
Fair and Transparent Blockchain based Tendering
Framework - A Step Towards Open Governance

Freya Sheer Hardwick, Raja Naeem Akram, and Konstantinos Markantonakis
ISG-SCC, Royal Holloway, University of London, Egham, United Kingdom

Email: {Freya.SheerHardwick.2016}@live.rhul.ac.uk, {r.n.akram, k.markantonakis}@rhul.ac.uk

Abstract—At a time when society is in constant transition
to keep up with technological advancement, we are seeing
traditional paradigms being increasingly challenged. The funda-
mentals of governance are one such paradigm. As society’s values
have shifted, so have expectations of government shifted from the
traditional model to something commonly referred to as ‘open
governance’. Though a disputed term, we take open governance
to mean a concept, which encourages and facilitates openness,
accountability, and responsiveness to citizens. For the success of
open governance initiatives, there are some technologies, such as
the internet, that are crucial. These technologies enable access to
both the data and to engagement activities between citizens and
government. There are also other technologies, like blockchain
and smart contacts, which could be utilised to assist open
governance. A sound starting point would be moving from a
system where information is tediously released by a government,
on an ‘as they please’ basis, to an infrastructure where critical
actions are captured with strong integrity, non-repudiation and
evidential guarantees. With an added dimension that facilitates
these actions record be accessible to public scrutiny in near real-
time. One candidate technology for capturing such actions is
blockchain. Initially, blockchains were mainly used to facilitate
cryptocurrencies as a record of transactions. The notable example
being bitcoin. However, in recent years, blockchains utility is
being recognised through smart contracts - potentially a vital
building block to realising open and transparent government ac-
tivities. In this paper, we employ the concept of smart contracts to
government tendering activities. The proposed scheme is based on
smart contracts, enabling a fair, transparent and independently
verifiable (auditable) government tendering scheme. The scheme
is then implemented on the Ethereum platform to evaluate
the performance and financial cost implications, along with an
evaluation of the potential security and auditability challenges.

I. INTRODUCTION

The phrase ‘fair and open’ has different meanings depending
on the context and situation. It is more so right for government
where the phrase is regularly applied. Fair and open means
that the government do not act with bias and on request from a
citizen it shares the necessary information (Right to Information
[1]). This does not mean that openness translates into trust
in governance [2]. The issue with this model is two-fold;
a) The access to information is cumbersome and requires a long
process to get hold of information. Even for the information
that has no national security implications, b) even though
auditing the government activities might be possible but still
reviewing the documents (got through Right to Information)
requires time, money and expertise – something not easy to
acquire/invest by the general public.

On the other hand, we have e-government initiatives [3]
that enables the use of technology in government activities
[4], fostering transparency, participation, and collaboration
between the citizens and government. An amalgamation of
these two: open governance and e-government, supported by
innovative technologies like blockchain, has the potential to
introduce fairness, openness, and accountability. Thus enabling
an independent and automatic auditing process to provide
accountability and allowing citizens to track the activities of
their government without unnecessary hassle.

The paper proposes that the blockchain and smart contracts
can enable an open governance framework that can facilitate
citizens oversight on government functions that is easy to carry
out with no associated financial costs.

Therefore as a proof-of-concept, we explore the government
tendering process, a set of activities that have three distinct
phases: a) government tender opening (publishing), b) bidding
period, and c) tender closing and selection of the best bid.

Morphing these activities as part of our proposal in such a
manner that it enables;

1) The tendering organisation (like a government) can open
a tender, and once the tender is open, they cannot
change it. Preventing the organisation from changing the
tender to favour a bidding organisation (e.g. government
departments or commercial organisations). Furthermore,
each tender includes evaluation criteria for selecting the
best possible bid.

2) Authorised bidding organisations can place a bid with an
assurance that their bid is confidential (until the tendering
closing date/time) and will not be modified (integrity
protection). Also, there is some assurance that third parties
would not be able to place bids on behalf of other
authorised bidding organisations. Furthermore, during the
bidding process, individual bidding organisation cannot
know what bid the other organisations have placed. Also,
as a stringent privacy requirement, bidding organisations
should not find out whether a particular organisation has
placed a bid or not.

3) The tendering organisation can only open the bids after
the tender is closed. The selection of the best bid would
be published. Organisations losing the bid can compare
the winning bid with theirs to evaluate the decisions –
using the evaluation criteria. Furthermore, if required, all

ar
X

iv
:1

80
5.

05
84

4v
1

 [
cs

.C
R

]
 1

5
M

ay
 2

01
8

bids for the tender can be made public and so citizens1

or other interested parties can also evaluate the whole
bidding process.

