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Abstract—Footwear outsoles acquire characteristics unique to
the individual wearing them over time. Forensic scientists largely
rely on their skills and knowledge—gained through years of
experience—to analyse such characteristics on a shoeprint. In this
work, we present a deep learning model that, for the first time,
can predict the wear pattern on a unique dataset of shoeprints
that captures the life and wear of a pair of shoes. We also
present an additional architecture able to reconstruct the outsole
back to its original state on a given week, and provide empirical
evaluations of the performance of both models.

Index Terms—Shoeprints, Deep Learning, CNN, Predictive
Modeling, Wear-and-Tear

I. INTRODUCTION

Among the many forms of physical evidence found at crime
scenes, shoeprints are one of the most frequently seen, with
a high degree of evidential value attributed to them. Marks
and prints formed by the footwear worn by the criminal(s) are
frequently found at scenes-of-crime and their study was being
recorded as early as 1786 [1]. This is in part due to the ability
of a shoeprint to uniquely identify an individual, by evaluation
of the combination of tears, nicks, cuts, scratches and other
abrasions that form on the outsole as a function of wear.
This ‘wear pattern’ is influenced by biomechanics such as
the weight and gait of the wearer, enviromental stressors, and
additional factors like the material of construction. Bodziak
defined wear as “the erosion of the outsole due to abrasive
forces that occur between the outsole and the ground” [2]. By
considering the wear pattern, in addition to the pattern of the
outsole introduced in the manufacturing process, one is able
to ascertain if the shoe of a suspect formed the print found at
the crime scene.

Inspite of their uniquely identifiable nature and their fre-
quency of appearance at scenes-of-crime, shoeprints are not

often used as evidence in a court of law. This is in part
due to the variation in quality of scene-of-crime impressions,
which are often incomplete or degraded. Another challenge is
the large search space of potential outsoles; arising from the
number of outsoles being designed and manufactured.

Consider the scenario where a substantial period of time
elapses between the perpetration of a crime and the identifi-
cation of suspect(s). In such situations, it falls on the forensic
scientist to evaluate the outsole and determine if it matches the
scene print while accounting for the formation of additional
wear features. This task involves the careful analysis of the
outsole and requires intimate knowledge of the breadth of
factors and variables that influence wear patterns.

The forensic examiner’s interpretation of the shoeprint and
its admissability as evidence is built through their years of
experience in studying shoeprints and the individualising char-
acteristics that contribute to the wear pattern. Such knowledge
is notoriously hard to quantify and explain. Deep learning
models have made large strides in developing representations
of domains like these.

In this work, we adapt a convolutional neural network
(CNN) architecture for the task of pixel-wise prediction of
shoeprint wear. Our core contributions are as follows—(i) we
describe a methodology that utilises a CNN to predict outsole
wear formation on a unique dataset of shoeprints, and (ii) an
alternate architecture that is able to reconstruct the outsole
back to its original state on a given week within a timeframe
of one year.

In the following sections we first survey the related literature
in the domains of forensics and shoeprints, and deep learning;
followed by a description of our novel dataset. We proceed to
detail our methodology, analyse the results of our experiments,
and finally we conclude the paper.
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(a) Cropped region of heel on week 4.
Noise is evident.

(b) Noise map of image 1a obtained via
thresholding.

(c) Fully filtered image, showing mitigated
noise.

Fig. 1: Intermediate stages of the denoising methodology developed for our dataset.

II. RELATED WORK

A. Shoeprint Classification

The responsibilities of the forensic footwear examiner are:
(i) to identify the make and model of a given shoeprint, by
comparing it against a large set of known prints and (ii)
to consider the individualising characteristics of the print to
assign the print to an owner. The first task is largely objective
in nature; by comparing the scene-of-crime print against a
database of reference shoeprints, one is able to find a match
and retrieve the relevant metadata. Numerous computational
methods have been developed over the years to assist the
examiner in this task.

Automated approaches to shoeprint retrieval and classifica-
tion have seen a multitude of approaches — Fourier features
[3], fractals [4], power spectral density [5], Hu moment invari-
ants [6], Harris points and SIFT descriptors [7], Mahalanobis
distance as feature descriptors [8], wavelets as an edge detector
and neural networks for recognition [9], and transforms like
Radon and Gabor [10] [11].

