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Abstract—Background: With the rising popularity of Artificial
Intelligence (AI), there is a growing need to build large and
complex AI-based systems in a cost-effective and manageable
way. Like with traditional software, Technical Debt (TD) will
emerge naturally over time in these systems, therefore leading to
challenges and risks if not managed appropriately. The influence
of data science and the stochastic nature of AI-based systems
may also lead to new types of TD or antipatterns, which are not
yet fully understood by researchers and practitioners. Objective:
The goal of our study is to provide a clear overview and
characterization of the types of TD (both established and new
ones) that appear in AI-based systems, as well as the antipatterns
and related solutions that have been proposed. Method: Following
the process of a systematic mapping study, 21 primary studies
are identified and analyzed. Results: Our results show that (i)
established TD types, variations of them, and four new TD
types (data, model, configuration, and ethics debt) are present
in AI-based systems, (ii) 72 antipatterns are discussed in the
literature, the majority related to data and model deficiencies,
and (iii) 46 solutions have been proposed, either to address
specific TD types, antipatterns, or TD in general. Conclusions:
Our results can support AI professionals with reasoning about
and communicating aspects of TD present in their systems.
Additionally, they can serve as a foundation for future research
to further our understanding of TD in AI-based systems.

Index Terms—Artificial Intelligence, Machine Learning, Tech-
nical Debt, Antipatterns, Systematic Mapping Study

I. INTRODUCTION

Artificial Intelligence (AI) covers different technologies for
searching, reasoning, planning, problem solving, and learning
with the overall aim of “automating intellectual tasks normally
performed by humans” [1]. Its rise in popularity in recent years
is mostly due to advancements in Machine Learning (ML), an
area of AI focusing on algorithms and systems to identify rules
and patterns in data based on statistical modeling techniques.

With more and more companies offering AI-powered prod-
ucts and using AI techniques to improve their internal processes,
there is a need to build large, complex AI systems in a cost-
effective and manageable way. At the surface level, this may not
seem like a new problem: AI systems are software systems too,
so we can use well-known, established software engineering
principles, practices, and processes to build such systems (e.g.,
separation of concerns, component-based encapsulation, and
agile delivery). However, recent studies show that the AI/ML
∗All authors contributed equally to this study.

domain possesses characteristics that make it distinct from other
software application domains, such as an increased importance
of data quality and management, unclear abstraction boundaries
for complex models, and challenges in the customization and
reuse of AI/ML components [2-4]. Such characteristics seem to
necessitate adaptations of principles, practices, and processes
successfully used in other domains, or even the adoption of
new, AI-specific ones [5].

A successful practice when building software systems in an
iterative fashion is the awareness and management of technical
debt (TD) [6]. TD is a metaphor used to describe design
or implementation constructs that may be expedient in the
short term, but can make future changes more costly or even
impossible [7]. Looking at the differences between AI/ML and
other application domains from the TD perspective, researchers
from Google proposed in 2015 new TD instances that are
specific to the development of AI-based systems [4]. Since this
seminal paper, various research works from both academia and
industry followed up with the documentation of additional TD
items and antipatterns in AI/ML systems [8-10].

Despite these efforts, there is still no comprehensive con-
ceptual overview of TD in AI-based systems. It is unclear,
for instance, whether these systems accrue more “traditional”
TD than other types of systems, such as code, architecture,
or documentation debt. It is also important to understand if
AI-specific TD types emerge and what their characteristics, as-
sociated antipatterns, and proposed solutions are. Gaining such
an overview would provide a foundation for future research,
and support practitioners to better manage the maintenance and
evolution of AI-based systems. To characterize TD in AI-based
systems, we therefore conducted a systematic mapping study
(SMS), and collected and analyzed relevant papers on the topic.
Grounded in 21 primary studies, our contribution with this
paper is the thorough analysis and discussion of the concepts
of TD and antipatterns in AI-based systems.

II. BACKGROUND

A. Technical Debt

Since its formulation by Cunningham in 1992 [6], the definition
of technical debt has continuously evolved and broadened in
scope. Nowadays, it encompasses a vast range of concepts,
artifacts, and processes [11]. Among the current definitions
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of TD, a widely adopted one was formulated during Dagstuhl
seminar 16162 [7]. Simply referred to as the 16162 definition,
it specifies TD as “design or implementation constructs that
are expedient in the short term, but set up a technical context
that can make a future change more costly or impossible”.
To structure the knowledge on TD, different TD types have
been described, e.g. architectural debt, requirements debt, and
test debt, allowing researchers and practitioners to effectively
focus on specific technical issues where the debt metaphor
applies [12]. Instances of such types vary considerably in nature,
from suboptimal reuse of architectural components [13], to
deferred testing [14], or the involvement of certain development
communities [15]. In this research, we embrace the 16162
definition of TD, and build upon the TD type taxonomies
presented by Li et al. [12] and Rios et al. [16].
B. Antipatterns

While design patterns constitute proven solution blueprints
for specific problems, there is also the inverse concept of
antipatterns, i.e. frequently occurring suboptimal solutions [17].
Developers may choose these solutions under time pressure,
but antipatterns often appear due to insufficient expertise. They
can have immediate negative effects on quality attributes such
as maintainability, performance efficiency, or reliability, but
may also hinder the sustainable evolution of a system, leading
to the accumulation of TD. Antipatterns can exist at different
levels of abstraction, such as code antipatterns, architectural
antipatterns, or even project management antipatterns.

