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Abstract—In this paper we present reclaimID: An architecture
that allows users to reclaim their digital identities by securely
sharing identity attributes without the need for a centralised
service provider. We propose a design where user attributes are
stored in and shared over a name system under user-owned
namespaces. Attributes are encrypted using attribute-based en-
cryption (ABE), allowing the user to selectively authorize and
revoke access of requesting parties to subsets of his attributes. We
present an implementation based on the decentralised GNU Name
System (GNS) in combination with ciphertext-policy ABE using
type-1 pairings. To show the practicality of our implementation,
we carried out experimental evaluations of selected implementa-
tion aspects including attribute resolution performance. Finally,
we show that our design can be used as a standard OpenID
Connect Identity Provider allowing our implementation to be
integrated into standard-compliant services.

Index Terms—identity and access management, peer-to-peer,
privacy, decentralisation, name systems, attribute-based encryp-
tion

I. INTRODUCTION

Today, users are often required to share personal data,
like email addresses, to use services on the web. As part
of normal service operation, such as notifications or billing,
services require access to – ideally fresh and correct – user
data. Consider the use case of a user subscribing to a social
networking service. After successful registration and providing
the service provider with an email address, the service uses
it to send notifications such as status updates from friends.
At the time of notification delivery, the service needs access
to the respective email addresses. However, services cannot
interact with users that are offline.

To mitigate this issue, services store user data in a database
upon registration or retrieve it from a third party Identity
Provider (IdP). If the data is stored, it can become stale unless
diligent users continuously update their data. If the data is
retrieved from an IdP, both user and service must be able
to rely on the IdP to provide fresh, authentic attribute data.
Further, the IdP must be be available whenever needed and
ideally does not abuse usage patterns, for example for user
profiling.

Sharing user attributes in the Web today is often done
via IdPs to reduce data redundancy and to give services
access to current, up-to-date information even if the user is
currently offline. The most common approach is to use one
of the two major IdPs: Google or Facebook. Together they

claim over 85% of the identity provider market1. The use of
central service providers allows users to efficiently manage
identity information and control access. The IdP service is
responsible for enforcing access control decisions made by
the user regarding identities and attributes. Consequently, the
IdP has full access and control over the managed user data.
Abuse of this power is theoretically limited by local laws and
regulations [1]. But, they are often ignored or challenged [2]
and centralised service providers are major targets for targeted
advertisement businesses as well as hackers, including govern-
ment actors [6]–[8].

From a security perspective, this setup of omniscient inter-
mediaries is a significant threat to the users’ privacy. Users
must completely trust the IdP with respect to protecting the
integrity and confidentiality of their identity in their interest.
Various breaches of large IdPs such as the ones at Yahoo that
revealed 3 billion user records to the public2 have shown that
these expectations are hard to meet at times. Finally, IdPs such
as Facebook – and for a long time also Google – enforce a
“real-name policy”3. Denying pseudononymous identity can
be considered to be in direct violation to the human right to
be forgotten.

In this paper, we present the design and a reference im-
plementation of reclaimID. We address the issues elaborated
above by not relying on a centralised IdP to serve attributes.
In reclaimID, users manage their attributes in a name system
and can selectively grant other parties access. The name
system ensures that attributes can be accessed asynchronously
whenever needed and provide integrity as well as authenticity
guarantees. Access to attributes is authorized and enforced
through the use of attribute-based encryption (ABE). We
implemented this design using ciphertext-policy ABE and the
GNU Name System [3], [4] to show that it can be practically
realised. Further, we show how reclaimID can be integrated
into a standardised authorization and authentication protocol
in the form of OpenID Connect.

1http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/,
accessed 2017/02/20

2https://en.wikipedia.org/w/index.php?title=Yahoo! data breaches&oldid=
817379693, accessed 2018/01/09

3http://www.businessinsider.de/facebook-changes-to-real-name-policy-2015-12,
accessed 2018/02/06
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Fig. 1: Identity Provider Architectures

II. APPROACH

Traditionally, user attributes are centrally managed at an
IdP and shared using protocols such as OpenID Connect 1.0
(OIDC) or SAML 2.0. Requesting parties4 (RPs), as well as
users, must trust the IdP with respect to availability, integrity,
and confidentiality of attributes. Figure 1a illustrates this setup.

An alternative to maintaining central user databases are
decentralised approaches such as NameID [5]. In NameID,
there is a central IdP service that reads identity information
from the Namecoin name system. Name systems consist of dis-
junct namespaces that contain mappings from human-readable
names to values. NameID equates namespaces with digital
identities. Figure 1b illustrates the subtle difference between
a identity management system with decentralised storage and
traditional IdPs. However, as even in this setup requests are
still relayed over a single IdP, both architectures rely on a
central IdP service that consequently acts as a single point of
failure and is omniscient to all interactions between entities.
NameID additionally does not protect the confidentiality of
information that is stored in Namecoin in any way. This is
rendering the access control that a user may perform in the
process of an authorization pointless.

The integration of identity management with recent name
systems such as Namecoin or GNS has several advantages
such as an out-of-the-box, close coupling of namespaces with
cryptographic identities (i.e. public key pairs). Further, name
systems are not much different from identity management
systems and most of their protocols can be used as a basis.

4In OpenID Connect referred to as “relying party”

Specifically, we observe the following equivalences and differ-
ences between name systems and identity management (IdM)
systems.

1) Namespaces in name systems are equivalent to digital
identities. Namespaces can be defined by or crypto-
graphically associated with a public and private key pair.

2) In a namespace, resource records are self-issued at-
tributes of a user. These are equivalent to attribute names
and values in an IdM system.

3) Retrieving the attribute of an identity is equivalent to a
name query in the respective namespace.

