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Figure 7. C-R region in the case with r = M = Nc = 6.

Finally, we consider that M = Nc = 6, Kc = 20, and P = 800. In this case, we have r = 6,

and Q∗c is of full rank (as P > P0 in Remark 1) such that CRBC,i is finite for any i ∈ {2, 3, 4}.

Figs. 7(a), 7(b), and 7(c) show the resultant C-R regions achieved by the optimal designs for

Scenarios 2-4. It is observed that (CRBC,i, Rmax) exists and the C-R-region boundary achieved
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by the optimal design outperforms other three benchmark schemes. Among the three benchmark

schemes, the performance of the time switching design is the best.

VII. CONCLUSION

This paper investigated the fundamental performance tradeoff between the estimation CRB and

the communication data rate in a point-to-point MIMO ISAC system, by considering both point

and extended target models. We characterized the complete Pareto boundary of the resultant C-R

regions, by formulating new CRB-constrained MIMO rate maximization problems and finding

their semi-closed-form optimal transmit covariance solutions. Numerical results showed that the

C-R-region boundary achieved by the optimal design significantly outperforms other benchmark

schemes. The fundamental C-R tradeoff limits revealed in this paper are expected to provide

references and design insights on practical ISAC systems.

APPENDIX

A. Proof of Proposition 2

For Scenario i = 2, we can find that the optimal solution to minQ�0,tr(Q)≤P
σ2
sNs
L

tr(Q−1) is

Q∗s,2 = P
M
IM [18] by checking the KKT conditions.

For Scenario i = 3, minimizing the maximium eigenvalue of Q−1 is equivalent to maximizing

the minimum eigenvalue of Q. As a result, minQ�0,tr(Q)≤P
σ2
s

L
λmax(Q

−1) is equivalent to

max
Q�0,t

t, s.t. Q ≥ tI, tr(Q) ≤ P. (55)

The optimal solution Q∗s,3 to (55) is shown to be a diagonal matrix by applying the Schur-Horn

Theorem [27]. Let Q∗s,3 = diag(p1, ..., pM). Problem (55) becomes

max
{pk},t

t, s.t. pk ≥ t, ∀k ∈ {1, 2, ...,M},
M∑
i=1

pk ≤ P. (56)

The optimal solution to problem (56) is pk = P
M
,∀k. Accordingly, we have Q∗s,3 = P

M
IM .

For Scenario i = 4, based on the Hadamard inequality [26], it is clear that the optimal

solution Q∗s,4 to problem minQ�0,tr(Q)≤P (σ
2
s

L
)MNs det(Q−1)Ns must be a diagonal matrix. It

can be shown that all its diagonal elements should be P
M

, and thus we have Q∗s,4 = P
M
IM .

B. Proof of Proposition 3

First, it is evident that Q̃2 � 0 follows in order for the maximum CRB constraint in (P2.2) to

hold. Next, suppose that the optimal solution Q̃∗2 is not diagonal, and we construct an alternative
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solution Q̃∗∗2 = Q̃∗2 ◦ I , which is a diagonal matrix whose diagonal elements are identical

to Q̃∗2. Then, we have log2 det(IM + 1
σ2
c
Σ2Q̃∗2) ≤ log2 det(IM + 1

σ2
c
Σ2Q̃∗∗2 ) according to the

Hadamard inequality [26], tr{(Q̃∗∗2 )−1} ≤ tr{(Q̃∗2)−1} ≤ Γ̃2 based on [28, Lemma 1], and

tr(Q̃∗∗2 ) = tr(Q̃∗2) ≤ P . From these three inequalities, we can infer that Q̃∗∗2 is also feasible for

(P2.2) and achieves a no lower objective value than that by Q̃∗2. This contradicts the presumption

that the non-diagonal matrix Q̃∗2 is optimal. This thus verifies that the optimal solution to (P2.2)

should be diagonal, i.e., Q̃2 = diag(p2,1, ..., p2,M). Together with the fact that Q̃2 � 0, we have

p2,k > 0,∀k ∈ {1, . . . ,M}. This thus completes the proof.

C. Proof of Proposition 4

We prove this proposition via the Lagrange duality method. Let µ2 ≥ 0 and v2 ≥ 0 denote the

dual variables associated with the CRB constraint and the power constraint in (42), respectively.

By denoting p2 , [p2,1, ..., p2,M ]T , the partial Lagrangian of (P2.3) is expressed as

L2(p2, µ2, v2) =
r∑

k=1

log2

(
1 +

ζ2
k(Hc)p2,k

σ2
c

)
− µ2(

M∑
k=1

1

p2,k

− Γ̃2)− v2(
M∑
k=1

p2,k − P ),

and the corresponding dual function is given by

g2(µ2, v2) = max
p2≥0
L2(p2, µ2, v2). (57)

Accordingly, the dual problem of (P2.3) is given by

(D2.3) : min
µ2≥0,v2≥0

g2(µ2, v2). (58)

Since problem (P2.3) is convex and satisfies the Slater’s condition, the strong duality holds

between problem (P2.3) and its dual problem (D2.3) [25]. As a result, we can optimally solve

problem (P2.3) by equivalently solving the dual problem (D2.3). In the following, we first solve

(57) to obtain the dual function g2(µ2, v2) and then solve (D2.3) to obtain µopt
2 and vopt

2 .

