
Practical Decentralized Attribute-Based Delegation
using Secure Name Systems

Martin Schanzenbach, Christian Banse and Julian Schütte
Fraunhofer AISEC, Germany

Garching near Munich, Germany
{schanzen,banse,schuette}@aisec.fraunhofer.de

Abstract—Identity and trust in the modern Internet are
centralized around an oligopoly of identity service providers
consisting solely of major tech companies. The problem with
centralizing trust has become evident in recent discoveries of
mass surveillance and censorship programs as well as infor-
mation leakage through hacking incidents. One approach to
decentralizing trust is distributed, attribute-based access control
via attribute-based delegation (ABD). Attribute-based delegation
allows a large number of cross-domain attribute issuers to be used
in making authorization decisions. Attributes are not only issued
to identities, but can also be delegated to other attributes issued
by different entities in the system. The resulting trust chains can
then be resolved by any entity given an appropriate attribute
storage and resolution system. While current proposals often fail
at the practicability, we show how attribute-based delegation can
be realized on top of the secure GNU Name System (GNS) to
solve an authorization problem in a real-world scenario.

Index Terms—attribute-based delegation, decentralisation,
name systems

I. INTRODUCTION

Communication paradigms are shifting from centralized
client-server architectures to decentralized communication be-
tween interconnected devices and services. Trends like the
Internet of Things (IoT) or technologies like Blockchain are
only some examples in which peers directly interact with each
other across trust boundaries, as opposed to traditional content
mediation by central trusted services. The decentralization of
communication and the diversification of trust domains comes
with major challenges on identity and access management
(IAM).

In traditional centralized architectures within a single trust
domain, IAM is well understood and various solutions are
available. They typically consist of a trusted party that man-
ages authentic descriptions of entities in the system. This
information serves as the trusted foundation for access control
models all built on the assumption that attribute information
is managed by a central trusted instance. In decentralized
architectures, this assumption does not hold any more, as there
is no central authority with ultimate trust that would be able
to manage attributes and guarantee their authenticity.

The architectures we see in today’s applications often try to
build around this problem rather than solve it. One workaround
is to introduce a central trusted third party that is responsible
for managing attribute information, although it might not be
needed from an architectural point of view. The negative
consequences are impressively demonstrated by the growing

number of platform “silos” in the IoT where originally decen-
tralized architectures are turned into centralized closed worlds
of platform vendors. Besides the fact that such centralization
is not economically desirable, as it prevents the creation
of truly interoperable and open systems, it has a massive
impact on users’ privacy. A central identity provider keeps
all attributes of all entities in the system, is aware of any
user activity and is thereby able to apply behavioral analysis.
Most web-based applications today rely on only two identity
providers, namely Google and Facebook [1], which creates
a de facto oligopoly of omniscient central parties. Another
workaround is identity federation, i.e. the attempt to make
IAM systems of multiple trust domains interoperable with each
other. Examples are cross-certification of certificate authorities
in a PKI or protocols like SAML for exchanging identity
information between domains. While this approach generally
works, it comes at significant overhead costs and still does not
address privacy problems of central identity providers.

Alternative approaches for a decentralized management
of attributes have been proposed in literature before, using
attribute-based delegation (ABD) [2]–[4] – a technique to
delegate individual attributes from one principal to another
in a decentralized way. ABD has been shown in prior re-
search [5], [6] to be a suitable solution to model complex,
decentralized trust relationships. Access control based on
delegated attributes eliminates the need for a central IdP and
allows for scalable, decentralized administration of attributes
and, consequently, authorization. Standardized authorization
frameworks such as UMA could benefit from ABD-based
policies, allowing trust relationships to exceed the boundaries
of the UMA server. However, research on ABD has so far
been mostly theoretic and left questions, such as the practical
applicability, out of scope.

In this paper, we build upon the existing concept of ABD
and present a practically usable, decentralized authorization
system. Specifically, we extend existing ABD schemes and
show that their implementation can be achieved efficiently on
the basis of existing secure name systems, which, by their
nature, provide the capabilities and security properties required
for ABD schemes.

In summary, this paper makes the following contributions:

• The finding and argumentation that secure name systems
can be used as a basis for ABD schemes

ar
X

iv
:1

80
5.

06
39

8v
1 

 [
cs

.C
R

] 
 1

6 
M

ay
 2

01
8



• Design of a practical, decentralized ABD system based
on a secure name system

• Implementation of a prototype on top of the GNU Name
System (GNS) for a real problem scenario

To the best of our knowledge, we are proposing the first
practically usable system for decentralized, attribute-based
delegation.