4) The technology provides non-repudiation, collision avoid-
ance, confidentiality (time-dependent), privacy and in-
tegrity – along with independent auditability feature and
evidential guarantees.

A. Paper’s Contributions

The contributions of the paper can be summarised as; C-
i) A generic architecture to deploy open tendering scheme
using blockchain, C-ii) Three proposed deployment variants of
the open tendering scheme, and C-iii) Implementation details,
performance evaluations, and security analysis of the proposed
deployment variants of the open tendering scheme.

Fig. 1: Open Governance Diagram by Armel Le Coz and Cyril
Lage (under creative commons attribution terms)

II. BLOCKCHAIN TECHNOLOGY AND TRANSPARENT
GOVERNANCE

In this section, we first briefly discuss the open governance
initiatives followed by a succinct description of the government
tendering process. Finally, we conclude the section with a short
explanation of blockchain technology and smart contracts.

A. Open Governance

According to the Open Government Partnership2, open
government is about making national and/or local authorities
promote transparency, participation, and collaboration [4] - as
represented in Figure 1. Furthermore, to achieve these goals,
they are encouraged to harness new technologies to strengthen
governance [5]. In recent years, the focus of open government
has shifted from political activities to more emphasis on
information/data and citizen-centric services [6]. The term
used is Open Data defined as data related to government

1In the context of the paper, citizens are defined as the general public that
politically belongs to or shareholder in a government.

2A global initiative with participation from 71 countries either through
national or local action. Website www.opengovpartnership.org

operations, but not sensitive to national security and accessible
to anyone. Example of such an initiative is UK governments
open data portal https://data.gov.uk that provides a single point
to access government’s public data. There are some interesting
and useful mobile Apps based on the UK government’s public
data. For example, CheckMyStreet3 (information about local
properties, local amenities, average monthly rents and local
crime statistics), Regisearch4 (vehicle information, prices and
MOT history) and Traffic Injuries Map5.

One significant distinction we would like to point out is that
not all open data initiatives even come close to open government
initiatives. A government can make its data public as it deems
appropriate and open data, in many cases, does not equate to
being transparent and nor does it necessarily encourage citizen
participation. Without the notion of accountability, open data
(and open governance) cannot have the desired impact.

B. Government Tendering Framework

The actual process for government procurement of ser-
vices and products depends on individual governments or
geographical-zones. In this section, we describe a generic
framework that would explain the unique steps taken during a
procurement process. Figure 2, shows the procurement process
that is explained as below.

Tendering Organisation Tendering Host Bidder Citizen

1) Procurement Initiative, Create a Tender

1a) Tender Stipulation
2) Opening the Tender

3) Tender Download

4) Review Tender

4a) Prepare Bid
5) Bid Submission

6) Tender Deadline

6a) Close Bidding
7) Bids Collection

7a) Bid Evaluations

7b) Selecting Best Bid
8) Freedom of Information Request

9) Sharing of Data Related to Bid (if considered)

10) Evaluate the Data

10a) Conclusion

Fig. 2: Generic Tendering Framework

1) Based on the services and product requirements, a tender-
ing organisation (i.e., respective government department)
would initiate the process of putting out a request for
tender.

a) A tender specification would include the terms and
conditions of the tender, information necessary for an
acceptable bid, and bid evaluation criteria.

2) The tender with its full specification would be published
through the tendering host. The host can be a separate
department in a government or part of the tendering
organisation. They publicise the tender specification over
the internet, in newspapers, and in relevant industry news
magazines/portals.

3https://www.checkmystreet.co.uk
4https://regisearch.co.uk
5http://www.road-injuries.info/map.html

www.opengovpartnership.org
https://data.gov.uk
https://www.checkmystreet.co.uk
https://regisearch.co.uk
http://www.road-injuries.info/map.html

3) An interested bidding organisation would download/access
the tender specification

4) The respective bidding organisation would review the
requirements.

a) Based on the tender specifications, the bidding organi-
sation would prepare a bid.

5) The prepared bid is submitted to the tendering host
6) Submission of the bids would be open for a limited period

– depending upon the tender specification.
a) When the deadline has passed, the tender host will shut

down the bid submission portal. All bids received after
this point would be rejected.

7) Tendering organisations will evaluate all of the submitted
bids as per the evaluation criteria stipulated in the tender
specification.

a) Based on the evaluation, the best bid would be selected
and notified by the tendering organisation.

8) From step 1 to 7, citizens are not involved and have no
visibility. However, after the tender is concluded, they
can request for the data associated with the respective
tendering process.

9) If a government deems it appropriate, they can fulfil the
request and provide the requester with the data. Under
open data initiatives, some governments would even make
its data available voluntarily.