First, consider problem (57) with given µ2 ≥ 0 and v2 ≥ 0, and suppose that its optimal

solution is given by p∗2. By setting the partial derivatives of L2(p2, µ2, v2) with respect to p2,k’s

to be zero, we have
∂L2

∂p∗2,k
=

1

ln2
(

1

1 +
ζ2k(Hc)p∗2,k

σ2
c

)
ζ2
k(Hc)

σ2
c

+ (
µ2

(p∗2,k)
2
)− v2 = 0, ∀k ∈ {1, ..., r}, (59)

∂L2

∂p∗2,k
=

µ2

(p∗2,k)
2
− v2 = 0, ∀k ∈ {r + 1, ...,M}. (60)

Based on (59), (60), and Cardano’s formula for solving a cubic equation, we have the optimal
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solution to problem (57) as

p∗2,k = −t1,k + 3

√
−t2,k +

√
t22,k + t33,k + 3

√
−t2,k −

√
t22,k + t33,k, ∀k ∈ {1, . . . , r}, (61)

p∗2,k =
√
µ2/v2, ∀k ∈ {r + 1, . . . ,M}, (62)

where t1,k = bk/(3a), t2,k = (27a2dk − 9abkc + 2b3
k)/(54a3), t3,k = (3ac − b2

k)(9a
2), with

a = v2, bk = v2
σ2
c

ζ2k(Hc)
− 1

ln2 , c = −µ2, and dk = −µ2
σ2
c

ζ2k(Hc)
.

Next, we solve the dual problem (D2.3) to find the optimal dual solution (µopt
2 , vopt

2 ). similar

to that in Section IV, with the subgradient of g2(µ2, v2) given as ∂g2|(µ2,v2) = [−(
∑M

k=1
1
p∗2,k
−

Γ̃2),−(
∑M

k=1 p
∗
2,k − P )]T , we can apply ellipsoid method to obtain the optimal dual solution

(µopt
2 , vopt

2 ) to (D2.3). Finally, by substituting (µopt
2 , vopt

2 ) into in (61) and (62), the optimal solution

to (P2.3) is given in (43). This thus completes the proof.

D. Proof of Proposition 5

Suppose that Q̃∗3 is the optimal solution to (P3.1) with non-zero non-diagonal elements, and we

set an alternative solution as Q̃∗∗3 = Q̃∗3◦IM . Then, according to Hadamard’s inequality, Q̃∗∗3 will

further increase the objective function value, while meeting the power constraint. Furthermore,

let d = [d1, ..., dn]T and λ = [λ1, ..., λn]T be the diagonal elements of Q̃∗3 and the eigenvalues of

Q̃∗3, respectively. Since Q̃∗3 is Hermitian, according to the Schur-Horn Theorem [27], we have
k∑
q=1

d[q] ≤
k∑
q=1

λ[q],∀k ∈ {1, 2, ..., n}, (63)

where d[1], ..., d[n] denotes the non-increasing rearrangement of all the elements in d, i.e., d[1] ≥

... ≥ d[n] and the equality holds for k = n, which implies that d[n] ≥ λ[n]. Thus, the minimum

eigenvalue of Q̃∗∗3 is equal to d[n], which is larger than the minimum eigenvalue of Q̃∗3. As a

result, Q̃∗∗3 also satisfies the CRB constraint in (P3.1). The above yields a contradiction to the

presumption that Q̃∗3 is the optimal solution to (P3.1). Therefore, the optimal solution to (P3.1)

must be a diagonal matrix.

E. Proof of Proposition 6

Let {µopt
3,k} and vopt

3 be the optimal dual varaibles associated with the CRB constraint and

the power constraint in (P3.2), respectively. As problem (P3.2) is convex and satisfies the
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Slater’s condition, the strong duality holds between (P3.2) and its Lagrange dual problem. The

corresponding Lagrangian is

L3(p3, {µ3,k}, v3) =
r∑

k=1

log2

(
1 +

ζ2
k(Hc)p3,k

σ2
c

)
+

M∑
k=1

µ3,k(p3,k − Γ̃e)− v3(
M∑
k=1

p3,k − P ).

Furthermore, according to KKT conditions, we have
∂L3

∂popt
3,k

=
1

ln2
(

1

1 +
ζ2k(Hc)p

opt
3,k

σ2
c

)
ζ2
k(Hc)

σ2
c

+ µopt
3,k − v

opt
3 = 0, ∀k ∈ {1, ..., r}, (64)

∂L3

∂popt
3,k

= µopt
3,k − v

opt
3 = 0, ∀k ∈ {r + 1, ...,M}. (65)

By the complementary slackness condition, we have µopt
3,k(p

opt
3,k− Γ̃e) = 0. Thus, for k ∈ {1, ..., r},

if popt
3,k > Γ̃e, then µopt

3,k = 0 and we thus have popt
3,k = 1

v
opt
3 ln 2

− σ2
c

ζ2k(Hc)
; otherwise, popt

3,k = Γ̃e. Next,

from (65), µopt
3,k = vopt

3 > 0, we have popt
3,k = Γ̃e,∀k ∈ {r + 1, ...,M}.