II. RELATED WORK

In this section, we discuss existing approaches to attribute-
based delegation including some of their shortcomings. Ac-
cording to Lee et al [6], authorization in decentralized envi-
ronments can be categorized in distributed proof and trust
negotiation techniques. ABD systems are distributed proof
techniques.

One example for an ABD system is the Simple Distributed
Security Infrastructure (SDSI/SPKI) [7] by Rivest et al. In
SDSI, authorization is obtained when a collection of user
attributes is in compliance with a requested resource security
policy. SDSI implements ABD by defining credentials as
authorization certificates called auth certs. In SDSI, A.a→ B
denotes that an issuer with public key A grants the attribute a
to the subject with public key B. B may itself act as an issuer
and further delegate the attribute a. In addition to the attribute
delegation, SDSI allows for the controlling of the depth of
delegation, limiting the number of times an attribute may be
delegated. For chain discovery, Clarke et al [4] have proposed
an algorithm that treats a delegation as a “rewriting” rule
and discovery as a term-rewriting problem. Term-rewriting is
performed until no more rewriting rules can be applied or an
attribute that satisfies a policy is found. However, the algorithm
relies on the availability of a complete set of attributes prior
to chain discovery. In the case of changes in the context of
the system and revocation or expiration of the credentials,
the chain-discovery algorithm may not be deterministic. This
is a requirement that is rather difficult to ensure in practice,
especially in distributed scenarios. It is much more likely that
small subsets attributes and credentials need to be resolved
and verified on demand to make authorization decisions.
Resolution and distributed storage of attributes and credentials
is considered out of scope in SDSI.

Li et al [8] proposed an authorization mechanism based on
ABD as well as a trust management language called RT0.
It allows one to express different types of credentials as
attributes. All credentials can be represented in a credential
graph. Finding a path in a credential graph is equivalent
to finding a credential chain as a proof of authorization.
A.a ← B.b is an example of a credential in RT0. It also
supports SDSI delegations, since the auth certs in SDSI can
be translated into RT0 with the exception that the arrows are
reversed in the notations. There are four different types of
attribute delegations:

A.a←B (1)
A.a←B.b (2)
A.a←B.b.a (3)

A.a←
n⋂

i=1

fi (4)

Delegation type 1 is interpreted as “A calls B a”. The type
2 delegation A.a← B.b is interpreted as “All entities that B
calls b are called a by A”. The type 3 delegation A.a← B.b.a
is interpreted as “All entities that are called a by all entities
that B calls b, are also called a by A”. The type 4 delegation
A.a ←

⋂n
i=1 fi is interpreted as “A calls all entities a that

satisfy each fi” with fi being any right-hand expression of
either (1),(2) or (3).

The chain-discovery algorithm to build and traverse a cre-
dential graph proposed by Li et al [9] for RT0 unifies a
backward search from issued attributes to the subjects and
a forward search from subjects to the issued attributes to
a bidirectional search. The authors argue that this approach
finds credential chains even if they allow credentials to be
stored with either issuers or subjects in distributed scenarios.
However, the algorithm guarantees chain discovery only by en-
forcing strict and complex constraints on the credential storage
to ensure what they call “well-typedness”. Additionally, the
worst case time complexity of the algorithm for N credentials
is O(N3).

The above approaches both propose partial solutions to
solve the problem of making authorization decisions in dis-
tributed or decentralized scenarios. In this work, we show
that the existing research in the area of ABD can be used in
combination with secure name systems to create a practically
usable ABD by addressing the issue of delegation storage and
resolution in a decentralized enviroment.

III. SCENARIO

To motivate and demonstrate our approach we present the
following real-world scenario: A startup company wants to
improve the anti-doping process by providing a secure and
privacy-preserving service S to athletes as well as anti-doping
organizations. S allows official doping control officers (DCOs)
to request the current location of an athlete in the field. We
will not address the privacy implications that such a service
must also consider, but focus on the organizational autho-
rization needs in this particular scenario. National anti-doping
organizations (NADOs) are organizations that incorporate and
adhere to the world anti-doping code by the World Anti-
Doping Agency (WADA).

