
Graphical Microcontroller Programming

John R. Rogers and R. Clayton McVay
Department of Civil and Mechanical Engineering

United States Military Academy
West Point, NY, USA
john.rogers@usma.edu

Abstract—Graphical programming techniques developed in an
academic setting enable engineers to quickly iterate their robotic
algorithms. In a constrained undergraduate environment
mechanical engineering students at West Point are not allotted
sufficient time in their curriculum to master text-based
programming languages. In studying mechatronics, it is desirable
for them to program robots to demonstrate useful behavior, and
a method that simplifies the programming is necessary.
Graphical programming in lieu of text-based programming was
used at the Academy and was shown to reduce the time for the
students to learn to program without limiting the functional
capability of the programming language.

The method uses Simulink with a third-party chip-specific
Simulink blockset that allow programmers to automatically
generate executable code for inputs, outputs, and internal
functions of the microcontroller chip. PIC32 microcontrollers
were used.

It is shown that it is easier to convey the algorithm in the
Simulink implementation than it is to convey the traditional C-
language implementation of the same algorithm. It is quicker to
develop algorithms using the Simulink-based method. It is found
that these benefits outweigh the disadvantages associate with the
higher level of programming abstraction.

The method is relevant as a software development tool in that it
allows an engineer to move quickly from theory to proof-of-
concept and into prototyping. The method is scalable to military
and industrial applications outside of academia although it is not
yet widely used there.

Keywords-programming; algorithm; high-level language;
graphical programming; microcontroller; software development

I. INTRODUCTION
The design of mechatronic systems requires knowledge in

three domains: mechanical engineering, electrical engineering,
and computer science. Mechatronics educators face a
challenge: provide students with enough knowledge in the
three domains so that they can execute meaningful mechatronic
exercises. This paper describes an approach taken at West Point
to confront this problem.

At West Point an introductory course in mechatronics is
offered to mechanical and electrical engineering majors. The
course covers microcontroller basics, broad programming
concepts, some analog circuits, sensors, actuators, and some
system modeling. Traditionally the mechanical engineers who
enroll in the course are weak in programming and sensor

integration. The electrical engineering students are normally
weak in the actuation and kinematic and dynamic analysis parts
of the course.

Lectures serve a supporting role to the hands-on activities
in the labs and in the course project. An electric-powered radio-
controlled vehicle is used in the course project and labs. See
Fig. 1. By the end of the course, the student has designed and
implemented an autonomous ground vehicle. The prospect of
incorporating sensors and embedding closed-loop control on a
microcontroller in the unmanned vehicle generates interest and
motivates students to learn.

One of the objectives of the course is to acquaint the
students with the capabilities of microcontrollers and their
benefits: small, low-cost, and re-programmable. Typical
mechanical engineering students enter the course with little
computer programming instruction: one half-semester of
introductory programming concepts in their freshman year,
plus one half-semester of computer programming using
MATLAB and Simulink in their sophomore year. The
electrical engineering students are better prepared in this
regard, but do not take a course in dynamics or machine design.
The mechatronics course is introductory level so instructors
deliberately design course activities at a level incoming
students can handle. What is needed is a way for students to
develop autonomous vehicle behavior without getting bogged
down in programming.

Beginning in the spring semesters of 2011, the students in
the mechatronics course at West Point programmed their
vehicles using a graphical method. Their results demonstrated
that not only can students with limited traditional programming
experience develop robotic applications, but that the approach

Figure 1. Students develop autonomy for unmanned vehicles.

48U.S. Government work not protected by U.S. copyright

used could also facilitate design by decreasing the time it takes
from product concept to hardware implementation.

II. PRIOR WORK
Prior work has shown that graphical approaches to

programming have benefits. Bucks and Oakes [1] used
LabVIEW to introduce concepts of programming; their
students designed exercises to teach 7th graders math or
science concepts. They report that students involved in these
graphical programming activities were initially apprehensive
about the learning content but became excited when they saw
their own progress. End-of-course student surveys noted
positive responses to graphical programming with LabVIEW in
spite of concerns at the beginning of the semester. The work of
Bucks and Oakes did not involve microcontrollers. Burns and
Sugar [2] describe the benefits of using MATLAB and
Simulink to design, simulate, and implement controls in
hardware. The authors show how the use of automatic code
generation can mitigate the burden of coding for real-time
systems. They cite the bypass of coding as an “obvious
benefit.” Their implementation of hardware-in-the-loop (HIL)
uses the MathWorks’ xPC Target in which a stand-alone
executable is run in a target personal computer or single-board
computer. This method allowed the students to focus on the
control design learning points. Their system allows parameter
tuning and data collection. The user interface of xPC Target is
essentially the same as the method proposed by the authors of
this paper—both use Simulink, but xPC Target is not used to
program microcontrollers. Giurgiutiu, Lyons, Rocheleau, and
Liu [3] cite the challenge of learning a script language such as
assembly or C++ when students enter their microcontroller
course having been exposed only to visual languages (MathCad
and LabVIEW). These authors teach simulation of hand-
written assembly code as an aid to learning text-based
programming. Other authors [4-6] use Simulink as a simulation
tool to teach engineering concepts.

