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Abstract—In a cyber-physical system (a system where the
physical world interacts extensively with—often networked—
software), the physical portion of the system resides in the
continuous and continual domain. Thus, on the physical side
of cyber-physical systems we will have to contend with not only
real time requirements but also the continuous and continual
nature of the system.

This poses a new set of challenges for requirements engi-
neering; we must write well defined requirements to address
crucial issues not commonly addressed in the software domain.
For example, the rate of change of a controlled variable, the time
it takes for a controlled variable to settle sufficiently close to a
set-point, and the cumulative errors built up over time may be of
critical importance. In this paper we outline how early modeling
in the continuous domain serves as a crucial aid in the elicitation
and discovery of requirements for cyber-physical systems and
provide an initial classification of the types of requirements
needed to describe crucial aspects of the physical side of a cyber-
physical system.

Index Terms—Requirements, modeling, cyber-physical sys-
tems;

I. INTRODUCTION

Systems where the physical world interacts extensively
with—often distributed and networked—software are today
referred to as Cyber-Physical Systems (CPS). In such systems,
the physical portion always resides in the continuous and
continual domain; phenomena of interest are continuous, they
represent quantities changing smoothly without discrete steps,
and continual, the changes in the phenomena continues unin-
terrupted over time. Thus, providing requirements that discuss
the ordering of events (as is done with various temporal logics)
and the real-time properties of a system are not sufficient.

The continuous and continual aspects pose a new set of
challenges for requirements engineering; we must write well
defined requirements to address crucial issues not commonly
addressed in the software domain. For example, the rate of
change of a physical phenomenon controlled by the system
(often called a controlled variable [1]), the time it takes for
a controlled variable to settle sufficiently close to the desired
value (the set-point), and the cumulative errors built up over
time may be of critical importance.
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In our work, we have been faced with several cyber-physical
systems where the requirements necessary to adequately cir-
cumscribe the allowable systems behaviors have been quite
difficult to elicit and define. Consider two on surface similar
CPS control problems that turn out to necessitate quite dif-
ferent requirements; maintaining a car’s speed through cruise
control and maintaining the flow of a drug in an infusion pump.
For instance, in the cruise control, requirements on the how
quickly the speed is brought up to a new set-point and how
quickly the speed has to stabilize around that set-point are
crucial requirements for passenger comfort, reduced wear on
the drive-train, and fuel economy [2]. In the infusion pump, on
the other hand, the system dynamics make such requirements
superfluous and irrelevant, bringing the flow-rate of the drug
up a higher level can be done quickly without harm to the
patient and the flow will stabilize around a new set-point
quickly since there is little inertia in the system. As another
example, the cumulative error in the speed of the vehicle in a
cruise control is manifested in the distance we have travelled
at a point in time; a measure of no relevance to the driver. In an
infusion pump, the cumulative error in flow-rate is manifested
in the volume of drug that has been infused in the patient; a
measure that can have a life or death impact on the patient.

To discover, define, and, in some cases, justify exclusion of
CPS requirements, early modeling in the continuous domain
has served as a crucial aid. In effect, these models are proposed
solutions to the problem at hand; they are early prototypes
of a small aspect of the proposed system. For example, we
may build a simplified model of the vehicle dynamics and the
controller for a cruise control system. This model resides in
the solution domain—it is a proposed behavior for our new
system—since it describes in detail how to change acceleration
based on deviations in actual vehicle speed from the desired
vehicle speed. The cruise control requirements, on the other
hand, reside in the problem domain and may define aspects
such as the accuracy of the cruise control (how close to the
desired speed should the actual speed be) and time allowed
to bring the vehicle up to the desired speed when resuming
cruise control after braking (the cruise control is disengaged
when braking). The requirements elicitation and definition
form a symbiotic relationship with the behavioral modeling, a
relationship where initial requirements constrain the modeling
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efforts and model behavior leads to requirements discovery—
a desirable cycle similar to what Nuseibeh described in his
work on Twin Peaks [3].

In this paper we briefly discuss our modeling efforts and
provide an initial classification of the types of requirements
needed to describe crucial aspects of the physical side of a
cyber-physical system—requirements elicited and discovered
through the modeling efforts.

II. EXAMPLE SYSTEMS

In the paper we will use two example systems, a basic
automotive cruise control requiring little explanation and a
drug infusion pump discussed a bit more extensively below.