While NADOs can be recognized by WADA for adhering to
the code, there is no hierarchical relationship between them.
NADOs are responsible for organizing and executing doping
tests for athletes in their respective regional domain, but then
often delegate the actual controlling to subcontractors. Note
that although the organizational structure might suggest a hier-
archical relationship between the entities, this does not imply



a central management of authorization attributes. WADA is
neither interested in nor authorized to manage attributes of
DCOs. It may simply assert that a NADO does adhere to
the code. One might be tempted to resort to traditional PKIs
and use NADO sub-CAs for delegating attribute management
from a central WADA CA to NADOs. However, in particular
X.509 is limited by design to bind a key to a subject in which
the subject is uniquely identified by a globally unique name.
Additionally, it does not directly address attribute delegation
and resolution, making issuing and revoking attributes at
runtime tedious processes. Rather, this scenario highlights the
need for decentralized attribute management: The service S
wants to authorize subjects based on attributes that it delegates
to all entities considered to be DCOs by NADOs. This can
easily be modeled using ABD in a formal way. We use
Li’s notation including the operator ← to denote attribute
delegations. On the left side of the operator, we write the
issuer and the delegated attribute and, on the right side, the
delegation subject expression. Note that according to Li et
al. [9] in a type 3 delegation A.a ← B.b.a the second a
of B.b.a must be the same attribute that is specified on the
left side of the expression. Additionally, it is not allowed to
specify arbitrarily long delegations on the right-hand side of
the expression. However, this limitation is unnecessary and
solely introduced by them to simplify the proposed algorithm.
We can lift this restriction by imposing issuer-side storage
of delegations. Issuer-side storage refers to attributes that are
managed and stored by the issuer itself. The opposite approach
is called subject-side storage, in which the subject manages
and stores the issued attribute. Consequently, delegations in
the form A.a ← B.b1.[...].bn are perfectly acceptable in our
design. We model delegations in the aforementioned scenario
as follows:

S .user ←WADA.nado.dco (1)
WADA.nado← NADA (2)
WADA.nado← USADA (3)
NADA.dco← C1.dco (4)

USADA.dco← USADA.contractor.dco (5)
USADA.contractor ← C2 (6)

C2 .dco← C2.employee ∩
C2.controller (7)

C1.dco← Alice (8)
C2.employee← Bob (9)
C2.controller ← Bob (10)

In (1), the service S delegates the attribute user to all
entities that have the attribute WADA.nado.dco. WADA
itself delegates the attribute nado to all national anti-doping
organizations that adhere to the world anti-doping code, such
as the German “Nationale Anti Doping Agentur” NADA (2)
and the “U.S. Anti-Doping Agency” USADA (3). NADOs

then delegate the attribute dco to their subcontractors. NADA
subdelegates the dco attribute to the contractor C1 (4), while
USADA uses a dynamic attribute contractor (5) to define
all subcontractors that presently have a control assignment
(6). This attribute is revoked or will expire as soon as the
assignment ends. The subcontractors may either delegate the
dco attribute to an attribute expression that is more meaningful
to the contractor (7) or directly assign it to an entity (8).

We can make the observation here that WADA is not
necessarily aware of the delegation in (1) and most likely not
even interested in this information. In traditional, centralized
scenarios, the service S would allow WADA to issue the at-
tribute user on its behalf. However, in decentralized scenarios,
the lack of a trust or organizational relationship between two
parties is more common than not. In this case, the delegations
are always stored with the issuer and never with the subject.
The only time it is reasonable to store a delegation with a
subject, is when this information is useful and meaningful
to the subject itself. For example, the delegations in (8,9,10)
are stored with Alice and Bob, respectively, for two reasons:
First, both Alice and Bob know their employers and are aware
that they are employees. Second, Alice and Bob use this
information regularly to prove that they are actually employees
of C1 and C2, respectively. Based on this observation, we
define two types of attributes in an ABD system: issuer-stored
Delegations (1-7) and subject-stored Credentials (8,9,10).

IV. DESIGN

In this section, we present our design of a decentralized,
attribute-based delegation system on top of a secure name
system. Secure name systems, such as the Domain Name
System (DNS) with Security Extensions (DNSSEC) [10],
namecoin1 or the GNU Name System (GNS) [11], [12], pro-
vide a secure mapping from attributes to resources. Resources
can be publicly queried by all peers, but creation and updates
are only possible by their respective owners. Name systems
are agnostic towards the interpretation of attributes and values
and rather serve as a distributed management and discovery
mechanism.

Name systems consist of namespaces that are owned by
private or legal entities. Namespaces are managed by their
respective owners and contain name-value mappings. We con-
sider name systems as a suitable basis for the implementation
of an ABD system because of the possibility for an owner
to delegate the authority over names to namespaces of other
owners. In the context of ABD, the owner of a namespace is an
“issuer” of attributes or attribute delegations in its respective
namespace.