There is also the related concept of bad smells, e.g. code
smells [18] or architectural smells [19]. Some authors keep
these terms strictly separated [20], i.e. software smells are
seen as potential indicators of bad quality that may require
further investigation, while an antipattern is always supposed
to be a bad practice that should be avoided. However, similar
to patterns, many antipatterns can also be context-sensitive
and may be perceived as “bad” only in specific cases. When
collecting archetypes of suboptimal software practices, a clear
distinction between the two concepts becomes less important
and several studies have handled them uniformly [21,22]. For
the purpose of this paper, we therefore do not differentiate
between the terms antipattern and smell, i.e. we collect both
concepts under the same umbrella. In this sense, we treat e.g.
code smells as antipatterns on the implementation level.
C. Related Work

Technical debt and antipatterns have been the target of numer-
ous reviews in different SE subfields and domains. However,
to the best of our knowledge, there exists no comprehensive
secondary study focusing on these concepts in the area of
AI-based systems. TD has been studied in the context of
databases [23] and data-intensive systems [24], but without a
clear focus on AI or ML, as with Sculley et al. [4].

Nonetheless, several studies focus on general software
quality aspects in AI-based systems. Humbatova et al. [25]
conceptualized a fault taxonomy for deep learning systems
by analyzing GitHub repositories, StackOverflow posts, and
conducting interviews. While faults are not in the scope of our

study, they can be related to TD and antipatterns in some cases,
e.g. as symptoms of their existence. Concerning the quality
assurance of AI-based systems, several position papers discuss
differences compared to “traditional” systems and highlight
the need for adapted quality assurance techniques [26,27].
Some empirical studies also went further than this and distilled
effective techniques for ML system engineering, e.g. Serban et
al. [28] derived general AI system development best practices,
and Siebert et al. [29] provided guidelines for the quality
assurance of such systems. Lastly, the study that comes closest
to the goal of our own research is a preliminary multivocal
literature review by Washizaki et al. [30]: they collected design
patterns and antipatterns for ML systems from both white and
grey literature. However, they only identified eight antipatterns,
seven from Sculley et al. [4] and one from a company blog post,
and did not provide any insights on how TD is characterized
in AI-based systems. With our study, we therefore fill this gap
by providing a detailed characterization of TD and antipatterns
in AI-based systems.

III. METHODOLOGY

In this section, we document the research design, which was
rigorously adhered to during study execution. We primarily
followed the guidelines for conducting systematic literature
studies in software engineering research by Kitchenham [31].

A. Research Objective and Questions

The aim of this research is to further the understanding of
technical debt and antipatterns in AI-based software systems.
To refine this goal, we derived the following research questions
(RQs), which guided our mapping study:

RQ1: What are the characteristics of technical debt in AI-
based systems?

RQ1.1: Which established types of technical debt have been
reported for AI-based systems?

RQ1.2: Does the nature of established technical debt types
change in AI-based systems?

RQ1.3: Which new technical debt types have emerged in
AI-based systems?

RQ1.4: Which quality attributes are affected by technical debt
in AI-based systems?

RQ2: Which antipatterns have been reported for AI-based
systems?

RQ3: Which solutions have been reported to address technical
debt and antipatterns in AI-based systems?

B. Research Process

An overview of the research process followed is depicted in
Fig. 1. The process started with the execution of a conservative
automated search query via Google Scholar, followed by an
iterative forward- and backward-snowballing process, until
theoretical saturation was reached. Following the methodology
by Wohlin et al. [32], we based our search on a start set
obtained via an automated search query executed on Google
Scholar. This set was then used for exhaustive bidirectional
snowballing. The use of Google Scholar allowed us to avoid
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Fig. 1. Systematic mapping study process overview

bias in favor of any specific publisher [32]. Further details of
each research step are reported in the following subsections.
1) Step 1: Automated Initial Search
To gather an initial set of potentially relevant studies, we
executed a conservative automated query on the Google Scholar
literature indexer. The title-focused query was designed to
encompass related literature focusing specifically on the topic
under investigation, and is formulated as follows:

Listing 1. Automated search query
1 ALLINTITLE: (”technical debt” OR ”antipatterns” OR
2 ”antipattern” OR ”anti patterns” OR ”anti pattern” OR
3 ”smell” OR ”smells”) AND (”artificial intelligence” OR
4 ”machine learning” OR ”deep learning” OR ”intelligent”
5 OR ”smart” OR ”AI” OR ”ML” OR ”DL”)

This query identifies literature containing in their title
keywords referring either to “technical debt”, “antipatterns”, or
“smells” (Listing 1, Lines 1-3) and keywords referring to AI,
or related synonyms and acronyms (Listing 1, Lines 3-5). The
automated query was executed mid-June 2020, and yielded
90 potentially relevant studies. As we were not interested in
publications regarding a specific timeframe, the publication
date was purposely left unbounded in the query.
2) Step 2: Application of Selection Criteria
After identifying the set of potentially relevant studies via the
automated query, we conducted a manual selection process.
During this step, we evaluated the initial pool of studies based
on pre-defined selection criteria. A paper was selected as a
primary study if it satisfied all inclusion criteria and none of
the exclusion ones. We used the following criteria:

I1- Publications reporting technical debt, antipatterns, or
suboptimal software engineering practices

I2- Publications focusing on AI-based systems
E1- Non-English publications
E2- Publications for which the full text is not available to us
E3- Duplicates or extensions of already included publications
E4- Secondary or tertiary studies
E5- Publications in the form of editorials, tutorials, books,

extended abstracts, etc.
E6- Non-scientific publications (i.e. grey literature)

The two inclusion criteria (I1, I2) were formulated to ensure
that primary studies focused on the investigated topic, namely

TD and antipatterns in AI-based systems, and hence provided
relevant data to answer our RQs. The exclusion criteria instead
were designed to guarantee that data could be extracted from
papers (E1, E2), without duplication or redundancy (E3, E4),
and consisted of scientific literature (E5, E6).