Our basic automotive cruise control is a control system
whose purpose is to maintain the vehicle’s speed at a prede-
fined speed. The system is disengaged when the driver uses the
brakes or the throttle, and reengaged when the driver requests
the cruise control to resume.

Infusion pumps are medical cyber physical systems used
for controlled delivery of liquid drugs into a patient’s body
according to a physician’s prescription, a set of instructions
that governs the plan of care for that individual.Patient-
Controlled Analgesia (PCA) is type of infusion pump that
is generally equipped with a feature that allows patients to
self-administer a controlled amount of drug, typically a pain
medication.

Infusion pumps generally provide multiple modes of drug
delivery. In basal mode, the drug is delivered at a constant
(and usually low) rate for an extended period of time. In a
bolus mode, the drug is delivered at a higher rate for a short
duration of time to address some immediate need. There may
be multiple bolus modes. In clinician bolus mode, the drug
is delivered at an elevated rate in response to a clinician’s
request. Further, in a PCA system, a patient bolus mode may
be activated to deliver additional drug in response to a patient’s
request for more medication, typically to alleviate acute pain.

III. THE TWIN-PEAKS OF MODELS AND REQUIREMENTS

In our work we have found that identifying all the re-
quirements that must be stated to address the complexity in
the continuous domain has been a challenge. We have found
little guidance in the requirements engineering literature as
well as in the control systems community, who focus on the
development of control algorithms but not how to state the
constraints (the requirements) that circumscribe the control
solution.

Consider, for example, the requirements below paraphrased
from the automotive cruise control and infusion pump do-
mains.

“When the driver requests the cruise control to
resume, the cruise control shall be engaged and
bring the vehicle’s speed to the target speed.”

“A patient bolus dose shall be given when
requested by the patient.”

Although these two requirements are from two radically
different domains, the nature of the requirements is identical;
they are both examples of what the system must do when
there is an abrupt change in the set-point (the desired speed
or desired flow-rate). In the cruise control example, the vehicle
might be coasting at 80 km/h with no desired speed (the cruise
control is inhibited) and the resume request abruptly sets the
desired speed to 110 km/h. In the infusion pump, the desired
basal flow-rate might be 5 ml/h and the bolus request abruptly
sets the desired flow-rate to the patient bolus value of 7 ml/h.

Such requirements may be accompanied by accuracy re-
quirements defining how close to the desired values (speed
and flow-rate) the actual speed and flow-rate must be.

“The actual speed of the vehicle must be within
±5% of the target speed.”

“The actual flow-rate must be within ±5% of
the target flow-rate.”

When looking at such requirements there were immediate
questions regarding issues related to the changes in set-points.
For example:
How much time are we allowed when trying to to bring the
actual speed (or flow-rate) to the desired speed (or flow-rate)?
and
How fast are we allowed to change the speed (or flow-rate)?
Requirements covering these aspects of the systems were not
captured in the documentation we reviewed. To investigate
such questions and gain a better understanding of the require-
ments we resorted to modeling of the physical aspects of the
system.

The models we developed are traditional control models
including the controller, sensor and actuator models, as well
as a plant model. Figure 1 shows an example of such models
(in this case for the GPCA infusion pump). These models
are traditionally used to evaluate various control strategies,
tune the controllers, etc. In our case, however, we developed
the models to better understand the requirements needed to
adequately constrain the desired system behavior.

Through these modeling efforts one has an opportunity
to explore various system responses and investigate how a
proposed system might behave in its intended environment.
The scenarios mentioned above (sudden change in the desired
speed or flow-rate) are often used as a baseline evaluation
of the response of a proposed control approach—typically
referred to as the step response in the controls literature [4].
An example of the step response for the cruise control system
is shown in Figure 2.

A. Learning From the Step Response

The step response in Figure 2 was generated from a
Simulink [5] model of the simple cruise control. At time t = 5
seconds, the input step function goes from 80 km/h to 110
km/h (shown in red dotted line). The response is shown with
the blue solid line. When looking at this simple graph there
were several aspects of this system that caught our attention,
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Fig. 1. Control System Model

for example, how quickly is the controlled variable allowed
change, how much time is allowed before it reaches its desired
value, and how much is it allowed to initially overshoot the
desired value.