The owner of a namespace specified as a value in a
delegation is a “subject”. As such, name systems inherently
provide a storage, resolution and delegation mechanism for
issued attributes and their delegations. Name-value mappings
are realized in name systems using resource records. The
content of a resource record is defined by a type, such as “A”

1https://namecoin.info/, accessed 5/19/2017

https://namecoin.info/


for the most common record in the Domain Name System
(DNS): An IPv4 address.

In the following, we present our ABD design using Attribute
Delegation Records, how delegation chains can be resolved
using Delegation Chain Discovery and an authorization flow
using ABD. Finally, we briefly discuss attribute revocation as
well as security and privacy implications of different secure
name systems.

A. Attribute Delegation Records
We introduce a special resource record type “ATTR” for

attribute delegations and modify the name system resolver
logic to perform delegation chain discovery for such records.
Attribute delegations such as A.a ← e as introduced in
Section III are mapped into a namespace as follows: A is
a namespace owned by an entity and a is the name of a
record in A. The value of the record contains e, the delegation
expression that defines the namespaces that a is delegated to.
To support all four kinds of attribute delegations, our record
contains an appropriate data structure to hold any attribute
expression e in a delegation A.a← e.

Specifically, we define the value of an “ATTR” record to
contain one or more entries in a delegation set. A delegation
set entry consists of a subject namespace B as well as a set
of attributes and is used to represent delegation types 1-3. To
model delegation types 1-3, a resource record contains a single
entry in the delegation set. A type 4 delegation record contains
a delegation set with n entries, each specifying the respective
required delegation expression A.a←

⋂n
i=1 fi.

While the type 4 delegation constitutes a logical “AND”, a
logical “OR” is not explicitly defined. However, the existence
of multiple delegation records in the same namespace under
the same attribute a implicitly defines this case. In Figure 1a,
the namespaces for our reference scenario are illustrated. The
namespace of contractor C1 does not have any delegations so
it is omitted. Representing a type 1 delegation, the WADA
namespace contains multiple records under the name nado
with a single delegation set entry. The type 4 delegation in
the C2 namespace contains only a single record under the
name dco with two delegation set entries.

B. Credentials
We assume subjects are issued attribute-based credentials

(ABCs) by a variety of issuers including employers, email
providers, or nation states. In our design, a subject B has a
set of ABCs CB . Each credential c ∈ CB may be issued by
a different issuer and asserts the user an attribute. In theory,
credentials could be represented as type 1 attribute delegations.

However, this is disadvantageous for two reasons: First, by
having all credentials in the delegation system it is possible
for anybody to enumerate all entities that have credentials for
a specific attribute. Second, we want our system to support all
kinds of credentials, including privacy-preserving, attribute-
based credentials (PP-ABCs), such as [13] or [14], that can-
not be persistently stored and have to be presented online.
Therefore, our design is agnostic to the representation of the
credential.

C. Delegation Chain Discovery

To confirm that an issuer delegated an attribute a to an entity
B, a delegation chain must be discovered. A valid chain can
be found if B holds a set of credentials CA.a ∈ CB that
allows one to build a delegation chain DA.a,B from an issuer
namespace A and attribute a to CA.a.

Finding a delegation chain can only be guaranteed if all
attribute delegations d ∈ DA.a,B are resolvable and B is in
possession of an appropriate set of credentials CA.a. We define
the resolver function resolve(l, N, t) that is used to resolve
resource records of type t under the name l in the namespace
N . A call to resolve(a,A, “ATTR”) will return the resource
records representing all issued attribute delegations A.a ← e
as delegation sets. Each expression e in the delegation sets
is checked against the issued attributes in the set of subject
credentials CB . If we have found a valid delegation chain
from the original attribute to a credential subset CA.a, we
have verified that the attribute A.a is delegated to B. Our
algorithm is a combination between SDSI-style rewriting and
the backward resolution of a delegation graph in Li’s approach
for RT0. However, as we enforce issuer-side storage by
defining delegations in the issuer namespace, we do not require
the more complex unified approach by Li that uses backward
and forward search of the delegation graph.