4) Records in the name system can be queried by any-
one. In an identity management system however, the
confidentiality of identity attributes must be protected
according to a user policy, i.e. when using a name system
as the underlying layer of an IdM, such protection must
be added on top.

With our approach, we set out to address the shortcomings
discussed above. By designing a decentralised identity man-
agement system that is user-managed and protects the users
privacy we mitigate the requirement of a central IdP service
that routes all requests. We propose reclaimID, a decentralised
IdP service that provides all typically required functions such
as creation, querying, updates, and revocation of user identities
in a decentralised way. Similar to NameID, we use name
systems as an underlying transport and storage medium. How-
ever, reclaimID does not rely on any centralised component,
as illustrated by Figure 1c. The concept of reclaimID can
be implemented on top of any name system, inheriting most
of its security properties. Additionally, reclaimID includes an



additional authorization layer using ABE on top of the name
system to ensure confidentiality and to enable policy-based
access control of user attributes.

We design reclaimID to satisfy all requirements existing
approaches also satisfy: From a user perspective it must be
possible to manage one or more identities including respective
attributes. Further, the user must be able to selectively manage
third party access to subsets of those attributes. From a
requesting party perspective it must be possible to request
access to attributes of a user. Those attributes must then be
retrievable without a direct communication channel to the user.

A. Security Goals and Threat Model

Our goal is to ensure availability, authenticity, integrity,
privacy and confidentiality of user attributes. The user must
be able to control access to his attributes by selectively
authorising requesting parties. As nation-wide manipulation
of the domain name system, data leaks and the surveillance
of global IdPs are a matter of fact today [6]–[8], our attacker
model must consider an attacker with the ability to collect any
data in transit between all participants, as well as manipulation
of a limited but large number of nodes in the network. We
also assume that the attacker is able to coerce participants
into submission of data they own or have access to. However,
we assume that the attacker is not able to break cryptographic
primitives that are considered secure by the research commu-
nity today. In the following we discuss the security properties
reclaimID aims to satisfy in detail:

Availability By not relying on a centralised service that
serves user attributes and allows the user to manage autho-
rizations, our system provides higher availability guarantees
especially in the face of powerful attackers such as nation
states that may utilise “lawful” interception techniques. One
major drawback of decentralised services with peer-to-peer
connectivity is the possiblity of high user churn, which could
potentially render identity attributes unavailable. This would
be problematic in use cases such as the social network
provider, as the user attributes must be accessible by requesting
parties even if the user is not online. To solve this problem,
our design is based on decentralising the service that allows
users to manage attributes and selectively share them. This
is achieved by storing attributes in a name system where the
user acts as the main authority over the data. User attributes are
stored in a distributed fashion and can be queried even if the
user’s peer is not online. It should be noted that the concrete
availability guarantees heavily depend on the underlying name
system. It is thus important to evaluate available name systems
for an implementation of reclaimID. We discuss name systems
in Section III-H and our particular choice as part of the
implementation in Section IV.

Authenticity and Integrity Users store attributes through
the use of the IdP in a namespace of a name system. We
assume that by doing so, attributes are inherently self-signed
using the private key associated with the identity of the user
that owns the namespace. Requesting parties can thus verify
that the attribute was indeed stored by the user and has not

been modified by any third party by simply verifying the
signature. A more common use case is that a requesting party
requires attributes that were issued by a trusted5 third party.
In the case of Google or Facebook, the IdP is implicity the
trusted issuer of all attributes. Our proposed reclaimID, simlar
to NameID, does not define the form factor of attributes and
the user itself is implicity the issuer of attributes. However, the
use of attribute-based credentials (ABCs) is perfectly possible
in both – for example through the use of X.509 certificates as
attributes.

Privacy and Confidentiality We argue that given cen-
tralised IdP services, an attacker can coerce the service
provider and then has knowledge over all connections between
users and requesting parties. The attacker can learn, for exam-
ple, which services the user accesses over time. Our design
does not directly mitigate this issue as some name systems do
not protect the confidentiality of queries and responses as well
as metadata. Name systems such as Namecoin and GNS can
offer such protection due to built-in “query privacy”. We will
discuss the security properties of selected name systems later.

To generally ensure confidentiality of attributes, we propose
to encrypt them using ABE before they are stored in the
name system. Through the ABE-layer of reclaimID, requesting
parties are issued user keys that only allow decryption of those
attribute subsets that they are authorized to access. We propose
to boostrap an ABE system for every identity. This means that
every user acts as its own, individual key authority, giving him
full and exclusive authority over all user keys and attributes.
This achieves both, confidentiality of user attributes in the
otherwise public namespace of the name system, and fine-
grained access control of requesting parties to these attributes.
Revocation of access rights to attributes is achieved by the
creation of new keys, deletion of the existing attributes and
publication of re-encrypted attributes over the name system. A
further advantage of enforcing access rights cryptographically
through ABE rather than traditionally through a central trusted
IdP is that individually encrypted attributes profit from the
caching implemented in most name systems and significantly
reduce network overhead for the retrieval of attributes (even to
zero, if the cache is local). We note that as our attacker is able
to coerce participants into submission of data this approach
does not protect against the case where an authorized third
party is attacked. However, unlike an IdP, an authorized third
party likely does not have access to all the data of a single
user and cannot observe access patterns of other services.

Another aspect to privacy is that a user might not want
to disclose the attribute value to a requesting party. Instead,
only certain properties should be disclosed. A common use
case is age verification, where a user only wants to disclose
that she is over a certain age. Advancements in the area of
privacy-preseving attribute-based credentials (PP-ABCs) [9],
[10] allow this through the use of interactive zero-knowledge
proofs. In our design the interactivity requirement is not

5trusted by the consumer of the attribute, e.g. the requesting party



acceptable, but recent work in the form of non-interactive zero-
knowledge proofs [11] can be used in reclaimID, if needed.