Given the fast pace at which the investigated topic evolves,
we purposely included preprints during the selection process.
However, preprints needed to possess a sufficient level of
quality (reviewed by all three researchers), to have already
been cited by high-quality academic literature, and to be from
reputable authors who published other studies in the field.1

During the selection, adaptive reading depth [33] was used
to efficiently assess potentially relevant studies. To mitigate
subjective bias, all authors independently applied the selection
criteria for the 90 candidate studies. Differences were jointly
discussed until consensus was reached. This led to the selection
of five primary studies, i.e. the snowballing start set.
3) Step 3: Snowballing
To obtain a sound and encompassing set of primary studies, the
automated search was complemented by recursive backward
and forward snowballing [32]. During this step, all studies
either citing or cited by the primary studies were examined.
Similar as for the initial selection, the snowballing process was
conducted by three researchers: in each round, all researchers
independently suggested new primary studies to be included, i.e.
studies which fulfilled the selection criteria. Divergences were
jointly discussed and resolved, after which the next iteration
started. Overall, it took four rounds of backward and forward
snowballing until no new studies were identified. Snowballing
led to the inclusion of 16 studies, i.e. our SMS selection process
led to the identification of 21 primary studies.
4) Step 4: Data Extraction
In the next step, we systematically analyzed the primary studies
and extracted data related to our RQs. To gain a preliminary
understanding, a data extraction pilot with four papers was
conducted independently by all researchers. Subsequently, the
extracted data was jointly discussed, leading to the extraction
framework used in this study. Two researchers were randomly
assigned to each primary study. They independently extracted

1This design decision led to the inclusion of two additional papers, namely a
white paper by Microsoft research [P1], and a paper presented at the AAAI Fall
Symposium Series: Artificial Intelligence in Government and Public Sector [P2].
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the data and agreed on the final extractions per paper in a
consensus meeting, with the intervention of the third researcher
when required. The extraction framework is divided into one
part for each specific RQ of our study (see Section III-A).

To characterize TD in AI-based systems (RQ1), data needed
to be extracted according to its four sub-questions. For the
recurrence of established TD types in AI-based systems (RQ1.1),
we identified types based on the TD taxonomies of Li et al. [12]
and Rios et al. [16] (e.g. code, test, or architectural debt).
Using the same taxonomies, we also extracted variations of
established TD types (RQ1.2), i.e. if the nature or scope of
TD types changed in AI-based systems. An example for this is
test debt, as it extends in AI-based systems to testing models
and data. We also analyzed the primary studies for new TD
types in AI-based systems (RQ1.3), i.e. debt types which (i) are
documented in the context of AI-based systems and (ii) cannot
be traced back to established TD types. Lastly, we extracted
quality attributes affected by TD in these systems (RQ1.4),
which was based on ISO/IEC 25010 [34], with the possibility
to extend it with additional identified attributes.

To answer RQ2 (antipatterns), the primary studies were
analyzed for recurrent suboptimal solutions in AI-based systems.
Such suboptimal solutions could be explicitly referenced as
“antipatterns” (e.g. correction cascades [4]), or reported as root
causes of TD (e.g. unstable data dependencies [10]).

Finally, to answer RQ3 (solutions), we extracted the so-
lutions proposed to mitigate or resolve TD and antipatterns
in AI-based systems. Such solutions could be specific to a
certain TD type or antipattern (e.g. model isolation to resolve
entanglements) or general best practices to mitigate or prevent
the introduction of TD in AI-based systems (e.g. periodically
assessing assumptions during ML model evolution).

Note that the extractions did not have to explicitly mention
“debt”, “antipattern”, or a specific quality attribute. The decision
if a passage implicitly describing these concepts warranted
extraction was up to the researchers’ interpretation.
5) Step 5: Data Synthesis
As a final step, the extracted data was harmonized (e.g. merging
identical or very similar antipatterns), and then analyzed
to derive answers to the research questions. This analysis
relied on open coding [35] to systematically identify recurrent
concepts. Further axial coding [35] was required to reduce
the growing complexity of some emerging concepts (e.g.
antipattern subcategories). During the coding, emerging results
were continuously discussed among the authors to keep codes
and their abstraction level consistent. Finally, summary statistics
were created to discuss general findings and their potential
implications. For the sake of transparency and reproducibility,
we make all study artifacts publicly available online2.

IV. RESULTS

Our results are extracted from 21 primary studies [P1]-[P21],
which were published in conferences (12/21), workshops (5/21),
journals (3/21), or distributed as white papers (1/21). Since

2https://doi.org/10.5281/zenodo.4457216

the appearance of the first paper focusing on TD in AI-based
systems in 2015 [P3], we observed a growing publication trend
until 20203. Interestingly, a large number of primary studies
were co-authored by at least one industrial practitioner (13/21),
including nine papers authored exclusively by practitioners.
Google is the most recurrent company [P3-P7], while other
prominent examples include Microsoft [P1], Amazon [P8], and
IBM [P9]. The considerable involvement of industrial parties
displays the industrial relevance of the topic, which has still
to gain traction in academic environments.