10) Citizens have to be resourceful6 in the evaluation of the
data/process to make use of this data.

a) Based on this evaluation they can judge whether the
process was fair or not. A bidding organisation can
do the same, just as any citizen. One point to note is
that the process of getting data and then evaluating it
is so laborious that it is seldom taken up by a single
individual. Moreover, most of the time, such activities
never go through the scrutiny of the general public as
an examination has a substantial cost in both time and
money.

The proposition of this paper is that we can design a secure,
fair, and reliable bidding architecture that can transparently
manage the whole bidding process and allow a citizen to
evaluate the process with a single click through an auditing
application/portal. Through this, we can achieve higher partici-
pation of citizens in government activities and also increase
government transparency and accountability.

C. BlockChain Technology

A blockchain is a form of a distributed database [7]. A
distributed database is a collection of interrelated databases
stored in multiple locations. In most traditional senses of the
term, a distributed database is divided into portions that are
then maintained in these separate locations [8]. In the case
of the blockchain, every participating node has a copy of the

6The notion of resourceful means that citizens have both financial resources
and required skills to interpret the data and conduct an audit to find out any
discrepancies

‘database’ in its entirety. Meaning that the participating nodes
do not need to trust each other to trust the data stored in
the ledger [9], [10]. Each node can independently verify the
data they are given and then decide to store that data in their
copy of the database. This results in a database that grows by
consensus.

Transactions that are intended to be added to the blockchain
are propagated through the network by the participating nodes
[11]. To mine a block, blockchains employ a consensus protocol
[12] that must be satisfied by the block (one such example is
the proof-of-stake protocol) Once a block is mined, this new
block is broadcast to the other nodes, which will then append
it to their active chain. These blocks will have a cryptographic
hash in the header that relates to the previous block in the
chain. Sometimes, two nodes will mine two different blocks at
the same time, and both broadcast these blocks creates a fork in
the chain. Nodes resolve this by always selecting the chain with
the most work performed on it as their active chain. Resulting
in the chain being supported by the majority of the nodes
always becoming the active node. Thus consensus of more than
50% of the nodes prevails. Ensuring the integrity of the chain,
together with the consensus protocol and the cryptographic
hashes. The general concept can only be spoken about vaguely
because how this plays out in practice depends entirely on the
implementation of the blockchain and the consensus protocol
employed.

D. Smart Contracts

A smart contract is a piece of self-executing code that can
be stored, and executed, on the blockchain [13].

A smart contract is deterministic, verifiable, and doesn’t
rely on any trusted third party [14]. Entities can enter into an
agreement with all of the terms transparent to them. The same
integrity checks that keep the transactions on the blockchain
from being edited are also in effect here. This means that when
entities enter into the agreement, they can be sure that no party
will edit the terms of that agreement at a later date.

Smart contracts also have state and memory storage and so
can hold assets in their own right [15]. Implying that they can
be used to hold funds in escrow in instances of asset transfer
between parties. The applicability of this goes far beyond the
crypto-currencies that are currently popularising the blockchain.

The limitations of smart contracts are entirely in the
expressiveness of the language supported by the blockchain.
With a Turing complete language, as is employed by Ethereum,
smart contracts can be used to execute a number of functions.
Therefore, smart contracts provide a trustless environment for
asset exchange.

III. OPEN AND TRANSPARENT TENDERING FRAMEWORK

In this section, we will briefly describe the open and
transparent tendering framework based on blockchain and smart
contract technologies.

A. Overall Architecture

Figure 3 depicts the inclusion of the blockchain and smart
contract technologies to the tendering framework - discussed
in Section II-B. We are only going to discuss the steps that
are different from the generic tendering framework (Figure 2).

Tendering Organisation Blockchain Network Bidder Citizen

1) Procurement Initiative, Create a Tender

1a) Tender Stipulation
2) Opening the Tender

3) Tender Download

4) Review Tender

4a) Prepare Bid
5) Bid Submission

6) Tender Deadline

6a) Close Bidding
7) Bids Collection

7a) Bid Evaluations

7b) Selecting the Best Bid
7c) Push the results and bid keys

7d) Confirmation of block inclusion.

8) Access Tender Spec and Bids

9) Download Evaluation Criteria, and all B ids

10) Evaluation

10a) Conclusion

Fig. 3: Smart Contract Based Tendering Architecture

1) A tendering organisation will create a tender as a smart
contract and place it on the blockchain. The smart
contract will include the certified public key7 (PTO) of
the tendering organisation along with bid evaluation code.

2) A prospective bidder can download the tender from the
blockchain.