III. DESIGN

In this section, we present the main design of reclaimID’s
protocols. We show how we combine a name system and
ABE scheme to realise a privacy-preserving, decentralised
IdP. In particular, we answer the question of how users can
grant and revoke authorizations for requesting parties to access
their attributes. Further, we discuss the protocol for authorized
parties to retrieve and decrypt user attributes from reclaimID.
Finally, we elaborate on the impact that the choice of name
system as well as ABE scheme has on an implementation of
reclaimID.

A. Preliminaries

Attribute-based encryption schemes come in the two main
flavours of ciphertext-policy ABE (CP-ABE) and key-policy
ABE (KP-ABE). As our access policies refer only to single
labels in the name system, both variants are likewise suited.
For a first implementation we chose CP-ABE. A thorough
discussion on the various implications of the two types of
ABE schemes and the various existing schemes that exist for
them can be found in Section III-H. For the discussion of
the system’s design, both variants can be considered equally
possible. In the following, we present three major components:
A name system, a CP-ABE scheme and an IdP. We explain
how in reclaimID the first two components are used to realise
the third.

First, we define the high-level functions and procedures and
objects for all components. Let an ABE scheme consist of the
following functions:

SetupABE()→ (mskABE, pkABE)

KeygenABE(mskABE, A)→ skABE

EncABE(pkABE, pt, policy)→ ct

DecABE(skABE, ct)→ pt

(1)

Where mskABE is the master secret key, pkABE the public
parameters key and skABE a derived user key in the ABE
scheme. A is a set of tags, or attribute names that can be
associated with a key skABE using the function KeygenABE().
Here, policy describes the policy that is attached to a ci-
phertext ct. Finally, pt denotes the plaintext message. For
encryption and decryption we define the functions EncABE()
and DecABE(), respectively.

For the name system and IdP, we define pkuser, skuser as the
public and private key pair associated with an identity IDuser.
We define the functions Enc() and Dec() as the asymmetric
encryption and decryption functions for use with the identity
key pair.

Name systems consist of namespaces that are owned by
users or legal entities. Namespaces are managed by their
respective owners and contain name-value mappings. In our
use case, the owner of a namespace is an “issuer” of attributes
in its respective namespace. As such, name systems inherently

provide a storage, resolution and delegation mechanism for
self-issued attributes. Such name-value mappings are realised
in name systems using resource records. In name systems this
mapping must be cryptographically bound to the namespace
owner, usually through digital signatures using public-key
cryptography. Let a name system N consist of the following
procedures

Resolve(IDuser, name)→ R

Publish(IDuser, name,R)

Depublish(IDuser, name)

(2)

R is a record in a namespace and name is a name in a
namespace owned by IDuser. While it may seem odd that a
resolution takes a name and a namespace as argument it is not.
Internally resolvers in a name system always query for names
inside namespaces. It is common, however, that the resolver
has specialised procedures that hide this from the user, e.g. by
performing iterative lookups and segmenting a long name into
multiple labels. The prime example here is DNS, which allows
a user to resolve a “fully qualified domain name” (FQDN)
by iteratively trying to find the authoritative namespace for a
specific label. We assume that in the name system skuser is
used to create a record signature over the data in a record
R in a namespace owned by IDuser. When R is published
using Publish(), the signature is stored alongside the record.
Consequently, we also assume that the record signature is
verified when a record is retrieved using Resolve(). The
respective public key can be used to uniquely identify the
namespace and verify record signatures. A published record
is no longer resolvable after calling Depublish() and the
cached records expire.

Finally, let an IdP consist of the procedures:

Store(IDuser, attribute)

Delete(IDuser, attribute)

Authorize(IDuser, IDrp, attributes)→ ticket

Revoke(ticket)

Retrieve(IDrp, ticket)→ attributes

(3)

The procedures Store() and Delete() allow the user IDuser

to manage attributes. Authorize() is the procedures used to
authorize a requesting party IDrp to access a set of attributes.
This access can be revoked using Revoke(). The requesting
party can use the Retrieve() procedures to access attributes
it was granted access to.

We define an identity attribute as follows:

attribute = (name, value, version) (4)

The name is an attribute identifier, such as “email”. An
attribute also has a value associated with it. The value
may contain arbitrary data associated with name such as
“john@doe.com”. It may also contain more complex data
structures such as credentials issued by third parties. The
details of attribute values, however, are out of scope in our



design. The attribute version is relevant for revocation in the
later sections of this chapter.

The attributes specified in Authorize() and Retrieve()
are a set of attributes. A ticket is a handle of an authorization
that is passed to the authorized requesting party so it can access
the shared attributes. We define a ticket as follows:

ticket = (IDuser, IDrp, names, rnd) (5)

The ticket identities IDuser and IDrp identify the user that
issued the ticket and the requesting party, respectively. names
is the list of attributes that the requesting party is authorized
to access and rnd is a random label under which the user
key skABE for the requesting party is stored encrypted in the
namespace of the identity. This ticket must be transferred in
an initial out-of-band authorization process and is used by the
requesting party to retrieve attribute data.

In the following, we always assume that given an identity,
its public key pkuser and the associated ABE key material can
also be retrieved. If a procedure is called by an identity, we
also assume that we have access to the respective private keys
skuser, skrp and skABE. Before storing the first attribute, a user
must bootstrap an ABE system. In this process, the user creates
an ABE public parameters key pkABE and master secret key
mskABE for one of her namespaces by executing SetupABE().

B. Storage

In reclaimID, the encrypted value of an attribute is stored
inside a resource record R in the name system. By publishing
the resource record under the attribute name the user effec-
tively issued an attribute to her identity. In Algorithm 1 we
define the IdP Store() procedure.