In the remainder of this section, we present the results of
our study, according to the four RQs guiding the investigation.
A. Characteristics of TD in AI-based Systems (RQ1)

This section reports the results for the sub-questions of RQ1,
aiming to characterize the nature of TD in AI-based systems.
An overview of the recurrence of all identified TD types is
reported in Fig. 2 (both established and new types). Following
we discuss the distribution of established TD types plus their
variations, new types emerging in AI-based systems, and finally
affected quality attributes. Mentioned antipatterns are explained
in more detail in Section IV-B.

0

3

6

9

12

15

18

Inf
ras

tru
ctu

re 
de

bt

Arch
ite

ctu
ral

 de
bt

Cod
e d

eb
t

Test
 de

bt

Doc
um

en
tat

ion
 de

bt

Peo
ple

 de
bt

Req
uir

em
en

ts d
eb

t

Vers
ion

ing
 de

bt

Buil
d d

eb
t

Defe
ct 

de
bt

Desi
gn

 de
bt

Proc
ess

 de
bt

Data
 de

bt

Mod
el 

de
bt

Con
fig

ura
tio

n d
eb

t

Ethi
cs 

de
bt

New Variation Established

Fig. 2. Recurrence of TD types in AI-based systems

1) Established TD Types and Variations (RQ1.1 & RQ1.2)
As shown in Fig. 2, infrastructure debt is the most recurrent
established TD type (12/21), followed by architectural, code,
and test debt (8/21). Other types of debt, such as documenta-
tion (6/21), people (6/21), requirements (4/21), and versioning
debt (3/21) are also reported, albeit less frequently. Lastly,
build (2/21), defect (2/21), design (1/21), and process debt
(1/21) are only sporadically mentioned.

We observed that this distribution is mostly due to new
engineering challenges related to AI-based systems. Our
primary studies link these systems to an inherently exper-
imental development process, deep entanglement between
architectural components and utilized data, and necessary data

3Year in which the primary study selection was executed.
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transformation steps between components. Coping with such
difficulties often leads to the introduction of TD, e.g. the
evolutionary composition of AI pipelines may result in general-
purpose components being precariously stitched together via
glue code [P3]. Additionally, the data-driven nature of AI
algorithms introduces novel difficulties for quality assurance,
often manifested as suboptimal testing practices, such as under-
tested or ill-tested functionalities.

Moreover, AI-specific variations or extensions of TD types,
rather than their established scope [12,16], are often used in our
primary studies. Specifically, out of the 61 established TD type
extractions, 37 are such variations. While some TD types occur
unchanged in AI-based systems, re-interpreting several existing
debt types is necessary to accommodate the new characteristics
of these systems. The most recurrent established debt types,
namely infrastructure, architectural, code, and test debt, are also
the types which frequently exhibit an extended or augmented
scope in our primary studies.

Regarding infrastructure debt, this TD type is extended with
deficiencies related to the implementation and operation of AI
pipelines as well as to the management of AI models. In AI-
based systems, this TD type often manifests in form of complex
infrastructure comprising various AI pipelines [P3], suboptimal
allocation of resources to train/test AI models [P2], and weak
AI monitoring and debugging capabilities [P1], leading to major
operations and reproducibility issues.

Architectural debt variations instead reflect the emphasis in
AI-based systems on data, leading to a deep entanglement of
architecture components with their underlying data. This may
introduce debt items such as complex and non-deterministic de-
pendencies between architectural components and datasets [P2],
hard to assess compositions of architectural elements [P10], or
undeclared consumers of AI models [P11].

Similarly, test debt extends to data testing, ranging from
naive omission of basic sanity checks to the lack of more
sophisticated tests to assess data quality or distributions [P3].
In addition, new facets include suboptimal practices in testing
AI models and pipelines. Their deep connection to training
data and the stochastic nature of some AI algorithms [P4,P6]
make these artifacts increasingly complex to evaluate.

Code debt is shaped by the experimental nature of AI
model development. This frequently emerges in form of dead
experimental code paths in production code [P12] and the
suboptimal refactoring of experimental models into deployable
software [P5]. The algorithmic complexity of these systems
also increases the likelihood of certain code deficiencies [P13].

For versioning debt as a less referenced TD type, we
exclusively identified the AI-centric usage of the term. In AI-
based systems, this now includes the versioning of AI models
and training/testing data, which is often done in suboptimal
fashion, if at all [P4,P8,P12].

Finally, documentation, people, requirements, build, defect,
design, and process debt mostly appear in our studies according
to their established scope, i.e. while such debt types also
appear in AI-based systems, characteristics of AI do not have
a prominent impact on their manifestation. This highlights that

numerous commonalities are shared with software systems not
employing AI. Missing documentation, insufficient developer
skills, and unclear system requirements are all examples of
TD which also frequently occur in non-AI software. Slight
variations for some of these TD types are the extension of
documentation debt to features and assumptions on the used
data [P14], of build debt to suboptimal dependencies of internal
and external AI models [P10], and of defect debt to ignored
issues related to the quality of model predictions [P4].

2) New TD types in AI-based systems (RQ1.3)

With this RQ, we wanted to synthesize new TD types important
for AI-based systems, i.e. types not included in the taxonomies
of Li et al. [12] and Rios et al. [16]. Specifically, we found
four such types of debt: data debt, model debt, configuration
debt, and ethics debt, which we further describe below.