3) The respective bidder reviews the tender and
a) Consider the tendering specification and make a bid

proposal.
b) Generates a bid in response to the tender (smart

contract). The actual bid is encrypted by the bidder’s
generated symmetric key8 (bid key: SKBidder). The
symmetric key is then encrypted by the public key of
tendering organisation: PTO(SKBidder). Half of the
PTO(SKBidder) is included as part of the submission
and the second half would be communicated to the ten-
dering organisation at the tender submission deadline.

4) The bidder will push the bid as a smart contract to the
blockchain. The bid is signed by the bidder’s certified
signature key. This key is certified by the tendering
organisation when the bidder register as an authorised
bidding company - a process out of the actual tender
opening and allocation process.

5) When the deadline for bid submission expires, the smart
contract on the blockchain stops accepting new bids.

7For security reasons, state-of-the-art public key cryptosystem [16] should be
used with recommended configuration and key sizes as suggested by competent
authorities like NIST.

8Similar to the public key recommendation, for symmetric key standard
schemes like Advanced Encryption Standard should be used with adequate
key size (e.g. AES 256) [17].

6) The tendering organisation can download the submitted
bids, and they can decrypt the bids if they have full
PTO(SKBidder).

a) At the tender closing date, tendering organisation will
run the evaluation code and select the best bid.

b) The result of the evaluation is pushed to the
blockchain. At this stage, the tendering organisation
can make PTO(SKBidder) of all bidders public on the
blockchain.

7) The tender organisation will push the results of the bid
evaluations along with bidder’s keys to the blockchain.
This information is crucial for independent auditing of
the tendering process.

8) Citizens can access the tender details from the blockchain
(where this data will reside in perpetuity) along with the
bid evaluation code

9) Citizens can download the tender contract that contains
the code for bid evaluation criteria.

a) Citizens just have to run the evaluation code that will
read the bids from the block and evaluation them.

b) The results of the evaluation will show whether the
bidding process was fair (auditing tender allocation to
the stated best bidder).

B. Security and Operational Requirements

In this section, we highlight the security and operation
requirements any implementations of the open and transparent
tendering framework has to satisfy.
R1) The tendering Organisation cannot change the tender once

it is placed on the blockchain. If due to some unforeseeable
reasons they have to change it, then they have to create a
new tender (smart contract) on the blockchain.

R2) The tendering organisation cannot read the bid until the
deadline is expired.

R3) Bidders cannot change the bids of other organisation.
R4) Bidders cannot see who else has placed a bid.
R5) Bidders cannot mount a Denial-of-Service (DOS) attack

on their competitors to stop competitors placing a bid on
the blockchain.

R6) Blockchain network or block miners cannot affect the
tendering process.

IV. IMPLEMENTATION AND OPERATIONAL EVALUATION

In this section, we will detail the implementation of the
proposed architecture - with it three variants: a) Full Track
Scheme, b) Protected State Scheme and c) Stateless Scheme.
We also list the performance costs and blockchain network
usage costs (GAS).

A. Implementation Details

In the implementation of the tender framework, we have
used the Ethereum blockchain API. We made this choice
because Ethereum is an open-source platform that is publicly
available and a well-known choice for developing distributed
applications.

Contract Time (secs) Cost (gas)

1 198.57 892160
2 88.86 892160
3 124.34 892160
4 96.52 892160
5 103.65 892160
6 174.69 892160
7 166.33 892160
8 137.11 892160
9 133.56 892160

10 253.98 892160
Average 147.761 892160

TABLE I: Full Track Scheme: Contract
Deployment

1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5
·105

G
as

C
on

su
m

pt
io

n
in

10
5

. Bid’s Gas Consumption

Fig. 4: Individual Bid’s GAS usage (x 105)
for Full Track Scheme

T1 T2 T3 T4 T5 T6 T7 T8 T9T10
0

50

100

Ti
m

e
(S

ec
on

ds
)

Fig. 5: Contract timing for Full Track
Scheme Over Ten Trial Tenders

With Ethereum, each transaction will have a gas usage and
gas cost. The gas usage is determined by how computationally
expensive the transaction is. The purpose of working out the gas
used in each transaction comes down to the fact that every node
in the blockchain verifies the transaction. If transactions were
allowed to be arbitrarily complex, verification on the network
would be slow and result in a processing bottleneck. Citing
gas needed for each transaction allows miners to determine
whether or not it is worth including the transaction in the block
that they are mining and they will use the cost of gas, as set
on each transaction by the node that pushed it, to determine
this. Trying to push a transaction that is too complex or with
the gas cost set too low will cause a transaction to be ignored
by the miners when they pick transactions to include in their
block.