To resolve a delegation DA.a,B using a name system, the
namespace of the issuer and the attribute to look up must be
known in advance. For an initial attribute A.a the name to
look up is a in the namespace A. We define A.a as the root
node and all resolved delegation expressions e found under
A.a as children of A.a in the delegation graph. From then on,
we follow a rewrite-resolve-check pattern until we can match
a credential against a delegation subject. If a resource record
containing a delegation set with a single entry is resolved, the
expression e is of type 1-3. Otherwise, it is of type 4. In both
cases, we use SDSI-style rewriting rules [4]:

For a type 1-3 delegation e := B.b1.b2.b3...bn we per-
form a lookup query using only the leftmost attribute b1
and we rewrite the resulting expressions from a call to
resolve(b1, B, “ATTR”) by appending b2 through bn. This
leads to a reduction of the original delegation expression if
the query returns a type 1 delegation or an enlargement for
a type 3 delegation. In the case of a type 2 delegation, the
expression complexity does not change. For a type 4 delegation
e :=

⋂n
i=1 fi we process each fi like type 1-3. Rewriting a

type 4 delegation set is simply a matter of rewriting every
delegation set entry individually.

The rewritten delegations are added as children of e in the
delegation graph and checked against the subject credentials.
The process continues iteratively until a matching set of
credentials is found that allows us to backtrack the delegation
graph to A.a. When we backtrack the delegation graph and
encounter a node that holds a type 1-3 delegation, it is verified
that the delegated attribute has a path to a set of subject
credentials and we can continue backtracking. If we encounter
a node representing a type 4 delegation, we have to make sure



(a) Namespaces. (b) Delegation graph.

Fig. 1. Delegations in the reference scenario from S.user to Bob.

that every fi in the node is satisfied by a set of credentials
before we can continue.

Figure 1b illustrates a delegation chain discovery for our
scenario described in Section III and the namespaces in
Figure 1a: (1) S.user is resolved to a single record with
the delegation set entry WADA.nado.dco, a type 3 dele-
gation. (2) WADA.nado resolves to two records contain-
ing one delegation set entry each: NADA and USADA.
The rewritten expressions NADA.dco and USADA.dco are
added to the graph. (3) NADA.dco resolves to a record
containing the delegation set entry C1.dco. Bob does not
have a credential to satisfy this delegation. (4) USADA.dco
resolves to USADA.contractor.dco. The dynamic attribute
USADA.contractor resolves to C2 leading to C2.dco.
(5) C2.dco resolves to a single record containing two
delegation set entries representing the type 4 expression
C2.employee ∩ C2.controller. (6) Bob has the cre-
dential C2.employee that matches the delegation set entry
C2.employee. The graph is backtracked but the delegation
set containing C2.controller is not yet fulfilled. Bob’s cre-
dentials are checked against C2.controller and the credential
C2.controller ← Bob satisfies the delegation set in (5). (7)
The delegation graph is backtracked further until S.user is
reached and the delegation chain is successfully discovered in
(8).

D. Authorization using Attribute-Based Delegation

While we have established how attribute delegations can be
resolved and verified above, we now introduce a protocol to
actually authorize subjects to access resources protected by
policies containing delegated attributes. We define a resource
r to be protected by a policy P that specifies a set of attributes.
A verifier V can perform attribute-based authorization of
a subject that requests access to r. To do so, the verifier
initially retrieves P by querying a policy storage. We define
the attribute issuer for all attributes x ∈ P to be the verifier
V . The verifier is initially unaware as to which credentials the
subject must provide to satisfy P . At the same time, the subject

is initially not aware of what attributes are required by P to
access r. Our simple authorization protocol with delegation
chain discovery is illustrated in Figure 2.

(1) The subject S tries to access the resource r.
(2) To retrieve the access policy P for the resource r, V uses

a function getPolicy. Afterwards, V sends a response
containing the policy P .

(3) S uses a function collect that finds subsets CV.x of the
subjects credentials CS that satisfy the attributes x ∈ P .
S sends the set CP :=

⋃
x∈P CV.x to the verifier.

(4) We define a function verify that uses delegation chain
discovery to verify that a delegation chain D exists for a
set of credentials to an attribute. V uses this function to
confirm that a delegation chain DV.x can be found for all
x ∈ P using CP . Access is granted only if all delegation
chains can be found.

E. Revocation

Revocation of a delegation is achieved by having the re-
spective issuer revoke the attribute name that points to it in
the name system. A name in the name system can only be
resolved if it exists and is not expired. Attribute delegations
must be treated in the same fashion. Whenever an issuer wants
to remove an attribute delegation, he must delete the respective
records from his namespace. It is also important that attribute
delegations must have a set expiration date. Distributed name
systems tend to cache records in the network until they expire.
Even if a record is deleted by the namespace owner, it might
still linger until caches are purged or the record has expired.
Records may have relative expiration times that can be set to
a short duration. Such records will be automatically renewed
after they have expired in the owner’s namespace.