Data debt. The most recurrent new TD type regards sub-
optimal constructs around the data used in AI-based systems
(16/21). Specifically, this TD type refers to deficiencies related
to the collection, management, and usage of data, both for
training and production [P7,P15,P16]. In addition to causing
immediate issues, this TD type can also be latent, i.e. not
manifesting itself immediately, but rather posing a risks for
the long-term evolution of systems. Commonly referenced
instances of data debt are data quality issues, unmanaged data
dependencies and anomalies, or poor data relevance. Given their
heavy reliance on data, this TD type can strongly impact AI
systems, including reduced classification effectiveness, data loss
due to premature aggregation [P15], and compatibility issues.

Model debt. The second most referenced new TD type
is model debt (15/21). This AI-specific debt type regards
suboptimal practices in the design, training, and management of
AI models [P3,P4,P8]. As such, model debt manifests itself as
deficiencies occurring exclusively in model-related constructs.
Most prominently, model debt originates from suboptimal
feature selection processes, neglected hyperparameter tuning,
and poorly engineered model deployment strategies. Recurrent
items of model debt are feature entanglement [P3], hidden
feedback loops [P17], unrecognized model staleness [P8], and
substantial differences between training and production perfor-
mance, i.e. training/serving skew [P3]. As models constitute the
logic kernel of AI-based systems, this TD type can have serious
consequences, ranging from major challenges in maintaining a
model, to severe deterioration of model accuracy.

Configuration debt. This debt type (8/21) describes defi-
ciencies around the configuration mechanisms of AI-based
systems [P3,P12,P17]. Often, configuration debt arises when the
complexity of e.g. dynamic feature selection, hyperparameter
tuning, and data pre- and post-processing makes it difficult to
efficiently outsource machine- and human-readable configura-
tion files for these activities. This encourages AI engineers to
take shortcuts and to only consider the clean-up, restructuring,
and commenting of configuration files as an afterthought.
While the lines of configuration for AI-based systems may
even exceed the lines of source code [P3], configurations are
frequently not given the same level of quality control as code,
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e.g. reviews or tests. Prominent instances of configuration
debt include massive/complex, poorly documented (or simply
undocumented), unversioned, or untested configuration files. As
such, configuration debt may have some touch points with e.g.
infrastructure or documentation debt, but its explicit description
in the context of AI still warrants its own TD type.

Ethics debt. One less referenced new debt type is ethics debt
(6/21), which comprises deficiencies around ethical aspects of
AI-based systems, such as algorithmic fairness, prediction bias,
or a lack of transparency and accountability [P14,P18,P19].
Specifically, ethics debt arises when socio-ethical concerns are
deliberately or inadvertently neglected during the design or
training phase of AI-based systems. While this can go hand in
hand with reduced model accuracy, the resulting systems may
also satisfy all technical requirements while leaving one or
more ethical concerns unaddressed. This debt type can lead to
ethical fallacies so deeply embedded into an AI-based system
that they usually cannot be resolved with only minor data
or software changes. Instead, they may require a complete
restructuring and retraining of AI models or major source code
updates. Depending on the relevant regulations, ethics debt can
also have legal consequences.
3) Affected quality attributes (RQ1.4)
We extracted a total of 12 unique quality attributes impacted
by TD in AI-based systems, for which the recurrence in our
21 primary studies is depicted in Fig. 3.

0

5

10

15

20

Fun
cti

on
al 

sui
tab

ilit
y

Main
tai

na
bil

ity

Obse
rva

bil
ity

Secu
rity

Reli
ab

ilit
y

Perf
orm

an
ce 

eff
ici

en
cy

Rep
rod

uc
ibi

lity

Com
pa

tib
ilit

y

Tran
spa

ren
cy

Fair
ne

ss

Resp
on

sib
ilit

y

Usab
ilit

y

ISO/IEC 25010 QA Additional QA

Fig. 3. Recurrence of quality attributes impacted by TD in AI-based systems

Overall, functional suitability is the most referenced quality
attribute (18/21). Specifically, the introduction of TD in AI-
based systems leads to issues in the functional correctness
sub-characteristic (18/21), which, given the data-driven nature
of AI-based systems, can be cumbersome to detect and resolve.
Among the most mentioned reasons for this is diminished
model accuracy, e.g., due to training/serving skew [P4].
Maintainability is the second most mentioned quality attribute
(16/21), with emphasis on the sub-characteristics modifiability
(14/21), testability (13/21), and reusability (11/21). In this
case, we noted how TD frequently leads to quality issues
specific to or caused by AI models, such as difficult model

re-training or reuse, ripple effects on changes through harmful
dependencies, or complex collections of scripts and pipelines
that are hard to analyze. Observability (8/21) as additional
quality attribute represents the degree to which the runtime
behavior of a deployed AI-based system can be monitored. This
quality attribute can be severely impacted by infrastructure and
architecture debt. Security and reliability are referenced equally
often (7/21). Security issues in AI-based systems often concern
the sub-characteristics accountability (5/21) or confidentiality
(4/21). Reliability, by contrast, is most often related to maturity
of AI-based systems, i.e. the degree to which the system meets
expectations under normal operation. Other quality attributes,
such as performance efficiency (5/21), compatibility (4/21), and
usability (1/21), are mentioned less frequently, i.e. are most
likely less impacted by TD in AI-based systems. Similarly,
new quality attributes emerging in AI-based systems such as
reproducibility (4/21), fairness (4/21), transparency (4/21), and
responsibility (3/21) are also not frequent. We believe the
growing attention to topics related to these quality attributes in
academia and industry will probably lead to a higher recurrence
in the near future. Finally, the only attribute from ISO/IEC
25010 not mentioned at all is portability.