In the controls literature [4], many of the attributes of the
step response are discussed. The first variable to be considered
is the rise time. The rise time is defined in [4] as the time it
takes for the step response to increase from 0% to 100% of

its expected final value. How fast this rise-time is can have
important ramifications on the system depending upon the
application domain. For instance, in the case of an infusion
pump, a rise time that is too fast is largely irrelevant (in fact,
from discussions with our industry collaborators, for some
pumps it is assumed that there is an instantaneous rise time),
while a rise time that is too slow could potentially delay the
treatment of a patient. On the other hand, for a vehicle’s cruise
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Fig. 2. The step response for the automotive cruise control.

control, a sudden and fast change in speed could be extremely
uncomfortable to the passengers in the vehicle.

Overshoot

Set point

Rise time = 0 Settling time

Fig. 3. The step response for the GPCA.

Another aspect of the graph that could be of interest is the
overshoot. This is how much beyond the maximum desired
final value (110 km/h, in the above example) the response
reaches. In the case of an infusion pump, often times a
maximum flow-rate is typically explicitly specified in the
requirements. The overshoot can violate this value and a model
can give extra insight into where such situations may occur.

The settling time is the time it takes the step response to
reach its final value (the set point). Oscillations during the
settling time can cause passenger discomfort (car sickness) in
a cruise control system or highly inaccurate infusion over short
time periods in an infusion pump.

The set point is the desired final value of the system
response. In all systems there is a range above and below
the set point that is still considered a “valid” response;
due to the variabilities (noise) in the real world the control
cannot be 100% accurate, we must allow for some deviation
from the desired value. Current requirements specifications

typically specify such a tolerance, but such tolerances must
be treated carefully and can potentially bring up issues related
to accumulated error that might need to be considered in the
requirements (see discussion below).

B. Accumulating Error

When the output is consistently within the acceptable limits,
but is also consistently above the set point, as seen in Figure 4,
some issues may emerge. Based on the requirements for the
GPCA pump, it has been assumed that the output flow rate is
the desired flow rate. Nevertheless, due to limitations in the
physical world, this is generally not possible. Such fluctuations
can be modeled with the addition of a noise component in the
sensors, actuator, and/or plant models. If this noise contains
a constant positive offset, the disturbance may be enough to
increase the actual flow rate by a small amount while still
remaining within the acceptable tolerance. As such, there is
a possibility of a patient may receiving too much of a drug
over a period of time, the error accumulates and may build
up to a real problem. For instance, suppose a doctor has
prescribed a patient to receive an infusion of 5 ml/hr. The
acceptable tolerance for the infusion pump is 5%, allowing
infusion amounts to vary between 4.75 and 5.25 ml/hr. If the
machine infused at the 5.25 ml/hr rate for an entire day, then
at the end of a 24 hour period the patient will have received an
extra 6 ml of the drug as compared to the expected volume—
the equivalent of more than an extra hour of infusion.

Set point

Tolerance limits

Fig. 4. The error between the target flow-rate and the actual flow-rate in the
GPCA infusion pump.

C. Discussion

The modeling of candidate control approaches for various
aspect of a system, such as the speed hold feature of a
cruise control system or the infusion modes of a GPCA
infusion pump provides insight into the requirements, in
particular into the requirements governing the various aspects
of the continuous phenomena in a cyber-physical system.
As requirements are discovered or refined, the models are
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brought into conformance with new requirements, and new
requirements will be discovered or refined. As an example,
an initial control approach for the cruise control may be very
slow and gradually bring the vehicle up to the desired speed.
At a review, this sluggish response is deemed unacceptable
and requirements addressing the rise-time are added and the
control approach changed to implement this shorter rise-time.
This quicker response may now lead to a large overshoot of the
target speed and oscillation, something that was not an issue
with the more gradual speed increase in the previous version.
Requirements to address these new problems must now be
added and old requirements might have to be modified; it may
be impossible to achieve the required rise-time without a too
large overshoot. The requirements and the models serve as our
Twin Peaks assisting in finding and refining requirements in
the problem domain by exploring candidate behaviors in the
solution domain.