Algorithm 1: Store
input : User attribute a

User identity IDuser

1 policy ← Concat(a.name, a.version);
2 ct ← EncABE(pkABE, a.value, policy);
3 Publish(IDuser, a.name, ct);

First, we use the concatenation procedure Concat() to
build the ABE policy from the attribute name and version.
The resulting policy can be interpreted as “To decrypt the
ciphertext, a key associated with a tag representing the attribute
in the respective version is required”. To create the record data
that is stored in the name system, we encrypt the attribute value
using the ABE encryption function EncABE(). The encrypted
attribute value is published as a record under the attribute name
using the name system function Publish(). We note here that
internally name systems distinguish between different types
of records. We therefore define the record type of records
representing identity attributes to be “ID ATTR”. The record
type does not serve any specific function except from allowing
us to distinguish our records from, e.g. IP addresses. In our
design, all attribute resource records must have this type set.

We also note here that records in name systems expire.
An implementation must make a choice for an appropriate
expiration time that allows to efficiently make use of the
respective caching mechanism in the name system, if any.

C. Authorization

To authorize a requesting party to access a set of attributes,
the user must create an authorization-specific user secret key
skABE using the ABE function KeygenABE(). For skABE to
be used to decrypt the respective attribute records of the shared
attributes it must be associated with a specific set of tags.

There are two ways an authorized party can learn skABE:
Resolving it through the name system or via an out-of-band
exchange, for example using a web-based authorization pro-
tocol. The latter is only possible in “synchronous” use-cases,
i.e. when user and authorized party are both online. In use-
cases where user or authorized party are offline, skABE must
be exchanged via the name system. We define the procedure
for authorization in Algorithm 2.

Algorithm 2: Authorize
input : User identity IDuser

requesting party IDrp

Set of attributes A
Master secret key mskABE

output: A ticket t

1 tags ← {Concat(a.name, a.version) | a ∈ A};
2 skABE ← Keygen(mskABE, tags);
3 ct ← Enc(pkrp, skABE);
4 rnd ←R R;
5 Publish(IDuser, rnd, ct);
6 names ← {a.name | a ∈ A};
7 t ← (IDuser, IDrp, names, rnd);
8 return t;

First, we generate a set of tags that correspond to the
respective encrypted records the requesting party shall be
authorized to access. After the skABE is generated using the
users’ mskABE, it is encrypted using the public key pkrp of
the requesting party. Then, a random label rnd is generated
under which the encrypted skABE is published in the user
namespace. The random label rnd, the user identity IDuser,
the requesting party identity IDrp and the attributes that the
requesting party is authorized to access are assembled into a
ticket t. Updates to skABE, made necessary for example due
to revocations, are published by the user and retrieved by the
requesting party using the same random label rnd. Similarly
to attribute records, we define key records to have a unique
type of “ABE KEY”.

D. Deletion

Removing attributes is not as simple as removing the re-
spective records from the namespace. First, the attribute record
may still be resolvable in the name system until the records
expire and it is purged from the cache. Requesting parties that



are authorized to access this attribute then must be prohibited
from accessing any future incarnations of this attribute. This
is important as to not risk any unwanted side-effects where
unauthorized parties may still be able to decrypt the attribute.
For this, the attribute tag version must be incremented before
a new attribute with the same name is issued. A reclaimID
implemenation must keep track of this state by either keeping
the attribute with an empty placeholder value or by having
a local database that contains the versioning information.
This implementation detail is out of scope of the reclaimID
design and we only define the procedure for deletion itself in
Algorithm 3.

Algorithm 3: Delete
input : User attribute a

User identity IDuser

1 Depublish(IDuser, a.name);
2 a.version++;
3 for each ticket t issued by IDuser do
4 At ← {x | x ∈ A \ a ∧ x.name ∈ t.names};
5 Authorize(IDuser, t.IDrp, At,mskABE);
6 end

The Delete() procedure starts off by de-publishing the
respective attribute record from the namespace and then in-
crementing the attribute version. After, all authorized parties
(i.e. all issued tickets) that have access to this attribute are
re-authorised to access all attributes they had access to before
except the deleted attribute.

E. Update

When the user modifies the attribute value the respective
record in the name system must be updated accordingly.
Naively, it is possible to simply combine a Delete() and a
Store() call. But since we defined the Delete() procedure
to increment the attribute version such an approach would
require the user to reissue all existing ABE keys to the relevant
requesting parties. Consequently, updating the attribute is
simply a call to Store() after updating the attribute value.
This update will only take effect after the identity record
expires and only then will the updated value be resolvable
by authorized parties. As the tag used to encrypt the attribute
does not change, previously authorized requesting parties will
be able to decrypt the updated record data with their existing
keys.

F. Retrieval

To retrieve an attribute a of identity IDuser an authorized
requesting party IDrp must perform a lookup in the name
system. The name to lookup is the attribute name, e.g. “email”.
If the attribute exists, the response from the name system will
contain the encrypted attribute value record R. As elaborated
above, skABE contains a set of tags that allows it to be used in
the decryption of all attribute records that IDrp is authorized
to access. To retrieve skABE, IDrp must first resolve the key

record under the name rnd in the identity namespace of
IDuser. To do so, IDrp must have received the label rnd
out-of-band in a ticket as discussed in the previous section.
Given skABE, the requesting party can decrypt the attribute
value using the CP-ABE decryption function DecABE(). We
formally define the procedure for retrieval in Algorithm 4.

Algorithm 4: Retrieve
input : requesting party IDrp

Ticket t

1 ct ← Resolve(t.IDuser, t.rnd);
2 skABE ← Dec(skrp, ct);
3 for all attribute names n ∈ t.names do
4 R ← Resolve(t.IDuser, n);
5 attribute ← DecABE(skABE, R);
6 end

Note that most name systems allow queries for attribute
records to be executed in parallel, which allows the for-loop
in the Retrieve() procedure to be parallelised.