In 2017, Richetelli et al. [12] postulated that the recent
advances in deep learning could carry over to field of footwear
classification. Kong et al. [13] and Zhang et al. [14] were some
of the first to apply CNNs to this task. However, they have not
considered wear patterns and our work can be seen as a new
contribution to the literature on deep learning applications in
forensic science.

B. Shoeprint Wear

While the above research considers the challenge of using
computational methods to aid in the task of shoeprint identifi-
cation, our focus is on using computational methods to model
shoeprint wear; specifically, we consider how outsole features
change over time. Research in this domain is sparse, with
a few considering wear formation manually [15] [16], and
fewer using pattern recognition techniques [17] [18]. All of
the above mentioned studies vary in scale, time, and ambition.

Understandably, controlling the variables that influence outsole
wear is in itself a challenge.

C. Image-to-Image Regression

Given our dataset of 52 shoeprints, described in III, we
wish to learn a model of the wear pattern captured within.
Once trained, this model should be capable of extrapolating
the wear pattern on seeing a new shoeprint. Fundamentally, we
approach this as an image-to-image regression task. The liter-
ature contains many successful applications of deep learning
to these types of dense prediction tasks; such as image in-
painting [19] [20], super-resolution [21], denoising [22], and
image recovery from compressed representations [23]. Deep
neural networks (DNNs) and their convolutional variants have
established state-of-the-art performance over nearly all facets
of computer vision tasks. One of the primary advantages of
using DNNs is their ability to learn end-to-end mappings
without the use of image priors, or the explicit engineering
of features.

Our dataset shows the life and wear of a pair of shoes
through impressions captured at evenly spaced intervals of
time. To the best of our knowledge, this is the first time such
a dataset has been used in the literature of deep learning. A
closely related problem is video frame generation/prediction
[24] that involves operations on inputs in the spatial domain,
while simultaneously capturing correlations in the temporal
domain. Notably, in video frame prediction, one has access to
an extensive amount of data by using each frame in the video
sequence as a datapoint. Finn et al. [25] use a combination
of convolutional and LSTM layers to model pixel motion and
optical flow. They introduce a dataset with 1.5 million video
frames and a model that predicts video sequences up to 1
second in the future. Our dataset, described in the next section,
is significantly smaller in size.

III. DATASET

For the collection of our dataset, we limit the influence
of environmental variables and consider the formation of
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Fig. 2: A visualisation of the architecture of our CNN.

wear characteristics on a single pair of shoes, worn daily
by one individual, over the course of one year. A pair of
Asics-brand men’s sneakers were purchased and worn by the
forensic specialist everyday for a period of 52 weeks in an
urban environment. Impressions of both outsoles were then
captured every fortnight using BVDA gels. These impressions
were scanned into high-resolution digital negative TIFF files,
yielding a total of 52 files, including week 0 (unfortunately,
impressions were not captured on week 6). Each file is a 256-
level grayscale image.

The outsole itself consists of approximately 63 ‘block
features’ of varying size and shape. Some of these block
features contain other features within — such as the Asics
brand logo, which is is not visible in the impression from week
0, but reveals itself over time; a text pattern that says ‘GEL’;
and circular ‘holes’ present in many of the block features.
These are all patterns imprinted by the manufacturer and their
appearance and disappearance can be observed as they wear.

During the course of recording these impressions, many
forms of unwanted features were captured in addition to the
shoeprint. These included air bubbles, fingerprints, dust, debris
overlapping the shoeprint, ghosting of the impression, and
areas of missing detail. Of these, the most egregious was
determined to be the debris which appeared to consist of fibres
and other objects that were transferred from the outsole and
onto the gel in the process of imprinting. The debris was
particularly problematic due to it obscuring regions of interest
in the shoeprint. We refer to these unwanted features that
obscured the object of interest as ‘noise’.