III. SIMULINK-BASED GRAPHICAL PROGRAMMING
The graphical programming interface used in the

mechatronics course at West Point is Simulink produced by
The MathWorks. Simulink is primarily intended for simulating
dynamic systems and is normally introduced to the mechanical
engineering students at the Academy as sophomores or juniors.
It is a component of MATLAB wherein blocks are mouse-
dragged from a palette and connected with lines to create a
model. The lines represent variables and are commonly
referred to as signals. The blocks symbolize mathematical
operations, functions, signal sources, and the like. Subsystem
blocks are used to organize models. A large library of general
and application-specific blocks allows fast development of
complex functions and algorithms. The critical component that
enables the method discussed in this paper is the set of blocks,
or blockset, that accesses the microcontroller functions such as
the digital inputs and outputs. The blockset is an add-on that is
obtained in addition to Simulink; it is produced by L. Kerhuel.
Programs developed in Simulink are equivalent to C programs
in terms of functionality, ability to document, ability to control
revisions, and ability to divide labor on teams of students.

The structure of complex algorithms is communicated
visually with graphical programming and therefore more
efficiently than text-based code. Subsystem blocks may be
opened to examine details, and subsystems within subsystems
are allowed, analogous to nested functions in text-based code.
Simulink is able to maintain version numbers and can be
integrated with source control software. These features of
Simulink make the projects scalable; in fact Simulink is widely
used in industry.

A student-written sample algorithm is presented in Fig. 2.
This Simulink model generates code that can be loaded on a
microcontroller to perform an “arm and fire” function: press a
first button to “arm” a system, and press a second button to
“fire” the system. In the classroom implementation, an LED on
board the microcontroller development board is illuminated to
signify the “armed” state, and an additional two LEDs are
rapidly flashed alternately to signify “fire.” This algorithm can
be used for weapon safety that requires “arming” before firing,
and also for home alarm systems where “arm” means to set the
system up to detect intrusion, and the “fire” function is to
sound the alarm. A combination of blocks from the standard
Simulink library and from the add-on blockset are combined to
create the program. In Fig. 2, the blue master block is used to
configure the specific microcontroller device targeted, to set
the processor clock source and frequency, and instruction
execution speed (MIPS). The yellow block configures the code
generation software so that the code generated is suitable for
the specific microprocessor. The Toggle block in Fig. 2
converts the momentary press of the “arm” pushbutton to a
maintained state. The Triggered Subsystem contains the “fire”
function which rapidly alternates two LEDs. The AND block is
the implementation of the logic in this simple algorithm.
Pushbuttons and LEDs are wired on the development board to
digital input-output (IO) pins of the microcontroller.

Figure 2. Student-written arm-and-fire algorithm.

A. Supporting Software and Hardware
Several software components must be installed to execute

an algorithm such as “arm and fire” on a microcontroller, see
Table 1. L. Kerhuel produces a free version and a full version
of the blockset; the free version allows six input/outputs
maximum whereas the full version is not limited by the
software. The blockset is downloaded from the web site and

Arm and Fire

Triggered
Subsystem

Count
Up

Inc Cnt

Toggle

dsPIC MASTER
32MX460F512L

80.00 MIPS

Master

AND

Logical
Operator

Digital Output
WRITE

B10

LED1: Armed

Digital Input
A6

A7

Digital Input

Configure Model for
dsPIC Target
(double-click)

Configure Model
for dsPIC

49

installed in MATLAB. Those familiar with Simulink will
recognize the addition of the special blocks to the Simulink
Library Browser. The blockset allows the programmer to
access all the functions of the microcontroller chip such as
serial communications, analog to digital converters, PWM
generation, and interrupts.