Naturally, during modeling we may discover that certain
phenomena are nor relevant in the system under development.
For example, in our GPCA infusion pump, the system dynam-
ics allow for a very rapid rise time (there is no inertia to speak
of in the system) and overshoot and settling time were deemed
to be negligible for the same reason. Thus, one can argue that
requirements governing these quantities are superfluous for the
GPCA pump. Without modeling in the continuous domain,
discovering which requirements are needed and which ones
are superfluous (and then documenting the reasons why they
are deemed superfluous) will, in our opinion, simply not be
possible.

IV. INITIAL CPS REQUIREMENTS CLASSIFICATION

As mentioned above, during our iterative requirements and
modeling efforts working on the GPCA infusion pump, we
realized that classes of requirements related to the continuous
and continual behavior of the system were not captured in
the available documentation. These missing or inadequate
requirement generally fell into six categories closely related
to the properties of the step response curves discussed in the
previous section. The classification presented in this section is
intended to be a first step towards a catalog of cyber-physical
systems requirements that can serve a guide or checklist for
developers of such systems; these classes of requirements
should be present in a requirements document or their absences
should be justified.

To illustrate the requirements we will be primarily using
the Actual Flow Rate of drug through the infusion hose
in an infusion pumps system. Note that the requirements
examples presented in this section are simply examples of
what such requirements might look like; it is not intended
to be a catalogue of CPS requirements patterns. There are
numerous ways of specifying the various quantities in question
and we hope to provide a more comprehensive statement in
forthcoming work.

Note that the requirements examples presented in this sec-
tion are simply examples of what such requirements might

look like; it is not intended to be a catalog of CPS require-
ments patterns. There are numerous ways of specifying the
various quantities in question and we hope to provide a more
comprehensive account in forthcoming work.

A. Accuracy

The accuracy (or precision) of the control of a physical
quantity is quite obviously a concern and is typically defined
in a requirements document. In our case, the accuracy of the
flow-rate can be defined as a percentage of the flow-rate.

“The actual flow-rate (f) during normal opera-
tion shall be within ±5% of the target flow-rate (tfr):
0.95· tfr ≤ f ≤ 1.05· tfr.”

Naturally, the accuracy can be specified as an absolute value
or as a value that decreases (as opposed to increases) with the
flow-rate (the pump may be more accurate at higher flow-
rates). Nevertheless, accuracy requirements for all controlled
quantities are needed.

B. Rise Time (Drop Time)

The time allowed to go from one set-point—in our case
typically basal flow-rate or a very low flow rate, such as Keep
Vein Open (KVO) flow rate, to one of the bolus flow rates—
cannot be more than a certain time interval. If the rise time
is unconstrained, we may pick a solution that increases (or
decreases) the quantity so slowly that it is harmful to the
patient. In our case:

“The duration between the time at which a new
target flow-rate (tfr) is commanded and the time at
which the actual flow-rate (f) reaches within ±5%
of the target flow rate shall be shall be less than 1.0
s.”

Requirements governing at least the maximum rise time
(or drop time) are needed in all systems controlling physical
quantities. A minimum rise time may be needed in case too
rapid changes in a controlled quantity may be harmful. Such
constraints on rise time could instead, however, be handled
through requirements on the rate of change as opposed to rise
time.

C. Rate of Change

Given a required rise-time, one can select different control
approaches to reach the new set-point within the allocated
time. For example, one can initially increase the flow rate
rapidly and then taper off to smoothly capture the new target
rate. Alternatively, one could rapidly increase the rate all the
way to the new target rate and accept a larger overshoot
(discussed next). Thus, in some instances (our automotive
cruise control is a prime example), requirement on the rate of
change may be needed—we may need to write requirement
related to the first derivative of the controlled quantity.

“The rate of change in the actual flow-rate (f)
shall not exceed 0.5 ml/s2: ḟ ≤ 0.5 ml/s2.”

In some systems we may even be interested in how quickly
the rate of change changes. For instance, in our cruise control
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system, there will be requirements governing the rate of
change in the speed (the acceleration of the vehicle—the
first derivative of the controlled variable vehicle speed). In
addition, we are most likely also interested in how quickly
the acceleration changes (a concept known as jerk, the second
derivative of the vehicle speed). Jerk is a crucial aspect of
passenger comfort and constraints will need to be put on the
acceptable jerk (think about how the negative acceleration
when you brake for a red light suddenly goes away when
the vehicle stops—you feel the “jerk”).