G. Revocation

We define revocation – as opposed to deletion – as the
process to revoke access of a specific requesting party to user
attributes in reclaimID. Revocation schemes for ABE are often
quite complex and inefficient. In our case we also have to take
into account user key distribution and name system properties.

In fact, the performance impact caused by cryptographic
operations is not as critical in our design for two reasons: First,
regeneration of keys and re-encryption can be done locally in
the background after it is initiated by the user. Second, from
a requesting party point of view, even if access to a particular
attribute is revoked there was a time in past where access was
granted. So, revoking access on currently accessible data is
not important in our design.

Revocation of access in reclaimID is used to prevent the
decryption of an attribute record using a specific user key
skABE of a requesting party. Any attribute that the requesting
party was authorized to access at any time in the past was most
likely already retrieved and possibly even persisted locally.
Consequently, it is not a goal to revoke access to the current
attributes that were already published. The primary goal is to
prohibit a requesting party from continuously accessing up-to-
date attribute information in the future.

Our revocation scheme is enforced through attribute ver-
sioning. As elaborated in the previous sections, an attribute
record is encrypted using a tag that is a concatenation of the
attribute name and version. When access of a requesting party
to an attribute is revoked, we simply increment the attribute
version. Then, we again publish the encrypted attribute value
to the name system.

Any other requesting parties also authorized to access
the same attribute must be issued new user keys containing
updated tags. The updated keys are published under the same
respective labels rnd and can be resolved if needed. Using



this approach we can limit the amount of re-generated user
keys to the number of requesting parties that share one or
more attribute authorizations with the requesting party that
had its access revoked6. Another advantage of this approach
becomes evident when taking the first authorization of an RP
into account: Initially, it suffices to create a new user key
with the current attribute versions and transfer it to the RP.
As the ciphertext does not need to be updated in this case,
the attribute records currently in the name system can then
instantly be decrypted by the RP. We define our Revoke()
procedure in Algorithm 5.

Algorithm 5: Revoke
input : A ticket trp issued to RP

1 for each attribute a of trp.user do
2 if a.name ∈ trp.names then
3 a.version++;
4 Store(trp.IDuser, a);
5 end
6 end
7 for each ticket t 6= trp issued by trp.IDuser do
8 if ∅ 6= t.names ∩ trp.names then
9 At ← {a | a ∈ A ∧ a.name ∈ t.names};

10 Authorize(t.IDuser, t.IDrp, At,mskABE);
11 end
12 end

H. Implementation Considerations

As mentioned above, the concrete choice of ABE and name
system used in an implementation partially determines the
security properties of reclaimID. In the following we discuss
the most important aspects that are relevant and must be
considered by implementers.

1) Name System: While theoretically all name systems
are suitable for our design, practically only name systems
with strong security guarantees are reasonable choices for
building a decentralised IdP. An insufficiently resilient name
system might be subject to denial of service attacks, rendering
the IdP useless. Also, bulk collection and enumeration of
attributes is unwanted, as it exposes organizational and/or trust
relationships.

Grothoff et al. [12] have categorized state of the art name
systems according to their security properties including in-
tegrity and availability with respect to strong attacker models.
According to the study, Namecoin and GNS exhibit security
properties absent in most other name systems, such as resis-
tance to man-in-the-middle manipulation, request and response
privacy and censorship resistance. The authors conclude that
the choice of name system is – in addition to security
considerations – depending on organizational aspects of the
ecosystems.

6As opposed to re-bootstrapping the whole ABE scheme and issu-
ing/publishing new keys for all RPs

For instance, DNSSEC relies on the distributed design
of redundant DNS servers as well as caching. Even more
important is the fact that domain names in DNS are highly
regulated, making it a semi-centralized system where only
the technology is distributed. This organizational architecture
degrades resilience in the face of strong attackers. Not to men-
tion that DNSSEC further suffers from a design weakness that
results in a privacy issue regarding namespace enumeration7

for which a mitigation was proposed by Goldberg et al [14].
In peer-to-peer-based, decentralised name systems such as

Namecoin and GNS this is not a problem. Namecoin is a
blockchain-based name system, availability is addressed by
having all records replicated by all participants in a local
ledger. No central authorities are required to manage the
structure of the name system since integrity is ensured through
the consensus mechanism. Of course, it is trivial to enumerate
namespaces in Namecoin due to the nature of a public ledger.
Further, blockchain-based decentralised systems are still quite
new and possibly prone to various attacks on the ledger
itself [15], [16].

GNS, on the other hand, is a name system built on top
of a distributed hash table (DHT). It prevents namespace
enumeration and also features an efficient response caching
mechanism. GNS is a petname system that inherently mitigates
name squatting by not having globally unique names. Records
are generally not considered confidential in a name system as
its primary use-case is resource discovery. As such, Namecoin
and DNSSEC do not protect the contents of resource records
or namespaces in any way. In GNS, record, query and response
data is protected. Grothoff et al. [12] discuss the respectivce
mechanisms to achieve this. Records are, by default, encrypted
using a symmetric key that can be derived from its record
label and namespace. Further, record queries are protected
through a “query privacy” ultilising a similar approach. So
unlike DNS, for example, queries cannot be trivially observed
by third parties. This prevents an attacker from easily profiling
interactions between users and service. It should be noted
that blockchain-based name systems do not suffer from this
particular problem as queries are basically just lookups in a
local database.

Based on the above, we conclude that peer-to-peer-based
approaches, such as Namecoin or GNS, should be preferred
over semi-centralized, distributed systems such as DNS.