Revocation of credentials is not directly related to the
name system. Depending on the used attribute-based credential
system, revocation is performed by the issuer and revocation
checking must be performed by a verifier to ensure that a
provided set of credentials is still valid.



Fig. 2. Authorization with delegation chain discovery.

F. Security and Privacy

While, theoretically, all name systems are suitable for
attribute-based delegation as discussed above, practically only
name systems with strong security guarantees are reasonable
choices when actually building such systems in practice. An
attribute delegation A.a ← e must be verifiably issued by
the owner of A and be resolvable as such. An insufficiently
resilient name system might be subject to denial of service
attacks rendering the ABD systems useless. Also, bulk col-
lection and enumeration of attribute delegations is unwanted,
as it exposes organizational and/or trust relationships. For this
reason, we will take a brief look at secure name systems and
their properties. We limit our discussion to three designs that
represent three different approaches to secure name systems:
namecoin, a blockchain-based name system, the GNU Name
System (GNS) and DNSSEC, the security extensions for the
Domain Name System. We look at namecoin and GNS because
they offer protection against attacks such as client observation
on the network and operator level as well as censorship and/or
legal attacks [15]. DNSSEC, on the other hand, is the most
widely adopted secure name system. In general, properties of
secure name systems include:

a) Integrity: The integrity of records in a namespace
can be ensured by having the namespace owner provide a
digital signature along with the resource records. All three
name systems follow the same approach.

b) Availability: Record availability is addressed in name-
coin by having all records replicated by all participants. How-
ever, Blockchain-based decentralized protocols are still prone
to various attacks [16], [17]. DNSSEC relies on the distributed
design of redundant DNS servers as well as caching. GNS
stores records redundantly via replication in a Distributed Hash
Table (DHT) and also uses a response caching mechanism to
ensure availability.

c) Privacy and Confidentiality: Records are usually not
considered confidential in a name system as its primary use-

case is resource discovery. As such, namecoin and DNSSEC
do not protect the contents of resource records or namespaces
in any way. The blockchain-based design of namecoin in
particular makes this property hard to satisfy, as all information
is redundantly stored by all participants while DNSSEC suffers
from a design weakness that results in a privacy issue regard-
ing namespace enumeration2 that was fixed only recently [18].
GNS, however, has a feature called query privacy that protects
against namespace enumeration and also ensures the confiden-
tiality of records under certain circumstances.

V. IMPLEMENTATION

In the following, we discuss the details of our ABD proto-
type implementation on top of GNS. It is a DHT-based name
system built on the GNUnet peer-to-peer framework3. The
underlying DHT provides reasonable performance, censorship
resistance as well as some anonymity properties [19]. The
design of GNS is inspired by SDSI and allows namespace
owners to delegate authority over names in local namespaces
to other participants. We have found GNS to be the best match
for an ABD system, as it has the strongest attacker model of
all name systems that the authors are aware of. Namespaces
in GNS are uniquely identified by a public-private key pair
(P, x) and referred to as identities of the owner.

Creating a delegation to another namespace is effectively
creating a direct trust-relationship. Trust in GNS is established
out-of-band through a key exchange. Records in a namespace
that is not trusted directly can be resolved if there is an
indirect, delegated trust path to that namespace.

A. Architecture

To realize our proposed design on top of GNS, we have
implemented a GNUnet service that is divided into three com-
ponents: The Delegation Resolver, the Delegation Manager

2https://dnscurve.org/espionage2.html, accessed 12/27/2016
3https://gnunet.org/gns, accessed 2/9/2017



Fig. 3. Scenario overview.

and the Credential Manager. Each component reflects one or
more functional parts of our design. All participants in the
ABD system run a GNUnet peer, including our ABD service
components. While all participants require the Delegation
Resolver functionality, only verifiers require the Delegation
Manager to manage attribute delegations, and only credential
subjects and issuers require the Credential Manager for the
issuance and storage of attribute credentials. The functionality
of all components is exposed in REST APIs.

a) Delegation Resolver: This component includes the
functionality for credential collection and chain verification
as discussed in Section IV-D. The delegation chain discovery
algorithm uses GNS to resolve delegations.

b) Delegation Manager: The addition and removal of
attribute delegations between GNS identities is implemented
in the Delegation Manager component. In particular, it is used
to manage “ATTR” delegation records that are persisted in the
local namespace of the delegation issuer. The GNS service
component periodically and automatically publishes those in
the DHT. Only then are the delegations resolvable by other
participants.

c) Credential Manager: While our design allows us
to use any kind of attribute-based credential, the Credential
Manager enables users to issue simple credentials in our
prototype implementation. A subject manages his credentials
locally in a namespace using credential records with type
“CRED”. Credentials records contain the credential issuer
public key, the subject public key, the expiration date, the
attribute that is asserted as well as a signature. Credentials
created using the Credential Manager are transferred to the
subject in a JSON format. The JSON credential is converted
by the subject’s Credential Manager to a credential record and
stored in a local namespace.