To mine one of these blocks, a node must satisfy the proof-of-
work constraint (Ethereum’s choice for the consensus protocol)
[18]. This constraint necessitates a certain degree of work to be
undergone by the node that wishes to push a block to the wider
chain. This stops a node from pushing an arbitrary number of
blocks to the chain: it would be computationally unfeasible.

For a malicious node to corrupt a block halfway down
the chain and present it as the valid active chain, it would
also need to recompute every following block with their new
cryptographic hash faster than every other participating node
is working on their active chains.

We used Truffle JS [19] as our framework to create our
contracts and wrote them in the Solidity language. For the
unit tests during development, we used a private blockchain
running on the TestRPC Ethereum client, and our operational
performance tests were done using the Ropsten testing
network. We chose this network because online documentation
would suggest that this environment most closely resembled
the Ethereum production environment at the time of testing.
To connect to Ropsten, we used the infura.io node. The
blockchain explorer we used to interact with the contracts
is MyEtherWallet using an account made via the MetaMask
chrome extension.

The Request For Tender (Algorithm 1) is initiated by a

Algorithm 1 Initiating A Tender
1: procedure REQFORTENDER(length, pubk, limit)
2: biddingEnd← T imeNow() + length
3: limit← limit
4: pubk ← pubk

contract placed on the blockchain. This contract is created with
a length, given in milliseconds, that determines how long the
contractors (also referred to as Tendering Organisation: TO)
have to place their bids. This time is calculated using the Unix
Epoch time at the time of creation. An upper limit is also
given, which will be used to control the number of tenders a
contractor can place for this auction. The entity that created the
auction is also required to pass in a public key that is specific
to this request for tender contract. These three attributes are
held in the contract’s state.

Algorithm 2 Placing A Bid (Full Track Scheme)
1: procedure PLACEBID(id, data,msgHashed, v, r, s,)
2: bidV alidity ← V alidBid(id,msgHashed, v, r, s)
3: if bidV alidity then
4: bidCount[id]+ = 1

5: bid← new Bid (id,data,bidValidity,bidsPlaced,biddingEnd)
6: bidsP laced.add(bid)
7: return bid
8: procedure VALIDBID(id,msgHashed, v, r, s,)
9: validHash← verify(msgHash, v, r, s)

10: validT ime← timeNow() < biddingEnd
11: allowedBid← bidCount[id] < limit
12: return validHash and validT ime and allowedBid
13: procedure BID(id, data, validity, bidsPlaced, biddingEnd)
14: id← id
15: data← data
16: validity ← validity
17: bidsP laced← bidsP laced
18: biddingEnds← biddingEnd

1) Full Track Scheme: When a contractor places a tender
(Algorithm 2), the first step is to place a smart contract
elsewhere on the blockchain that contains only the tender
data. Experiments on the Ropsten test blockchain showed
that 5000 bits could be stored on the blockchain with a gas

Contract Time (secs) Cost (gas)

1 118.55 874791
2 114.3 874791
3 118.52 874791
4 100.18 874791
5 87.77 874791
6 89.6 874791
7 70.39 874791
8 122.03 874791
9 61.77 874791

10 99.82 874791
Average 98.293 874791

TABLE II: Protected State Schema: Con-
tract Deployment

1 2 3 4 5 6 7 8 9 10
3

3.5

4

4.5

5

5.5
·105

G
as

C
on

su
m

pt
io

n
in

10
5

. Bid’s Gas Consumption

Fig. 6: Individual Bid’s GAS usage (x 105)
for Protected Scheme

T1 T2 T3 T4 T5 T6 T7 T8 T9T10

20

40

60

80

Ti
m

e
(S

ec
on

ds
)

Fig. 7: Bid Timing for Protected Scheme
Over Ten Trial Tenders

consumption that didn’t get immediately rejected for being too
expensive. This roughly translates to 700 words. It is suggested
that the usually more verbose tender contracts are adapted for
this format, perhaps by extracting the key information (PTO)
necessary for the tender. The data on this contract is available
to anyone maintaining the blockchain, and so is protected
through the encryption performed using the bidders bid-specific
symmetric key sealed by PTO(SKBidder) as discussed in step
4a in Section III-A.

Placing the tender for the auction involves using the auction
smart-contract. The contractor passes in their ID, which should
have been pre-agreed between the auction creator and the
contractor, the address of their tender data on the blockchain,
and then the components of the certificate that will have been
given to them by the auction creator. This certificate should
have been signed using the private key that corresponds to the
request for tender’s public key that was put into the contract
upon creation. To offload some of the computational complexity
of the contract, the parts of this certificate (the hashed message,
and the v, r, and s values) are extracted on the client side. The
request for tender will take the address of all placed tenders
and store it in an array.