To address this, we developed a denoising method capable
of maintaining the high and low-level wear patterns, while
simultaneously mitigating the noise present in the dataset. This
methodology operates by using a local adaptive thresholding
to obtain a binary mask, ROI filtering and morphological oper-
ations to process the mask, creating a noise map which allows
for processing each block feature of the outsole independently,
and using an averaging filter to mitigate the noise. Figure 1
highlights a few stages of this denoising methodology. The
shoeprint images were cropped, denoised, and registered in

the data preparation stage.
Next, we articulate the CNN architectures developed to

model the wear pattern on this dataset.

IV. METHODOLOGY

For the task of modelling wear patterns, we implement a
CNN architecture in the style of an auto-encoder, inspired by
the work in Tatarchenko et al. [26] and Vukoti et al. [27]. This
architecture consists of three branches—an encoder Fθ(·) that
takes as input a shoeprint image X , a delta branch Gω(·) that
encodes a representation of time from a parameter ∆t, and a
decoder Hβ(·) that learns an upsampling function to predict
the wear pattern. These branches take the form shown in (1).

Fθ = σ(X ∗ θ) ≡ f,
Gω = σ(∆t · ω) ≡ g,

Hβ = σ(f ++ g ∗′ β) (1)

where σ represents an activation function—ReLU or sig-
moid, ∗ represents the convolution operation, ++ the concate-
nation of two tensors, and ∗′ the transpose convolution. Bias
terms are omitted for notational convenience.

The encoder is made up of 5 convolutional layers that act
as feature extractors by performing discrete convolutions over
the input image, with an increasing depth of feature maps.
We double feature maps with each layer, going from 32 in
the first layer, to 512 in the last convolutional layer. The
delta branch consists of 2 fully connected layers; the output
of this branch is reshaped and concatenated with the output
of the last convolutional layer. This tensor is then fed into
the 5 transpose convolutional layers of the decoder, which
successively upsample the extracted feature maps and the
output of the delta branch to produce an output of the same
dimensions as the input.

Transpose convolutional layers are used here as a learnable
upsampling function, as opposed to a fixed upsampling func-
tion (such as bilinear) in combination with 2D convolutions,
as frequently seen in the literature. We discard pooling layers



(a) Input image of left outsole on
week 48.

(b) ∆t = 8. (c) ∆t = 24. (d) ∆t = 34.

Fig. 3: Predictions of the model described in IV-A, given week 48 as input and a range of values for ∆t.

as traditionally seen in convolutional architectures since our
denoising method removes redundant information in the image
in the pre-processing stage.

The parameters of the network are updated by minimising
the squared error loss:

L =
1

n

n∑
i=1

||Hβ(Fθ(Xi) ++Gω(∆t))− Yi| |22 (2)

where n is the number of training images presented to the
network in one epoch, Xi ∈ R2 is the ith image, and Yi the
ground-truth image that corresponds to the input.

A visualisation of this architecture is shown in Figure 2.

A. Moving Forward: Outsole Wear Prediction

Our first model is designed to extrapolate wear patterns
present in the shoeprint and form a prediction of what they
might look like after a given period of time, denoted by ∆t.
The input image is presented at current relative time t0 = 0.
We train this model to predict the appearance of the input, after
the elapsed time ∆t, where ∆t ∈ [0, 52]. ∆t is incremented in
steps of 2 to maintain consistency with the timeframe captured
in our dataset. The model then predicts the shoeprint at t0+∆t.

Formally, we train the model by feeding inputs as batches
of {X,∆t, Y } tuples, where X represents the input image
centered at a current relative time t0 = 0; ∆t represents the

desired temporal displacement; and Y represents the ground
truth shoeprint image after the desired temporal displacement.
Figure 3 shows a sample of predictions from this model.

B. Moving Backward: Outsole Reconstruction

Our second model is one that reconstructs the input
shoeprint back to its state on any given week in a timeframe
of one year. For this task, we use the same architecture as
in IV-A. The only difference with this model is in how we
design the ∆t parameter. Here, ∆t is represented as a logical
vector ∈ R52×1; wherein each element represents a week of
the year, taking a value in {0, 1}, such that the desired week
corresponding to the ground truth Y is represented as 1, and
all other weeks represented as 0.

Once again, we train the model by presenting {X,∆t, Y }
tuples, and design the logical ∆t vector in increments of 2 to
correspond with the fortnightly nature of our captured dataset.
Figure 4b shows a reconstruction produced by this model.