Main findings (RQ1): Infrastructure debt (12) is the
most recurrent established TD type in AI-based systems,
followed by architectural, code, and test debt (8). We
identified four new debt types emerging in AI-based
systems, namely data, model, configuration, and ethics
debt. Functional suitability (18) and maintainability
(16) are the most impacted quality attributes, followed
by observability (8), security (7), and reliability (7).

B. Antipatterns (RQ2)

From the 21 primary studies, we extracted a total of 72 unique
antipatterns for AI-based systems. To organize this large
collection, we formed six categories (with an additional level
of subcategories for the larger ones), where each antipattern
is assigned to exactly one category. These categories, and
associated number of antipatterns, are displayed in Table I,
while Table II lists the 14 most prominent antipatterns men-
tioned in at least three publications. The largest categories
are model antipatterns (29) and data antipatterns (22), which
together account for ∼70% of all identified antipatterns. The
four remaining categories – design & architecture antipatterns
(8), code antipatterns (5), infrastructure antipatterns (4), and
ethics antipatterns (4) – are all of similar size. In the following
subsections, we briefly present each category with some
antipattern examples.

Model Antipatterns. The largest group of identified antipat-
terns (29) describes deficiencies or suboptimal practices with AI
models, mostly in the context of machine learning. Often, these
refer to the training, validation, or management of models, i.e.
to specific activities in the model life cycle. A concrete example
is the training antipattern direct feedback loops [P3,P15,P20],
which describes the unwanted state that a model impacts
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TABLE I
ANTIPATTERN CATEGORIES, IN PARENTHESES: # OF UNIQUE ANTIPATTERNS

PER (SUB)CATEGORY

Category Subcategory Sources

Model (29)

Training (9) [P3,P4,P14,P19]
[P15,P20,P21]

Training/serving skew (6) [P4,P12,P14,P19]
[P2,P6,P15,P20]

Features (6)
[P3,P4,P11,P17,P19,P20]

Management (4) [P4,P8,P14]
Validation (4) [P3,P4,P18-P20]

Data (22)

Management (7) [P4-P6,P12,P15,P16]
Anomalies (6) [P7,P9,P21]

Quality (4) [P3,P7,P14,P15]
[P9,P16,P21]

Relevance (3) [P14,P19]
Dependencies (2) [P3,P10,P11]

Design &
architecture (8)

Modularity (4) [P3,P5,P11,P14,P20]
Integration (2) [P2,P3,P17]
Technology adoption (2) [P3,P5,P8,P17]

Code (5)
Recurrent in AI (3) [P13]
AI-specific (2) [P3,P12,P17,P19]

Infrastructure (4) – [P1,P2,P4,P12,P20]
Ethics (4) – [P4,P14,P17,P18]

TABLE II
MOST REFERENCED ANTIPATTERNS (OCCURRED IN AT LEAST 3 SOURCES)

Antipattern Name Category Sources

Training/serving skew Model [P4,P12,P19]
[P2,P15,P20]

Data duplication Data [P7,P9,P15,P16]
Data miscoding smell Data [P3,P7,P15,P21]
Null/missing data values Data [P7,P9,P15,P16]
Feature entanglement Model [P3,P11,P17,P20]
Dead experimental codepaths Code [P3,P12,P17]
Unstable data dependencies Data [P3,P10,P11]
Unsound/missing metadata Data [P6,P15,P16]

Glue code Design &
architecture [P2,P3,P17]

Undeclared consumers Design &
architecture [P3,P11,P20]

Multiple-language smell Design &
architecture [P3,P8,P17]

Correction cascades Design &
architecture [P3,P11,P14]

Weak or missing monitoring Infrastructure [P1,P2,P4]
Direct feedback loops Model [P3,P15,P20]

its own future training data selection. This self-sustaining
relationship may lead to wrong classifications and biased
decisions, especially if feedback loops remain hidden or are
not managed appropriately. An example for a model validation
antipattern is offline/online proxy metric divergence [P4,P20].
Effectiveness of a production system is usually evaluated with
metrics like user engagement or revenue (online), while models
of AI components in such a system are validated with e.g.
accuracy or mean squared error (offline). If offline metrics
are not sufficiently aligned with the online metrics, e.g. via
correlation, system effectiveness may be severely impacted.

Lastly, a general model management antipattern is the absence
of versioning and version control systems specifically for the
model (no version control for models [P4]), which hinders
sustainable evolution and potential rollbacks.

A different type of antipatterns in this category focuses
on model features and their relationships. An example of
this is feature entanglement [P3,P11,P17,P20], which refers
to the interdependence of different model features. Adding,
removing, or changing the distribution of one feature often has
an impact on other features, therefore hindering incremental
system improvement. This has also been described as the CACE
principle [P3], i.e. “changing anything changes everything”.
A second example are epsilon features [P4,P17], which are
features only leading to negligible model improvement. Since
every feature comes with costs for maintenance and evolution
(especially when considering feature entanglement), feature
inclusion should be carefully considered based on merit.