TABLE I. REQUIRED SOFTWARE

Software Vendor Purpose

MATLAB The Mathworks Programming

Simulink The Mathworks Graphical Interface
Simulink
Coder and
Embedded
Coder

The Mathworks C code generation

LK Blockset L. Kerhuel Microcontroller IO
Interface

MPLAB Microchip

Loading compiled code on
Microcontroller (also used

as a C programming
development environment)

C32 Microchip C compiler specific for
microcontroller family

In addition to software, microcontroller hardware must be
set up and connected to the computer for program-loading. The
hardware used in West Point’s mechatronics course is the
Cerebot32MX4 development board by Digilent Inc. This board
is convenient for the course because it has a good balance of
size, cost, and functionality. The board includes a
PIC32MX460F512L microcontroller from Microchip
Corporation, and has provisions for peripheral modules. The
blockset created by L. Kerhuel supports many of Microchip’s
PIC microcontrollers.

A Simulink model is constructed specifically for execution
on the microcontroller. Digital inputs and outputs require
selection of the port letter and pin number. These are
determined from the development board schematic or reference
manual. The model is “built,” that is, C code is generated and
compiled. The free MPLAB integrated development
environment (IDE) software from Microchip may be used to
inspect and modify the generated code if necessary. MPLAB is
used to load the compiled program on the microcontroller via
USB connection.

Examples of more complex algorithms programmed using
in Simulink exist in the literature. The Arizona State University
SPARKy robotic ankle [7-8] and The West Point Bionic Foot
control algorithms were developed with Simulink. Both
devices are motor-driven and use sensors for feedback. The
programs contain nested subsystems (functions) and other
advanced programming structures. In the experience of the
authors the structures of these algorithms are readily
understood by looking at the Simulink diagrams, whereas if the
programs were written in a text-based programming language,
the same level of understanding would take much longer, and
would not be possible without text-based programming
knowledge.

B. Comparison with Text-Based Programming Methods
Programming in the C language is by far the most common

means of developing microcontroller programs. In order to
compare the graphical Simulink method to hand-written C, a
hand-coded version of the same Arm and Fire algorithm is
shown, Fig. 3. Coding in this manner requires detailed
knowledge of the C language and knowledge of the
microcontroller. This program took an experienced
programmer about one hour to write, debug, and revise.
References to documents on the internet and the ability to
locate header files were necessary. The Arm and

Figure 3. Arm-and-fire in the C language.

// Arm & fire code by Konstantin Avdashchenko
#include <p32xxxx.h>
#include <plib.h>

//Definitions
#define Arm PORTAbits.RA6
#define Fire PORTAbits.RA7
#define ArmedLED PORTBbits.RB10
#define Firing() PORTB = 0x0C00;
#define Hiring() PORTB = 0x1400;

//void Armed(void);
void initports(){
AD1PCFG = 0x0000; //no analog pins
PORTB = 0x0000;
PORTA = 0x0000;
TRISB = 0x0000; //All B ports outputs
TRISA = 0xFFFF; //All A ports Input
PORTB = 0x0000;
PORTA = 0x0000;
}

void Delay200ms(){
int i,r;
 Firing();
 for (i=0;i<3000;i++){
 r++;
 }
 Hiring();

 for (i=0;i<3000;i++){
 r++;
 }
return;
}

void Armed(){
 while (Fire){
 //__delay_ms(200);
 Delay200ms();
 }
 return;
}

int main(){
char Armz=0,Arml,Armd;
 initports();

 while(1){
 Armd=Arm;
 if (Armd&&(Arml==0)) Armz = !Armz;

 if (Armz){
 ArmedLED=1;
 Armed();
 }
 else ArmedLED=0;
 Arml=Armd;
 }

50

Fire Simulink model was reproduced in about half the time and
with less specialized knowledge. It is clear by comparing the
code above to Fig. 2 that visual learners, as most engineers are,
would likely understand the algorithm more quickly by looking
at the Simulink model than by looking at the C code. In the
same manner, troubleshooting of common problems is easier in
Simulink than in the C-based code. As with C, the programmer
using Simulink can easily test his system by visually building
his/her program incrementally to verify that different parts
work. This can lead to a functioning program quickly with
fewer errors.

IV. RESULTS AND CONCLUSIONS

A. Implementation in the Classroom
In the 2009 and 2010 iterations of the Mechatronics course

at West Point, programming was done in C for an Atmel
ATMega 128 microcontroller (Robostix). An autonomous
vehicle platform based on the radio controlled E-Maxx truck.
Only one of four 2009 student groups and none of the 2010
groups were able to develop algorithms on their own in C. This
failure is attributed to insufficient student background and
insufficient time in the course rather than to lack of ability.
Adding programming content to the mechanical engineering
program to remedy this deficiency is not feasible due to the
many constraints at the Academy.