All tenders left on the contract are recorded, but the validity
is determined using the certificate, the time that the tender was
placed, and the record of bids placed. The time when the tender
was placed is retrieved using the now() function available on
an Ethereum contract. The now() function uses the time from
epoch registered on the node executing the transaction.

This timing can be considered trusted because of the timing
consensus of nodes on the blockchain. Nodes are unable to
mine blocks that have timestamps earlier than the parent blocks
time stamp. Nodes are discouraged from placing blocks at an
arbitrary amount of time ahead for the same principle – few
nodes on the chain will be willing to put a block on the chain far
ahead of their current time because they will be unable to place
new blocks on top of it, thus stopping the block from getting
picked up by a majority of nodes. Nodes are also discouraged
from moving the time back because the challenge issued in
the proof-of-work is orders of magnitude more difficult the
shorter the interval between the current blocks timing and the

parent blocks timing [20].
A bid is considered valid if the following hold ; 1) The

contract is placed within time, 2) the certificate is verified
to match the public key held by request for tender contract,
and 3) the contractor is allowed to place more bids. If it fails
any of these checks, it is still placed but flagged as an invalid
bid. Note that the number of bids placed by the contractor is
only incremented if it is being placed using a valid certificate,
protecting the contractor from being locked out of the auction
by a malicious party placing arbitrary numbers of bids using
their identifier.

Algorithm 3 Placing A Bid (Protected State Scheme)
. Running on the local machine

1: procedure PLACEBID(id, data,msgHashed, v, r, s,)
2: validHash← verify(msgHash, v, r, s)
3: if V alidHash then
4: bidValidity← ValidBid(id)
5: if bidV alidity then
6: bidCount[id]+ = 1

7: bid← new Bid(id,data,bidValidity,bidsPlaced,biddingEnd)
8: bidsP laced.add(bid)
9: return bid

10: procedure VALIDBID(id)
11: validT ime← timeNow() < biddingEnd
12: allowedBid← bidCount[id] < limit
13: return validT ime and allowedBid
14: procedure BID(id, data, validity, bidsPlaced, biddingEnd

)
15: id← id
16: data← data
17: validity ← validity
18: bidsP laced← bidsP laced
19: biddingEnds← biddingEnd

The tender reference smart contract is then created and
passed the id of the contractor, the address of the tender data,
the validity of the contract, a copy of the array holding all of
the addresses of the tenders placed before this one, and the
auction end time. The address table is required to ensure the
integrity of the array revealed by the auction creator – no bids
could be intentionally erased from the array because the record
of its existence will exist in the tender reference contracts.

Contract Time (secs) Cost (gas)

1 351.35 352819
2 122.41 352819
3 156.5 352819
4 112.55 352819
5 108.48 352819
6 154.94 352819
7 145.45 352819
8 76.12 352819
9 213.73 352819

10 170.09 352819
Average 147.761 892160

TABLE III: No State Scheme: Contract
Deployment

1 2 3 4 5 6 7 8 9 10
0.5

0.75

1

1.25

1.5

1.75

2
·105

G
as

C
on

su
m

pt
io

n
in

10
5

. Bid’s Gas Consumption

Fig. 8: Individual Bid’s GAS usage (x 105)
for Stateless Scheme

T1 T2 T3 T4 T5 T6 T7 T8 T9T10

0

50

100

150

200

Ti
m

e
(S

ec
on

ds
)

Fig. 9: Bid timing for Stateless Scheme
Over Ten Trial Tenders

Once the auction time has elapsed, the addresses can be
requested from both the request for tender contract and the
tender reference contracts.

Algorithm 2 performance indicates (Figure 4) that altering
the contract’s state to hold the addresses increases the gas usage,
and thus the cost, on each subsequent transaction. This is not
desirable, particularly as failing contracts are also registered
in the smart contract, which leaves the request for tender at
risk of a denial of service attack.

2) Protected Scheme: Algorithm 3 proposed an alternative
schema to mitigate this potential denial of service attack. In
this schema, the Request For Tender contract does not record
bids if they fail the certificate check. We originally wanted
to record every bid that was placed so the whole process
would be recorded, and every attempted transaction would be
visible. However, allowing anyone to place bids when each bid
dramatically increases the amount of gas (and cost) necessary
to place a new bid could leave our scheme open to a Denial of
Service (DoS) attack. Although this scheme requires more gas
initially, the first tender placed uses an amount of gas slightly
higher than the third tender in the full tracking schema, given
that it protects against DOS attacks from unauthorised parties,
the gas hit is comparatively negligible.

Of course, in both of these proposals, the changing state of
the Request For Tender contract does still lead to a dramatic
increase in gas usage per transaction, regardless of whether or
not those bids are intentionally malicious.