D. Overshoot (Maximum Deviation)

The accuracy requirements on a system may be limited
to its operation during normal operating conditions. During
failure conditions, alarm conditions, and during transitions
from one operational regime to another (often referred to as
mode-changes), we may be willing to accept a larger deviation
from the desired value—there may be an allowed maximum
deviation (or maximum absolute quantity) that cannot be
violated under any circumstance.

“The actual flow-rate (f) shall never exceed
10% of the target flow-rate (tfr): f ≤ tfr +10%.”

“The actual flow-rate (f) shall never exceed 10
ml/h: f ≤ 10 ml/h.”

Requirements in this category will both limit the allowable
overshoot as well as put safe limits on the various physical
quantities.

E. Settling Time

In the tradeoff between rise time and overshoot, the sys-
tem may experience some oscillation before the controlled
quantities settle within the acceptable accuracy range. In our
case, settling time turned out to be a non-issue (see Figure 3)
since the system dynamics of the pump and fluid flow are not
conducive to oscillation. If we want to constrain settling time,
we need to fist define what “settling” means. In our case, we
define selling as being within our normal operating accuracy,
that is, within ±5% of the target flow-rate.

“The time between when a new target flow-rate
(tfr) is commanded and the time the actual flow rate
(f) settles shall be less than 1.2 s.”

Determining whether or not requirements on settling time
are needed must be determined through modeling or previous
system experience. If these requirements are omitted, a clear
justification for their omissions should be presented.

F. Cumulative Error

As discussed in Section III, it is quite possible that there
is a constant offset in the deviation between the actual values
of a controlled variable and the desired values. Thus, errors
may accumulate over time even though the system looks well
behaved at any instance in time. In the case of the GPCA in-
fusion pump, the volume infused in the patient might—due to
infusion inaccuracy—become unsafe. Therefore, requirements

on the cumulative error (in our case, the volume infused into
the patient over a specified period of time) may be needed.
If we assume that the time interval of interest in the GPC
infusion system is δ second, we could constrain the volume
infused as follows:

“The actual volume infused over a time interval
of δ cannot exceed the commanded volume to be
infused by more than 0.1 ml:
t+δ∫
t

f dt ≤
t+δ∫
t

tfr dt+ 0.1 ml.”

Note here that if we want to express this requirement
formally over the controlled quantities, we will need to express
it as an integral over the flow rate since we are not directly
controlling the volume of drug infused. In our work with the
GPCA infusion pump, there have been a number of—often
conflicting and highly unclear—requirements putting limits on
the flow rate as well as the volume to be infused.

We advocate to identify the monitored and controlled
variables at the interface between the environment, we are
attempting to control and the system, we are putting in place
to do so and express the system requirements in terms of
this interface [6], [1]. Note that discovering this interface is
a another ”Twin Peaks” activity related to the architecture of
the system solution we put in place and has been discussed
elsewhere [7], [8], [9], [10].

V. CONCLUSION

In our work with various cyber-physical systems we have
found that early modeling of the physical aspects of the
proposed system is an invaluable resource when eliciting and
clarifying requirements. The initial requirements constrain the
initial modeling effort, the modeling effort raises questions and
clarify thinking leading to new and better requirements, and
the process is repeated.

We believe that the concerns of the control engineering
community—concerns such as rise time, overshoot, and set-
tling time—must be brought into the requirements engineering
community to adequately constrain system behaviors and
rigorously define what is considered an acceptable system
behavior. Today, the details of the system’s control behavior
are often left to the control engineers using their expert
judgement to determine if the control behavior is acceptable.
We advocate codifying this expert judgement in the system
requirements to ease, for example, system maintenance and
evolution.

One issue not addressed in this report is the allowed system
behavior when the system switches between different control
approaches or the set-point changes (these changes are often
associated with what we call mode-changes). Consider, for
example, the simple change when the GPCA pumps switches
from basal infusion to patient bolus infusion. At the moment
we change the target flow rate from basal-flow to bolus-flow,
the actual flow-rate will be severely out of tolerance (the
system has not yet had time to bring the actual flow-rate up
to the new target flow-rate). Thus, one may need a separate
set of requirements defining the acceptable behavior during
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the various mode-changes. We have not yet investigated the
mode-change issues in detail, but we hope to address these
issues in our future work.
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