The method described in this paper was implemented in the
course for the first time in spring 2011. The same vehicle
platform was used, but with the PIC32 microcontroller. At first,
during the spring semester, the Simulink implementation
required persistent work to overcome errors, software version
incompatibilities, and communication issues. The initial
learning of the method was a burden, and this was borne
largely by the course instructor. In spite of heavy coaching by
the instructor, the students’ view of the installation of the
software and the struggle to get the first program running on
the hardware was that it was burdensome. The instructor
maintained motivation in the face of the startup challenges by
framing the notion that we were at the frontier of
microcontroller programming education, and that the class
effort would make it easier for the next semester’s class. This
view was acceptable to the students and ultimately proved
correct. Course credit was given for correct installation of all
the software components on the student’s computer. Credit was
also given to students for documenting questions and solutions
in a Frequently Asked Question file. After this “overhead,”
programming the microcontrollers was satisfying for the
students.

The spring semester instructor observed significantly more
progress by the students using Simulink for programming than
by the students coding in C of prior years. Students were able
to write simple programs somewhat more complex than the
“arm and fire” example. Student work was archived for future
semesters. During the most recent fall semester the students
starting building working “arm and fire”-type programs by the
fourth lesson. They proved more willing to experiment with
the different functions of the microcontroller on their own and
were more open to complex programming routines. This
allowed the instructor to make assignments and labs that built

upon each other enabling all the students to complete their
autonomous vehicle by the semester’s completion.

Once the students completed their initial simple designs
they were quickly able to augment and increase the complexity,
and thus the capability, of their designs through an iterative
process. The students’ first exposure to the microcontroller
required them to make two LEDs alternately blink. The next
labs required them to incorporate sensors, then actuators, and
then finally they were required to control their autonomous
vehicle through closed-loop control. They quickly developed a
prototype of their semester design project. Several students in
the most recent semester have readily extended their
programming experience beyond the mechatronics course to
build intelligent capstone projects. This fact shows a significant
advance in mechatronics education at West Point attributable to
the graphical method.

Other graphical methods of programming microcontrollers
exist. Microchip Corporation also has a Simulink blockset
comparable to the L. Kerhuel blockset. The Microchip blockset
does not yet support the PIC32 chip. Scicos is open-source
graphical programming software similar to Simulink. Scicos is
free, but is not as extensive as Simulink, and the number of
chips supported is smaller than the other options. LabVIEW
also is a graphical programming method that can be used to
program microcontrollers. Flowcode is software in which the
programmer builds a flowchart to develop the algorithm. The
authors do not have enough experience with these alternative
methods to compare them meaningfully. A thorough analysis
of the relative benefits would be useful, but is outside the scope
of this paper. The authors would expect similar benefits for
other graphical programming software.

B. The Programming Abstraction Continuum: Advantages
amd Disadvantages of the Method
Programming languages vary in their degree of abstraction.

The least abstract is binary machine code; at this level every
aspect of the silicon machine hardware is relevant and visible.
High-level languages such as Java, C++, and MATLAB, are at
the opposite end of the abstraction continuum; these languages
are designed for problem solving application. An engineering
trade-off is made when a programming language is selected.
High level languages are best for quick problem solving and
analysis. For example, MATLAB is frequently utilized for
visualization of scientific data. The language has hundreds of
special purpose built-in commands. In the case of MATLAB,
details such as data type and memory allocation are hidden
from the programmer. These make for fast algorithm iteration,
but the development speed has a cost: the execution speed and
memory utilization will not be optimized; when such
considerations dominate, a low-level language like assembly or
a mid level language like C is called for.

The Simulink method of microcontroller programming is at
a very high level of abstraction. Simulink hides the low level
details such as configuration registers and the detailed function
of microcontroller peripherals such as timers and analog-to-
digital conversion.

A benefit of the Simulink method is its ability to enable the
student to troubleshoot code. Inherent within Simulink is the

51

ability to visually display data types of variables as the program
is built. It also has the capability to send data through the
microcontroller’s UART modules over serial communication
lines to a computer. The computer uses terminal software to
display variable data at different points within the program
while it is running. This added benefit has reduced student
frustration, increased student understanding of basic
microcontroller peripherals, and decreased time to troubleshoot
software and hardware.

A drawback of graphical programming is that the
automatically generated C code is not as efficient as hand-
written in terms of program memory and computational
efficiency. In the academic environment the trading efficiency
away for ease of use is sensible.