2) ABE Scheme: When it comes to ABE we have to decide
between the two major flavors: Key-Policy ABE (KP-ABE)
and Ciphertext-Policy ABE (CP-ABE). As discussed by Borgh
et al. [17], [18] the use of CP-ABE is more intuitive than
KP-ABE from the point of view of the encrypter. This is
due to the fact that if keys are issued by a third party, it
is non trivial for the encrypter to know who has access to
the plaintext. In our case, the encrypter is the same entity as
the key issuer so this limitation does not hold. Furthermore,
policies in our proposed system are composed of a single

7https://dnscurve.org/espionage2.html, accessed 2017/12/26



tag8. Thus, we are not dependent on having the ability to
use conjunctive or disjunctive policies in either ciphertext or
key material. Therefore the chosen ABE flavor is independent
from the system design. In fact, the system properties would
not significantly change. The only thing what would differ is
the underlying encryption logic that is ideally never exposed
by reclaimID anyway. One could argue that reclaimID would
benefit from recent ABE scheme’s like FAME [19] in terms
of performance regarding the cryptographic operations. But
FAME’s performance benefits only take effect when policies
become more complex. The reason for that is because in
FAME, there is always a fixed number of pairing operations
while in other approaches, such as BSW CP-ABE [20], the
number of pairings is determined by the complexity of the
policy. In addition to that, the space complexity of BSW CP-
ABE ciphertexts and user keys is less than in FAME because
it uses two group elements per attribute while BSW CP-ABE
uses three group elements per attribute. FAME uses type-3
pairings, which are more efficient than the type-1 pairings
used in the original BSW CP-ABE [21]. If more complex
policies including significantly higher number of attributes are
required, the use of the FAME scheme in an implementation
should be preferred.

IV. IMPLEMENTATION

We have implemented9 reclaimID on top of GNS, a name
system that is part of the GNUnet peer-to-peer framework10.
Further, we use a slightly modified but functionally equivalent
version of the CP-ABE implementation libbswabe11. We chose
this implementation because of its general availability and
because we presume that variations of this scheme can provide
performance improvements. The use of libbswabe can be
considered as a performance baseline with regards to our
performance evaluations.

In the following section, we discuss what implications our
choice of name system and ABE scheme have on the security
properties of our implementation. Additionally, we present and
discuss the results of performance tests that we carried out.
Finally, we show how reclaimID can practically be integrated
into an OpenID Connect 1.0 Identity Provider (OIDC IdP) to
provide a standards-compliant way of using our design.

A. Security Properties

Many security properties of our reclaimID implementation
stem from GNS:

Availability: GNS built on top of the R5N [22] DHT. R5N
is designed to perform well in restricted-route environments
with malicious participants. reclaimID directly benefits from
the strong security guarantees of R5N , such as high resilience
and censorship-resistance. Records are replicated and stored
redundantly in R5N under a key that is generated by hashing

8An attribute name concatenated with a version number
9In https://gnunet.org/git/gnunet.git as part of the identity provider subsys-

tem
10https://gnunet.org, accessed 11/29/2017
11http://acsc.cs.utexas.edu/cpabe/, accessed 2017/29/11

the namespace public key with the query name. Further, GNS
is a petname system where users register names in their own
local namespace. This is unlike DNS, for example, since DNS
has a global unique root zone managed by a single organiza-
tion that delegates sub-hierarchies to other organizations. The
petname approach mitigates the name squatting problem where
attackers register names in bulk before legitimate users.

Integrity: Other name systems, such as DNSSEC or Name-
coin, sign either whole namespaces or single resource records.
In GNS, record sets are aggregated by label and signed using
a key derived from the namespace private key before being
published in the DHT. The DHT has a built-in signature
verification ensuring that only valid results are cached and
returned.

Privacy and Confidentiality: Records in GNS are en-
crypted using a key derived from the query label and names-
pace public key before they are published into the network. In
a similar fashion GNS realises query privacy. The namespace
private key is derived using the label of a record to sign the
records aggregated by label. The corresponding derived public
key is published along with the record, thus allowing any peer
to verify the validity of the record and avoid storing corrupted
content. On the other hand, this does not leak information
on the namespace owner. The query key for records under
a specific name is constructed by hashing the name and the
public key of the respective namespace. Even if the record
data itself is unprotected, which is not the case in our design,
a peer in GNS that stores a record or observes a query can
only access its contents if the respective name and key are
known to that peer. Finally, we additionally use the CP-ABE
library libbswabe in accordance with the reclaimID design.

B. Performance Evaluation

Since our implementation uses GNS, which is built on top
of the R5N DHT, performance is a concern. We tested our
implementation with regards to the following aspects:

• Median time to retrieve a user key
• Median time to retrieve an attribute
• Performance impact of caching in GNS on attribute

retrieval
• Performance impact of the number of nodes in the

network
Our test setup consists of a virtual host with 32 vCPUs at

2,3 GHz and 32GB of RAM. To determine the median time
it takes to resolve a key and subsequently an attribute, we
bootstrap a GNUnet network N . Before every test run, N is
re-bootstrapped to ensure that any caches are purged. In each
run, we repeat one test 10 times. We define the test to consist
of the following steps:

1) Randomly choose a node A that acts as a user and a
node B that acts as a requesting party from N .

2) A and B create identities in GNS exchange public keys.
3) A creates and stores a test attribute a and authorizes B

to access it.
4) Simulate an out-of-band handover of the respective

authorization ticket t to B



5) B retrieves the ABE user key skABE
6) B retrieves the attribute a and decrypts the attribute

value.
Each time the test is repeated, we randomly choose a different
node B ∈ N while A stays fixed. We measure the time it takes
each B to resolve the user key (Step 5) and the attribute (Step
6). Between each test, we do not tear down or re-bootstrap
the network so that we can investigate the impact of caching
on retrieval times. After 10 tests, we tear down the network
to conclude the test run.