B. Authorization Protocol

The authorization protocol introduced in Section IV-D is
implemented on top of the system proposed by [20]. It allows
a relying party (RP) to securely request attributes from a user
and verify his identity at the same time, which is similar to an
OpenID-Connect authorization flow [21] but without a trusted
identity provider. However, in the original design, the attributes
that are provided by the user are not asserted by any third party.

We use the protocol to allow an RP to request delegated at-
tributes that are required in a policy P . For this, we extend the
implementation to allow the user to present sets of credentials
in an authorization response. The response allows the RP to
verify that the user is in possession of credentials that assert
him a certain attribute through delegation. Our modifications
to the protocol are minor in that we simply redefine the
interpretation of a requested attribute to be a delegated attribute
by the RP. The response is a JSON Web Token (JWT) that
contains credential sets instead of self-signed attributes. As the
technical basis of the protocol remains untouched, the security
assurances and proofs presented in [20] still hold.

Figure 3 provides an overview of the implemented scenario.
To integrate the scenario into our implementation, we set
up five GNUnet peers. On each peer we created an identity
that represents one of our entities including the service S,
WADA, USADA, C2 and Bob. We set up all delegations
as defined in Section III for each respective identity by using
the Delegation Manager. We implemented a simple credential
issuing website that allows Bob to retrieve credentials issued
by C2 using the Credential Manager. Further, we created a
demo website that represents the service S that wants to
provide restricted functionality to DCOs. This service initiates
the authorization protocol and uses the Delegation Resolver for
attribute verification.



VI. CONCLUSIONS

We argue that most of today’s distributed applications
unnecessarily rely on central trusted identity providers that
require ultimate trust by all parties and amass piles of private
information, including attribute values and activity profiles.
In this paper, we show that such trusted third parties can
be replaced by decentralized attribute-based delegation (ABD)
mechanisms that have been proposed by other authors before
at mostly theoretical levels.

Our contribution is the continuation of their work and the
transfer into a real-world use case by means of designing and
implementing a practical ABD system. In particular, we point
out that secure name systems provide a suitable basis for the
implementation of ABD systems due to the inherent feature
of authority delegation, and argue that systems like GNS,
which are designed against strong attacker models and feature
security properties like query privacy, are most suitable for
realizing ABD systems. We show how all necessary features
of an ABD system can be implemented on top of the GNU
Name System and how the properties of GNS are leveraged
to achieve the security requirements of an ABD system.
The respective implementation4 on top of GNUnet and a
demo application5 can be found online. It is reasonable to
assume that the performance of our ABD system is mainly
influenced by the caching strategy of the underlying name
system, which makes responsiveness of the name system an
important criterion when designing an ABD system. As the
GNU Name System is built on top of a DHT, this is a valid
concern and should be evaluated further.

In future work, we consider enhancing our system with
distributed trust negotiation instead of our basic authorization
protocol, such as the one proposed by Li et al [8]. Additionally,
we are planning on integrating our ABD system into an
authorization framework that uses the UMA protocol for
standardized authorization management and, at the same time,
takes advantage of decentralized storage and evaluation of
ABD-based policies.

ACKNOWLEDGMENT

This work has been partially funded in the project PAR-
ADISE by the German Federal Ministry of Education and
Research under the reference 16KIS0422.

REFERENCES

[1] R. Hamirani, “The landscape of customer identity: Facebook
dominates, payment providers on the rise,” July 2015, http://

[2] M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance checking in the
policymaker trust management system,” in International Conference on
Financial Cryptography. Springer, 1998, pp. 254–274.

[3] M. Blaze and A. D. Keromytis, “The keynote trust-management system
version 2,” 1999.

4https://gnunet.org/git/gnunet.git/tree/src/credential
5https://github.com/schanzen/gnuidentity-example-rp/tree/credential, https:

//github.com/schanzen/gnunet-webui/tree/credentials

www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/, ac-
cessed 2016/02/20. [Online]. Available: http://www.gigya.com/blog/
the-landscape-of-customer-identity-q2-2015/

[4] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest, “Certificate chain discovery in spki/sdsi,” Journal of Computer
security, vol. 9, no. 4, pp. 285–322, 2001.