C. Student Perception
In general, the graphical programming appealed more to the

mechanical engineering students than to the electrical
engineering students. The mechanical engineers had
previously used Simulink in other courses while the electrical
engineers had developed text-based code in Arduino in their
prior courses. Based on end-of-course evaluations the
mechanical students liked the familiarity, ease of use, and
intuitive nature of the graphical programming. The electrical
engineers disliked the added layer of abstraction and lack of
existing workable code available to them for use as a reference.
The following is a quote from end-of-course student feedback:

“I prefer to program in C, and not using Arduino or
MATLAB. High-level methods of programming obscure
the details of how things are being done in the
microcontroller and make trouble-shooting more difficult.
Additionally high-level programming takes up space and
processor time on the microcontroller, degrading
performance (as shown by the fact we had to use a really
slow loop interval in Simulink of 1ms).”

Programming in C is the norm for mainstream
microcontroller programming and makes sense in academic
environments where C programming experts reside as a student
resource. In future semesters the students will be allowed to
program using Arduino or Simulink.

D. Conclusion
Observing how much more the 2011 and 2012

mechatronics students achieved when using graphical
programming instead of hand written C code has convinced the
course instructors that the graphical method makes
microcontrollers accessible to those who would otherwise be
overwhelmed. Students were motivated to learn more.

The Simulink method enabled students to achieve results
with microcontrollers whereas the attempt to program in C had
near-zero success. This success is attributed to the visual aspect
of the program interface. The fact that success left the students
feeling satisfied and motivated was a clear indictor of the
benefit of the programming method used. The Simulink

method can be expected to work well in circumstances similar
to the situation described in this paper: individuals with little
traditional programming experience who are willing to spend
the time to self train, and a computing environment where
MATLAB and Simulink are present. If MATLAB and
Simulink are already present, the cost to get started is low. The
Digilent boards are not costly, MPLAB is free from Microchip,
the C compiler (C32 lite) is free for academic use, and the
Kerhuel blockset free version is sufficient to get started. The
Simulink method is especially attractive for those who want to
understand microcontroller capabilities, and who have
difficulty learning, or don’t have time to learn, C programming.

Graphical programming at West Point will increase cadet
understanding of mechatronic applications and facilitate a more
rapid prototyping process. It is the authors’ hope that the
introduction of this method will enable cadets to produce more
meaningful projects and apply the method in both the military
environment and in industry after they graduate.

ACKNOWLEDGMENT
The authors express their thanks to Chris Korpela for his

assistance with C coding in the mechatronics course, to Ben
Flanick for his contribution of the Arm-and-Fire Simulink
model, and to Konstantin Avdashchenko for the C code version
of the Arm-and-Fire program.

REFERENCES
[1] Bucks, G., Oakes, W., 2010 “Integration of Graphical Programming into

a First-Year Engineering Course,” ASEE Annual Conference 2010-1431.
[2] Burns, D., Sugar, T., 2002, “Rapid Embedded Programming in the

Mathworks Environment,” Journal of Computing and Information
Science in Engineering, 2, 237-241.

[3] Giurgiutiu, V., Lyons, J., Rocheleau, D., Liu, W., 2005,
“Mechatronics/Microcontroller Education for Mechanical Engineering
Students at the University of South Carolina,” Mechatronics 15, 1025-
1036, doi: 10.1016/j.mechatronics.2006.06.002

[4] Bhat, S., Glavic, M., Pavella, M., Bhatti, T.S., Kothari, D.P., “A Transient
Stability Tool Combining the SIME Method with MATLAB and
Simulink,” International Journal of Electrical Engineering Education,
43(2), 119-133.

[5] Zobaa, A.F., Boghdady, T.A., “Integration into Undergraduate Courses of
Transformer Tests using MATLAB/Simulink,” International Journal of
Electrical Engineering Education, 44 (4) 319-332.

[6] Duran, M.J., Gallardo, S., Toral, S.L., Martinez-Torrez, R., Barrero, F.J.,
2007, “A Learning Methodology using Matlab/Simulink for
Undergraduate Electrical Engineering Courses Attending to Lerner
Satisfaction Outcomes,” International Journal of Technology and Design
Education, 17 55-73.

[7] Bellman, R.D., Holgate, M.A., Sugar, T.G., 2008, “SPARKy 3: Design of
an Active Robotic Ankle Prosthesis with Two Actuated Degrees of
Freedom Using Regenerative Kinetics,” Proceedings of the 2nd Biennial
IEEE/RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics, Scottsdale, AZ, USA, 511-516.

[8] Holgate, M.A. Bohler, A.W., Sugar, T.G., 2008, “Control Algorithms for
Ankle Robots: A Reflection on the State-of-the-Art and Presentation of
Two Novel Algorithms”, Proceedings of the 2nd Biennial IEEE/RAS-
EMBS International Conference on Biomedical Robotics and
Biomechatronics Scottsdale, AZ, USA, 97-10

52