Finally, a frequently mentioned type of model antipatterns
is related to training/serving skew [P2,P4,P12,P15,P19,P20].
This is the most recurrent unique antipattern and, in general,
describes substantial model accuracy divergences in the produc-
tion system when compared to the training accuracy. Reasons
for this can be different code paths to compute features in
production, but also a non-representative or non-exhaustive
training data set. More specialized variants of this antipattern
have been called distribution skew or scoring/serving skew [P6].
The divergence between training and serving accuracy can also
emerge slowly over time, which is called data drift [P15,P20]
and leads to stale models [P4,P14].

Data Antipatterns. The second largest antipattern group (22)
is related to deficiencies or suboptimal practices around the
data of AI-based systems. Since data is the foundation for
machine learning models, such antipatterns can substantially
diminish system effectiveness. Many instances in this area
are related to data quality or the existence of data anomalies.
Examples of bad quality are data duplication [P7,P9,P15,P16],
null/missing data values [P7,P9,P15,P16], or data miscoding
smells [P3,P7,P15,P21], where an attribute is represented with
an unsuitable data type or format. Similarly, examples for
anomalies in machine learning data can be an unnormalized
feature [P7,P21], where values exhibit large variance, or very
few extreme outliers [P7], which may distort important aggre-
gate values used by models. While of both these subcategories
can also be important for data-intensive non-AI systems, these
antipatterns have been specifically described in the AI context.

Data relevance is another mentioned property that can be
subject to antipatterns. Selected examples are the emphasis on
available data [P14] or the usage of overcurated data [P19],
both of which can lead to training/serving skew.

One of the larger subcategories focuses on data management.
Since it can be quite complex in some cases, an undocumented
data collection process [P16] may negatively affect the long-
term evolution of an AI-based system. Similarly, premature data
aggregation [P15] during this collection process can destroy
important data points that cannot be retrieved again. A third
example, which is frequently mentioned, is unsound/missing
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metadata [P6,P15,P16], i.e. a suboptimal or absent documenta-
tion and schema to describe the used data.

Lastly, a smaller subcategory is related to data dependencies.
An example here is unstable data dependencies [P3,P10,P11].
Consuming data from other systems as input signals for model
features may initially speed up development. However, if
the external data is unstable and changes over time, these
dependencies can have negative and hard to diagnose effects
on the related ML component.

Design & Architecture Antipatterns. We also extracted eight
antipatterns related to the design and architecture of AI-based
systems. While it is one of the smaller categories, it contains
several frequently mentioned antipatterns. An example related
to modularity is undeclared consumers [P3,P11,P20], i.e. if the
results of an AI component serve as input for a broad range
of other systems or components. These undeclared or silent
consumers constitute hidden coupling, which can have negative
and obscure side effects during software evolution. Similarly,
an antipattern where, instead of the output, the complete
model is reused and slightly altered is called correction
cascades [P3,P11,P14]. Changes in the original model then may
lead to unintended ripple effects cascading to the “corrected”
downstream models. In [P14], this is also described with the
improper reuse of complete AI components or pipelines.

A second type of antipatterns is concerned with software
integration. The prime example here is glue code [P2,P3,P17].
AI-based systems are often built with many generic packages
or components, which are then connected with custom code,
e.g. for data transformation or reading and writing data.
This not only makes it difficult to keep an overview of the
system but glue code may also tightly couple the system to
specific external libraries. In the area of data collection and
preparation, a specialized version of glue code is called pipeline
jungles [P3,P17], i.e. the same stitching together but more on
an architectural level and with ML pipelines.

Finally, a small subcategory regards technology adoption.
An example, not fully AI-specific, but still mentioned as a
consequence of the nature of AI systems, is the multiple-
language smell [P3,P8,P17]. While using Python or R for ML
models, and other languages for non-ML components, may
enable using the best frameworks or libraries for the task at
hand, it also entails disadvantages in maintaining, testing, or
handing over a component to colleagues.

Code Antipatterns. We generally identified two subcategories
of code antipatterns: those specific to AI-based systems and
generic ones that occur more frequently in these systems. A
frequently mentioned AI-specific example is dead experimental
codepaths [P3,P12,P17]. The influence of data science leads
to an iterative and experimental development process for AI
components, where several conditional branches exist, which
increase complexity and may also be forgotten, resulting in
dead code. Examples of generic code antipatterns which occur
more frequently in AI software are long lambda functions or
long ternary conditional expressions [P13].

Infrastructure Antipatterns. We also identified a small
number of antipatterns related to the infrastructure of AI-based

systems. The most prominent example from this category is
weak or missing monitoring [P1,P2,P4]. Using AI components
leads to additional observability requirements, e.g. monitoring
data sources or model accuracy to detect training/serving skew.
Moreover, the black-box nature of AI components can make
it difficult to perform root cause analysis without specialized
tooling. Another infrastructure antipattern is hence weak or
missing debugging [P1]. As a last example, inadequate con-
figuration management [P12] describes missing or suboptimal
tooling mechanisms to manage important model configuration,
e.g., features, preprocessing settings, or hyperparameters.

Ethics Antipatterns. The last smaller category of antipatterns
is concerned with ethical issues in AI-based systems. The
obvious example are biased models [P4,P17], i.e. models that
have been created based on incomplete or irrelevant data or
with a prejudice-inducing algorithm or process. Such models
not only produce inaccurate but also unfair results, which
depending on the use case can have substantial negative societal
effects, e.g. with predictive policing or recidivism models. For
such usage scenarios, it is especially important to measure
and control the consequences of the respective AI system.
Failing to do so is described by the antipattern unmanaged
social impact [P14]. A final example in this category is
undefined human accountability [P14], i.e. when the role and
responsibility of humans in AI-supported decisions is not
clearly documented, allowing people to hide behind a machine.