3) Stateless Scheme: Algorithm 4 provides an alternative
by not storing the Tender Reference contracts in an array on
the Request For Tender contract. This solves the increasing
gas issue because we would no longer be changing the state
of the Request For Tender contract. This would mean that
a Tender Reference Contract would no longer need to hold
information about previously placed bids and would also not
require knowing when the tendering period ends because
there would be no information to be queried from the Tender
Reference Contract after the request for tender period lapses.

Instead, when a bid is placed, and the address is returned
to the contractor, this address could then be given to the
auction creator external to the transaction. The requirement

Algorithm 4 Placing A Bid (Stateless Scheme)
. Running on the local machine

1: procedure PLACEBID(id, data,msgHashed, v, r, s,)
2: bidValidity← ValidBid(id,msgHashed,v,r,s)
3: if bidV alidity then
4: bidCount[id]+ = 1

5: bid← new Bid(id,data,bidValidity,bidsPlaced,biddingEnd)
6: return bid
7: procedure VALIDBID(id)
8: validHash← verify(msgHash, v, r, s)
9: validT ime← timeNow() < biddingEnd

10: allowedBid← bidCount[id] < limit
11: return validHash and validT ime and allowedBid
12: procedure BID(id, data, validity)
13: id← id
14: data← data
15: validity ← validity

would then be for the auctioneer to use a third part chain
explorer to verify that the contract was made as the result
of a transaction registered to the request for tender contract.
The issue here would be that the third parties would have to
be considered trusted and that they may, for non-malicious
reasons, not have the required information (either from memory
constraints necessitating that not all transactions are registered,
or from missing the transaction altogether). However, if the
contractor requires a certificate of acknowledgement from the
auctioneer after they have given their tender-reference address,
the auctioneer will not be able to refute that they received the
tender.

4) Bid Evaluation: Algorithm 5 is a retrieval algorithm that
is only applicable to the schemas where the addresses are held
in the state of the Request For Tender contract. The addresses
would be retrieved from the contract after the request for the
tender period has elapsed. The client application is used to
interact with the blockchain will request the contract on the
blockchain. Retrieving the information does not require any
transactions and thus incurs no transaction cost.

The client application will receive a list of bids (in reality,
this will be the addresses of the bids placed). These bids can
then be queried for their validity and, once ascertained, the

Algorithm 5 Evaluating All Bids
1: procedure MAKEREQUEST(length, pubk, limit) .

Running on the local machine
2: listOfBids← ReqBids()
3: for bids in listOfBids do
4: validBid ←bids.getValidity()
5: if validBid then
6: listOfValidBidDataAd-

dresses.add(validBid.getDataAddress())
7: procedure REQBIDS(length, pubk, limit) . Running

in the blockchain
8: afterAuction← timeNow() > biddingEnd
9: if afterAuction then

10: return bidsP laced

address of the actual tender data can be requested. The whole
algorithm has a running time of O(n).

V. SECURITY AND OPERATIONAL ANALYSIS

We now evaluate how well our proposal met the security
and operation requirements as stipulated in Section III for each
of the three variants of the open and transparent tendering
framework, as discussed in Section IV. The table shows
the extent to which each of the variants satisfies the stated
requirements.

TABLE IV: Security and Operational Requirements Analysis
for Three Variants.

Full Track Scheme Protected Scheme Stateless Scheme

Blockchain Architecture
Centralised ����� ����� �����
Open ����� ����� �����
Distributed ����� ����� �����

Security and Operational
R1 ����� ����� �����
R2 ����� ����� �����
R3 ����� ����� �����
R4 ����� ����� �����
R5 ����� ����� �����
R6 ����� ����� �����

As all of the proposed variants of the open and transparent
tendering framework rely on open blockchain infrastructure,
they all satisfy the open and distributed environment re-
quirement. This requirement is imposed on the blockchain
technology so open and fair evaluation of the activities on the
blockchain can be conducted.

All three of the schemes do not fully meet the R2 require-
ment for the reason that if a bidding organisation shares the
second half of the PTO(SKBidder) (the first half is on the
blockchain with the bid and second half remains with the
bidding organisation) to the tendering organisations before the
deadline, then, yes, the tendering organisation can read the
bids. In all of the proposed schemes, we do not enforce that
the key can only be shared after the deadline. This was to
accommodate a bidding organisation’s business processes and
priorities.