[5] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust man-
agement,” in Security and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on. IEEE, 1996, pp. 164–173.

[6] A. J. Lee, Towards practical and secure decentralized attribute-based
authorization systems. ProQuest, 2008.

[7] R. L. Rivest and B. Lampson, “Sdsi-a simple distributed security
infrastructure.” Crypto, 1996.

[8] N. Li and J. C. Mitchell, “Rt: A role-based trust-management frame-
work,” in DARPA Information Survivability Conference and Exposition
(DISCEX), 2003, pp. 123–139.

[9] N. Li, W. H. Winsborough, and J. C. Mitchell, “Distributed credential
chain discovery in trust management,” Journal of Computer Security,
vol. 11, no. 1, pp. 35–86, 2003.

[10] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Dns security
introduction and requirements,” Internet Requests for Comments, RFC
Editor, RFC 4033, March 2005, http://www.rfc-editor.org/rfc/rfc4033.
txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4033.txt

[11] M. Wachs, M. Schanzenbach, and C. Grothoff, “On the feasibility of
a censorship resistant decentralized name system,” in Foundations and
Practice of Security. Springer, 2014, pp. 19–30.

[12] ——, “A censorship-resistant, privacy-enhancing and fully decentralized
name system,” in Cryptology and Network Security. Springer, 2014,
pp. 127–142.

[13] J. Camenisch and E. Van Herreweghen, “Design and implementation
of the idemix anonymous credential system,” in Proceedings of the 9th
ACM conference on Computer and communications security. ACM,
2002, pp. 21–30.

[14] C. Paquin and G. Zaverucha, “U-prove cryptographic specification v1.
1,” revision 3. Technical report, Microsoft Corporation, Tech. Rep.,
2013.

[15] Christian Grothoff, Matthias Wachs, Monika Ermert, and Jacob
Appelbaum, “Towards Secure Name Resolution on the Internet,”
in NDSS 2017 DNS Privacy Workshop DPRIV17 ’17, San
Diego, CA, USA, Febuary 26, 2017, 2017, p. 20. [Online].
Available: https://www.internetsociety.org/events/ndss-symposium/
ndss-symposium-2017/dns-privacy-workshop-2017-call-papers

[16] A. Maria, Z. Aviv, and V. Laurent, “Hijacking bitcoin: Routing attacks on
cryptocurrencies,” in Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 2017.

[17] I. Giechaskiel, C. Cremers, and K. B. Rasmussen, On Bitcoin Security
in the Presence of Broken Cryptographic Primitives. Cham: Springer
International Publishing, 2016, pp. 201–222. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-45741-3 11

[18] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and
A. Ziv, “Nsec5: Provably preventing dnssec zone enumeration.” in
NDSS, 2015.

[19] N. S. Evans and C. Grothoff, “R5n: Randomized recursive routing for
restricted-route networks.” in NSS, 2011, pp. 316–321.

[20] M. Schanzenbach and C. Banse, “Managing and presenting user
attributes over a decentralized secure name system,” in Data Privacy
Management and Security Assurance - 11th International Workshop,
DPM 2016 and 5th International Workshop, QASA 2016, Heraklion,
Crete, Greece, September 26-27, 2016, Proceedings, 2016, pp. 213–220.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-47072-6 14

[21] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“Openid connect core 1.0 incorporating errata set 1,” 2014, http:
//openid.net/specs/openid-connect-core-1 0.html. [Online]. Available:

http://openid.net/specs/openid-connect-core-1 0.html

http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
https://gnunet.org/git/gnunet.git/tree/src/credential
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
https://github.com/schanzen/gnuidentity-example-rp/tree/credential
https://github.com/schanzen/gnunet-webui/tree/credentials
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
https://github.com/schanzen/gnunet-webui/tree/credentials
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
https://www.internetsociety.org/events/ndss-symposium/ndss-symposium-2017/dns-privacy-workshop-2017-call-papers
https://www.internetsociety.org/events/ndss-symposium/ndss-symposium-2017/dns-privacy-workshop-2017-call-papers
http://dx.doi.org/10.1007/978-3-319-45741-3_11
http://dx.doi.org/10.1007/978-3-319-47072-6_14
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

	I Introduction
	II Related Work
	III Scenario
	IV Design
	IV-A Attribute Delegation Records
	IV-B Credentials
	IV-C Delegation Chain Discovery
	IV-D Authorization using Attribute-Based Delegation
	IV-E Revocation
	IV-F Security and Privacy

	V Implementation
	V-A Architecture
	V-B Authorization Protocol

	VI Conclusions
	References