Main findings (RQ2): We extracted 72 unique antipat-
terns in six categories. Largest categories are model
(29) and data (22). Design & architecture only consists
of eight antipatterns, but many of them occurred several
times. The antipattern which was mentioned the most
is training/serving skew (6).

C. Solutions (RQ3)

From the 21 primary studies, we identified 46 unique instances
of solutions. Out of these, about a third of the instances
explicitly mentions a TD type, another third mentions an
antipattern, while the remaining third does not mention any
specific TD type or antipattern addressed. In particular, the
last group contains advices of broad and generic nature
(e.g. perform extensive testing [P4]) and specific methods
typically implemented in a tool or framework (e.g. Data Quality
Advisor [P9]). Given the difficulty in categorizing solutions
using a single dimension (TD type, antipattern, or specificity
level), we focus instead on discussing the five solutions that
are most referenced in our primary studies (Table III).

Manage model configuration prescribes that configuration
changes in AI applications should be tracked, reviewed, and
possibly tested in the same way as code [P12]. In this line,
a suggested good practice is to externalize the configuration
options from the code and to maintain them in human- and
machine-readable files [P13]. Use clear component and code
APIs relates instead to reducing design and architectural debt
by encapsulating AI functionality in software components with
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TABLE III
MOST REFERENCED SOLUTIONS (OCCURRED IN AT LEAST 2 SOURCES)

Solution Name # of Sources Sources

Manage model configuration 3 [P8,P12,P13]
Use clear component and code APIs 3 [P3,P5,P17]
Remove unnecessary features 2 [P3,P17]
Refactor the code 2 [P10,P13]
Monitor deployed models 2 [P1,P8]

clear required and provided interfaces [P5,P17]. At the code
level, wrapping black-box packages into custom APIs can
address the glue code antipattern [P3]. Remove unnecessary
features prescribes to reduce model debt by periodically
examining if all input features of a model are still needed [P3],
e.g. with so-called “leave-one-feature-out evaluations”. Addi-
tionally, new features should not be introduced if they do not
significantly contribute to the prediction performance [P17].
Refactor the code is a straightforward and generic solution
to deal with design and code debt, e.g. in the form of code-
related antipatterns [P13]. While this is a general best practice,
AI-based systems require collaboration with expert developers
when refactoring is needed, e.g. to boost performance or re-
implement complex ML algorithms [P10]. Finally, monitor
deployed models suggests that ML models and their prediction
performance should be closely monitored after deployment,
e.g. to identify and address training/serving skew [P1,P8].

Main findings (RQ3): We extracted 46 unique solu-
tions. The solutions either explicitly address a TD type
or an antipattern, or present a general best-practice to
resolve TD in AI-based systems. The most referenced
solutions are manage model configuration (3) and use
clear component and code APIs (3).

V. THREATS TO VALIDITY

Several limitations have to be mentioned for our study. Internal
validity is influenced by the applied scientific rigor and
potentially hidden confounding factors, both of which may
impact the consistency and correctness of the results. Since
selection, extraction, and synthesis activities of an SMS may
rely partially on subjective interpretation, they may be prone to
researcher bias. Although we diligently designed and adhered to
our SMS protocol and always assigned at least two researchers
to each paper, other researchers may have achieved slightly
different results with our protocol.

External validity is concerned with the generalizability of
the results. With 21 final papers, our SMS can be regarded
as comparatively small, which indicates that research on this
topic is just getting started. Moreover, many of our primary
studies directly reference Sculley et al. [P3] and build on their
findings. The majority of publications from industry is also from
large software enterprises like Google, Amazon, or Microsoft.
Several results of our study are therefore heavily skewed
towards Internet-scale ML systems. As a consequence, reported
facets of TD types or the relevance of certain antipatterns may

slightly differ in other AI contexts.

VI. CONCLUSION

In this paper, we aimed at characterizing the notions of
TD and antipatterns for AI-based systems by performing a
systematic mapping study. Our research questions focused
on both established and new types of TD in these systems,
but also on reported antipatterns and solutions. We identified
four new TD types emerging in AI-based systems (data,
model, configuration, and ethics debt) and observed that several
established types (e.g. infrastructure, architectural, code, and
test debt) are frequently occurring, although their scope was
extended to include AI-specific aspects, e.g., the management
and monitoring of both AI pipelines and models to mitigate
infrastructure debt. We also identified and categorized 72 unique
antipatterns, the majority of which relate to data and models.
Finally, we identified 46 solutions that can be used to reduce
or prevent debt accumulation in AI-based systems.

For industry, our results can support AI/ML professionals
to better communicate aspects of TD present in their systems,
to raise awareness for common antipatterns, and to identify
solutions to address both. From a research perspective, our
contribution provides an encompassing overview and char-
acterization of TD and antipatterns that can emerge in the
development of AI-based systems. This study may also serve
as a foundation for future research that both deepens our
understanding of particular AI debt types and proposes more
elaborate solutions to address them. In this respect, we see
potential for follow-up grey literature or interview studies in
this area, as well as the development of tools and techniques
to identify, address, or avoid specific AI antipatterns.
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