For R4, the full track and protected schemes do not fully
support the requirement. This is due to the exponential increase
in the Gas costs when placing bids on the blockchain (Figures 6

and 8), which could escalate beyond what can be considered a
reasonable cost for business practices ??. In theory, a malicious
entity can place so many bids on a tender that it becomes
economically too costly for genuine bidders to place a bid.
However, from a practical point of view, the high number of
bids necessary to make Gas cost extranomical would cost the
malicious entity a huge sum of money. Furthermore, such a
high number of bids would also be easily detected by the
tendering organisation and any third party monitoring the
tendering process. Therefore, such an attack might not be
an attractive prospect for a maligned actor.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Openness and transparency are frequently discussed in
the public service domain. Traditionally it has been difficult
to build a transparent governance model. This was because
it required an investment of both time and money from
all stakeholders, especially the citizens. With the increasing
adoption of e-government and open government initiatives,
public opinion is in favour of developing innovative solutions
that can increase openness and transparency in government
activities with minimum cost to citizens. For citizens to be
involved in monitoring the governance activities, they need
efficient tools and intuitive assessment that gives clear results.
To build such an environment, blockchain and smart contracts
show great potential. In this paper, the government tendering
process is implemented in the blockchain environment to
provide an open and fair tendering scheme. Based on the
proposed architecture, we put forward three variants that were
then implemented on Etherium to show their applicability,
Gas cost and computational performance. The main objective
of the paper was to show that the tendering scheme can be
made fully open, autonomous, fair and transparent using smart
contracts. To this end, it was successful. There are two future
research directions, 1) build additional government services
on blockchains to increase openness and transparency and 2)
enhancing the smart contract platform to be more feature rich,
autonomous and supporting secure distributed execution.

REFERENCES

[1] K. C. Davis, “The information act: A preliminary analysis,” The
University of Chicago Law Review, vol. 34, no. 4, pp. 761–816, 1967.

[2] B. Worthy, “More open but not more trusted? the effect of the freedom
of information act 2000 on the united kingdom central government,”
Governance, vol. 23, no. 4, pp. 561–582, 2010.

[3] R. Heeks and S. Bailur, “Analyzing e-government research: Perspectives,
philosophies, theories, methods, and practice,” Government information
quarterly, vol. 24, no. 2, pp. 243–265, 2007.

[4] P. McDermott, “Building open government,” Government Informa-
tion Quarterly, vol. 27, no. 4, pp. 401 – 413, 2010, special Issue:
Open/Transparent Government.

[5] G. Lee and Y. H. Kwak, “An open government maturity model for social
media-based public engagement,” Government Information Quarterly,
vol. 29, no. 4, pp. 492–503, 2012.

[6] H. Yu and D. G. Robinson, “The new ambiguity of open government,”
UCLA L. Rev. Discourse, vol. 59, p. 178, 2011.

[7] D. Jayasinghe, K. Markantonakis, and K. Mayes, Optimistic Fair-
Exchange with Anonymity for Bitcoin Users. IEEE Computer Society,
11 2014, pp. 44–51.

[8] M. T. Özsu and P. Valduriez, Principles of distributed database systems.
Springer Science & Business Media, 2011.

[9] R. Beck, J. S. Czepluch, N. Lollike, and S. Malone, “Blockchain-the
gateway to trust-free cryptographic transactions.” in ECIS, 2016, p. 153.

[10] S. Yin, J. Bao, Y. Zhang, and X. Huang, “M2m security technology of
cps based on blockchains,” Symmetry, vol. 9, no. 9, p. 193, 2017.

[11] T. Jacobs, Blockchain: A Step-By-Step Guide For Beginners To Implement-
ing Blockchain Technology And Leveraging Blockchain Programming
(Volume 1). USA: CreateSpace Independent Publishing Platform, 2017.

[12] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[13] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 839–858.

[14] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016, pp. 91–96.

[15] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[16] A. J. Menezes, Elliptic curve public key cryptosystems. Springer Science
& Business Media, 2012, vol. 234.

[17] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[18] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 3–16.

[19] C. Wimmer and T. Würthinger, “Truffle: a self-optimizing runtime system,”
in Proceedings of the 3rd annual conference on Systems, programming,
and applications: software for humanity. ACM, 2012, pp. 13–14.

[20] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

	I Introduction
	I-A Paper's Contributions

	II Blockchain Technology and Transparent Governance
	II-A Open Governance
	II-B Government Tendering Framework
	II-C BlockChain Technology
	II-D Smart Contracts

	III Open and Transparent Tendering Framework
	III-A Overall Architecture
	III-B Security and Operational Requirements

	IV Implementation and Operational Evaluation
	IV-A Implementation Details
	IV-A1 Full Track Scheme
	IV-A2 Protected Scheme
	IV-A3 Stateless Scheme
	IV-A4 Bid Evaluation

	V Security and Operational Analysis
	VI Conclusion and Future Research Directions
	References