We execute 1000 test runs to increase the reliability of our
dataset. Further, as we want to investigate the impact of the
size of the network, we ran our experiment for |N | = 50,
|N | = 100, |N | = 150 and |N | = 200 nodes, respectively.

We expect the key and attribute retrieval times within a
single test run to initially exhibit a high variance. However,
successive attribute resolutions within a single test run by dif-
ferent parties are expected to be faster and show increasingly
less variance due to caching kicking in. We do not expect the
same behaviour for the key retrieval. In regards to the network
size, we expect it to have a negative influence on retrieval times
and the respective variance with increasing node count.

1) Results: Figure 2 is a comparison between median
attribute retrieval times across all test runs in differently sized
networks. The data suggests that the median times for attribute
retrieval increases with the size of the network. At the same
time, the retrieval times appear to converge, albeit slower with
increasing node count.

Fig. 2: Median attribute retrieval times across all test runs for
network sizes of 50, 100, 150, and 200 nodes.

In Figure 3, we can see that the time it takes to resolve a
user key varies with a median of around 200 ms. As expected,
the variance is quite high throughout all 10 successive tests
across all test runs. Since we randomly choose our nodes,
performance largely depends on the routing and topological
distance between A and B. Our experimental setup consists
of a clique topology. However, considering no caching can be
leveraged due to the individuality of the query, the observed
performance is still practical. This observation matches with
our expectations and suggests that the initial user key after

authorization should be transferred to the requesting party out-
of-band and not via the name system. The fact that the initial
resolution exhibits a particularly high variance and median
retrieval time supports this as well.

Fig. 3: User key retrieval performance of user keys for a
network size of 100 nodes.

In Figure 4, we can see that the retrieval times for attributes
also initially exhibit a high variance. But, retrieval times
quickly converge to low median times at less than 100ms with
a low variance. This dataset nicely illustrates the effects of
attribute caching in the name system in our implementation.
After the first few requesting parties are authorized to access
attributes and have resolved the respective records, resolution
times improve greatly. This confirms our expectation that we
can leverage caching of queries and responses in GNS for
attributes and it impacts the systems performance positively.

2) Discussion: Our results show that the implementation
quickly converges into a reasonably well performing system.
In asynchronous use cases, where user data is retrieved by
requesting parties without user interaction after an initial
authorization flow, resolution times of up to 100ms are accept-
able. Increasing attribute counts should not negatively impact
resolution performance as attributes can be resolved in parallel.

However, since key resolution will not benefit from caching
in the current implementation, we recommend an initial out-of-
band transfer of the key as part of a authorization protocol such
as the OIDC authorization code flow. Further, keys may change
from time to time, in particular due to a revocation initiated
by the user. When the attributes are required for processing
it might already be too late and the attribute can no longer
be decrypted with the old key. It is reasonable for requesting



Fig. 4: Attribute resolution performance for a network size of
100 nodes.

parties to regularly resolve their respective key records, rather
than only resolve the updated key.

C. OpenID Connect Integration

As discussed in our design, an out-of-band exchange of the
authorization ticket and possibly even the user key skABE can
be done using an authorization protocol. Instead of proposing
our own protocol, we show that our implementation can
be abstracted through an HTTP-based OIDC 1.0 compliant
authorization flow [23]. Like the specification, in the following
we assume that all HTTP exchanges between the user and
the service are secured using TLS server authentication. In
traditional OIDC deployments, a single service serves well
defined endpoints to users and requesting parties. As our
implementation is a decentralised service any participant can
take both the role of a user as well as the role of a requesting
party. For this reason, all participants run a local reclaimID
instance that exposes the respective OIDC endpoints.

Let us consider our original social network use case il-
lustrated as OIDC flow in Figure 5: We assume that a user
Alice manages her user attributes – in particular her email
address – using reclaimID through a web frontend running
on her local machine (0). Consequently, the email record
Rskrp containing Alice’s address is stored in GNS (1). She
registers to a social networking service at a website (2). The
website offers a “reclaimID” button that – when pressed –
initiates an OIDC authorization code flow in which the service
requests access to Alice’s “email” attribute. Alice presses the
button and her browser is redirected to the OIDC authorization
endpoint that is exposed by her local reclaimID installation

(3a). Alice consents to the authorization request (3b) and the
authorization procedure as defined in Section III-C is executed
(4) that stores the user key skrp in the record Rskrp

. Next, the
browser is redirected back to the website (5a,5b) along with
an “authorization code”. We use the OIDC authorization code
to piggyback a reclaimID ticket that includes the rnd.

The service exchanges the code at the OIDC token endpoint
(6). This request triggers the retrieval of Alice’s email attribute
as defined in Section III-F (7). The email attribute is wrapped
inside a JSON Web Token and returned in the OIDC token
response (8). The response additionally contains an opaque
access token that can be used against the OIDC userinfo
endpoint. When Alice is offline, a request to the userinfo
endpoint simply reuses the ticket obtained in (5b) to obtain
fresh user attributes from reclaimID (6).

1) GNS naming and OpenID Connect: Unlike DNS, GNS
is a petname system. In DNS, there is a global unique root
zone managed by a single organisation. The petname property
in GNS comes in handy since the local IdP services for the
user and the requesting party can both be addressed using,
e.g. “identity.gnu”. For each entity, we can assume that the
system is configured to map this name to the respective local
hosts. In our design, this host also runs the respective local
reclaimID service. When building HTTP-based authorization
protocols on top our design, such as OIDC, this is useful as the
specification presumes that there is a single service instance
reachable under one domain name. Using GNS, this is actually
the case while at the same time the service behind the name
is decentralised.