F. Proof of Proposition 9

We prove this proposition only for Scenario 2 with Trace-CRB, and the other two scenarios

can be similarly proved. Based on (43), it is evident that popt
2,r+1 = ... = popt

2,M > 0. Therefore,

to verify Proposition 9, we only need to prove that popt
2,1 ≥ popt

2,2 ≥ ... ≥ popt
2,r ≥ popt

2,r+1. First, we

prove popt
2,r ≥ popt

2,r+1 via contradiction. If popt
2,r < popt

2,r+1 =
√
µopt

2 /vopt
2 , then we have

0
(a)

≤ 1

ln2
(

1

1 +
ζ2r (Hc)p

opt
2,r

σ2
c

)
ζ2
r (Hc)

σ2
c

(b)
= µopt

2 (− 1

(popt
2,r)

2
) + vopt

2

(c)
< 0, (66)

where (a) follows from popt
2,r > 0, (b) is obtained based on (59), and (c) holds based on the

above presumption. This incurs a contradiction. Thus, we have popt
2,r ≥ popt

2,r+1. Next, we prove

popt
2,k ≥ popt

2,k+1,∀k ∈ {1, ..., r− 1}, by contradiction. If popt
2,k < popt

2,k+1, then based on (59), we have
1

ln2
(

1
σ2
c

ζ2k(Hc)
+ popt

2,k

) = vopt
2 −

µopt
2

(popt
2,k)

2
< vopt

2 −
µopt

2

(popt
2,k+1)2

=
1

ln2
(

1
σ2
c

ζ2k+1(Hc)
+ popt

2,k+1

). (67)

Furthermore, based on the presumption
p

opt
2,k

σ2
c
<

p
opt
2,k+1

σ2
c

and the fact that 1
ζ2k(Hc)

≤ 1
ζ2k+1(Hc)

, we have

1

ζ2
k(Hc)

+
popt

2,k

σ2
c

<
1

ζ2
k+1(Hc)

+
popt

2,k+1

σ2
c

⇔ 1/(
1

ζ2
k(Hc)

+
popt

2,k

σ2
c

) > 1/(
1

ζ2
k+1(Hc)

+
popt

2,k+1

σ2
c

). (68)

Clearly, (68) contradicts (67), yielding popt
2,k ≥ popt

2,k+1. Combining the above finishes the proof.

G. Proof of Proposition 10

First, we consider that r = M . In this case, when P → ∞, the optimal water-filling power

allocation that maximizes the sum rate in (42) subject to the sum power constraint in (42)

reduces to the equal power allocation p2,k = P/M, ∀k ∈ {1, . . . ,M}. Such power allocation is
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shown to minimize the estimation CRB
∑M

k=1
1
p2,k

in constraint (42). Therefore, it follows that

popt
2,k = P/M, ∀k ∈ {1, . . . ,M}.

Next, we consider that r < M . Based on Propositions 4 and 9, we have popt
2,r+1 = . . . = popt

2,M

in this case. Therefore, without loss of optimality, we use ps = p2,r+1 = . . . = p2,M to denote

the transmit power allocated to sensing subchannels. Accordingly, problem (P2.3) is equivalently

reformulated as

max
{p2,k≥0}rk=1,ps≥0

r∑
k=1

log2

(
1 +

ζ2
k(Hc)p2,k

σ2
c

)
(69a)

s.t.
r∑

k=1

1

p2,k

+
M − r
ps

≤ Γ̃2 (69b)

r∑
k=1

p2,k + (M − r)ps ≤ P. (69c)

It follows from (69b) that ps ≥ M−r
Γ̃2

. By setting ps = M−r
Γ̃2

and dropping the CRB constraint

(69b), problem (69) is reduced to the following rate maximization problem:

max
{p2,k≥0}rk=1

r∑
k=1

log2

(
1 +

ζ2
k(Hc)p2,k

σ2
c

)
, s.t.

r∑
k=1

p2,k ≤ P − (M − r)2

Γ̃2

, (70)

for which the optimal value serves as an upper bound of that by (69). As P − (M−r)2
Γ̃2

→∞, it is

clear that the equal power allocation, given by p2,k = 1
r
(P − (M−r)2

Γ̃2
),∀k ∈ {1, . . . , r}, is optimal

for problem (70). With P → ∞, it can be shown that p2,k = 1
r
(P − (M−r)2

Γ̃2
),∀k ∈ {1, . . . , r},

and p2,k = M−r
Γ̃2

,∀k ∈ {r+ 1, . . . ,M}, is feasible for problem (69) and achieves the same value

as the optimal value of problem (70). As a result, such power allocation is optimal for (69) and

thus (P2.3). This thus completes the proof.
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