V. RELATED WORK

Work related to ours mainly targets decentralised and user-
centric identity management. As the following discussion
shows, this does not necessarily include a decentralised IdP,
which we claim is an essential aspect in a truly user-centric
system.

DP5 [24] is a privacy-friendly presence notification ser-
vice that through the use of asymmetric pairing functions
and pseudo-random functions provides a secure and private
personal information retrieval (PIR). While DP5 addresses
the most relevant privacy and security issues, it does not
address availability as reclaimID does with a redundant DHT.
A powerful attacker might coerce a DP5 service provider to
discontinue its services without having to deal with any of the
users trying to share information. Participants in reclaimID are
not individually protected against such an attack, but the lack
of central service instances mitigates the collapse of the whole
system.

CONIKS [25] is an approach originally designed for user-
centric key transparency. The authors propose a system that
does not require a single, centralised third-party to monitor
mappings from names to keys, such as from a domain name
to its corresponding certificate. Rather, CONIKS allows users
and services to participate in a privacy-preserving protocol
that allows them to audit providers of such mappings for
non-equivocation. In contrast to reclaimID, CONIKS relies
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Fig. 5: An example authorization flow and attribute retrieval integrated into OpenID Connect (OIDC). Protocol steps 1,2,4,5
and 8 include the standard OIDC authorization Code Flow. Steps 3, 6 and 7 are interactions between the respective local
reclaimID and GNS components.

on centralised IdPs that serve the respective key material.
While misuse of those IdPs can be detected, COINKS does not
prevent attacks on these central services. This issue is directly
addressed by the authors behind ClaimChain [26].

ClaimChain also primarily addresses the key verification
use-case through the use of hash chains and cross-referencing.
Similar to reclaimID, this approach mitigates the need for
trusted centralised IdPs and replaces them with a decentralised
protocol and data structure. While their design proposes flexi-
ble, decentralised data structures, ClaimChain does not address
the underlying transportation of such. This is in particular
problematic with regards to offline access of claims, i.e.
situations where offline users cannot be addressed directly by
a requesting party. The authors of ClaimChain state that in
this case, claims can be stored at online services for users to
interact with them, which would again introduces a centralised
component. Our approach addresses this issue by also covering
the transportation layer and respective protocols for offline
access of attributes.

NameID [5] is a recent decentralised IdM approach that
uses identities and attributes located in the Namecoin [13]
blockchain. Those identities and attributes are in complete
control by the respective user and cannot be edited or deleted
by the IdP. As a consequence, all identity attributes in NameID
are inherently self-issued, meaning that there is no third party
authority issuing or certifying attributes. Users authenticate by
providing proof-of-possession of the respective wallet private

key a claimed identity is associated with. While NameID
fully decentralises attribute management, this comes at the
cost of privacy. All identities and attributes are managed in
plain text in the Namecoin blockchain and are thus publicly
readable to anybody. We address this issue with reclaimID by
a cryptographic access control on attributes using ABE.

Another approach to decentralised IdM by Schanzenbach et
al. [27] is also using a decentralised name system as backend
for self-issued identity attributes. Unlike NameID the authors
also show how the IdP service itself can be decentralised but
their implementation does not feature OpenID Connect com-
patibility. Identity attributes that are shared with a requesting
party are aggregated and published a single resource record
per requesting party. However, most name systems are quite
unresponsive to changes in namespaces and thus heavily rely
on caching which most likely negatively impacts the systems
performance.

The approach taken by uPort [28] is similar to ours in that
it is focused on self-issued (in uPort called “self-sovereign”)
identity data stored in a decentralised system. While we use
the name system’s distributed storage (specifically in form of
a DHT in case of GNUnet), uPort stores public profile data in
IPFS [29]. Identity data is managed using smart contracts on
the Ethereum [30] blockchain. Currently this approach stores
identity data in plain text in the IPFS which raises the same
privacy concerns as NameID. uPort further requires a central
service to share private identity attributes between user and



requesting party – something that uPort solves querying the
decentralised name system.

VI. CONCLUSION AND FUTURE WORK

We introduced reclaimID, a decentralised service for self-
sovereign identity management. reclaimID differs from ex-
isting approaches in that it combines three main aspects:
user-managed attributes without a central party, the complete
dissolution of a central IdP into a decentralised query protocol,
and privacy-preserving features such as ABE-based access
control to sensitive attribute data.

By a practical implementation of reclaimID based on the
name system GNS, we have shown that the approach is
valid and achieves the functional requirements of an identity
management system. In a series of experiments we evaluated
the performance and scalability of our system with the result
that in its current state, the implementation of reclaimID
is able to serve small to medium applications with up to
a few hundreds of participants in production. Performance
optimizations and deployments to large scale testbeds such
as PlanetLab are future work.

Through the use of ABE, reclaimID provides an access
control layer to user attributes which would otherwise be
stored world-readable, as shown by related work. We consider
the ability to authorize access to user attributes not only
essential for preserving the user’s privacy, but also to enable
new use cases which are currently ”solved” by workarounds
that again negatively impact privacy. For instance, particularly
in the context of the Internet of Things, devices often need
to be authenticated entities that exist in different security do-
mains. Such domain-spanning authentication and authorization
scenarios are becoming the rule rather than the exception
in an environment full of interconnected devices, but the
approaches to this challenge still follow the traditional pattern
of adding ”trusted” third parties (e.g. for device vendors) or
complex cross-certification-like constructs. reclaimID allows a
more elegant solution to this challenge by providing an inter-
domain identity management infrastructure to establish trust
relationships directly between entities, e.g. between a specific
device of a vendor and an application by another vendor.

Besides further performance improvements to address near-
realtime requirements, our future work will thus address the
extension of reclaimID to support privacy-preserving attribute-
based credentials.
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