V. EXPERIMENTS

A. Parameters

Model training is performed by dividing the dataset of 52
images into an 80/20 training/test split. The first 42 images
— both left and right outsoles — are used to train the model
in conjunction with a MSE loss and the Adam optimisation



(a) Input image of right outsole on week
42.

(b) Model prediction given ∆t = 20. (c) Ground truth image of right outsole on
week 20.

Fig. 4: Outsole reconstruction predicted by the model detailed in IV-B.

algorithm [28]. For training model IV-B, the split is reversed
— i.e. we use the last 42 images for training, and test with the
remaining images in our dataset that capture the start of our
timeline. We use a learning rate of 1e−5 and train for 10,000
epochs. Activation functions throughout are the ReLU; except
for the last layer which uses a sigmoid function to obtain
outputs ∈ [0, 1]. We found the same hyperparameters to be
effective for both our models.

Our dataset is composed of 52 grayscale images with a reso-
lution of 13750×5500. Fitting this dataset into memory during
training required downsampling it to 640×256. We train both
models end-to-end from random initialisation, to generate the
desired output outsole given the image of a shoeprint from
our dataset. Alternative learning rates, initialisation schemes,
optimisers, and loss functions were evaluated before settling
on the above.

B. Results

Our network successfully learns to model the high-level
wear pattern embedded in the shoeprints. From observing the
outputs, it is evident that the model has formed an internal
representation sufficiently capable of predicting the wear pat-
tern found in the dataset. Relevant regions of Figure 3 have
been cropped and highlighted in Figure 5. Similarly, Figure 6
consists of crops of Figure 4. We compare the predictions from
the model against the ground-truth images from our dataset
and note the below observations:

• In Figure 5a we see a cluster of four block features on
the right edge of the outsole. In the model’s predictions,
we see them degrade and eventually merge in the final
prediction, ∆t = 34. From the ground-truth image
of week 52, we confirm that this change has indeed
occurred; although clearly the model’s estimation of 20
weeks is far off from the reality of this eventual merger



(a) Cluster of block features and their wear predicted by model.

(b) Dot feature predicted by model.

(c) Outsole feature predicted by model.

Fig. 5: Highlights of relevant regions of predictions shown in Figure 3. Encircled in blue is the input to the model of the left
outsole on week 48. Circled in red are the predicted wear patterns of the model, given ∆t values of 8, 24, and 34, respectively
from left to right.

materialising in 4 weeks.
• Figure 5b shows two ‘dot features’ visible in the first

prediction of ∆t = 8; note that these two features are
not present in the input image of week 46. This feature
is present throughout the outsole on many of the block
features but have disappeared through wear-and-tear. It
also happens to be visible in this exact region in all
of the training images—weeks 0 through 42—but had
eroded from the outsole by the time the input shoeprint
was captured.
Interestingly, in the model’s latter two predictions—
∆t = 24, 34—we see the feature degrade and eventually
disappear, in line with the ground-truth; showing that the
model has learned the wear development on this and
similar features, despite consistently observing the dot
features in this region throughout the training images.

• Figure 5c highlights a ‘ridge’ feature seen in all the
predictions, but not in the input. We verify through our
dataset that this is in fact a feature of the outsole, seen
in roughly half of the images in the training set, but
is missing in the input image. Note how the model’s
predictions show this ridge growing progressively larger
in size, as the outsole erodes.

• In the outsole reconstructions of model IV-B, we see the
successful reproduction of the Asics brand logo (Figure
6a), and the separation of block features that had merged
through wear (Figure 6b). Also note the reconstruction
of the feature that spells the word ‘GEL’, imprinted by
the manufacturer.

• The bottom region of the heel in the prediction seen in
Figure 4b is blurry and poorly defined. This is due to
the inconsistency of the appearance of this region in the
dataset. During the data collection phase this region was
either frequently occluded by fingerprints and debris, or
ill-formed due to a lack of pressure between the outsole
and the gel while collecting the impression. We deduce
that this inconsistency in appearance is what has led the
model to develop a fuzzy representation of this region.

From our evaluation of the results, we ascertain that our
methodology is sufficient to capture the wear pattern from our
dataset, and to perform both outsole prediction and reconstruc-
tion with reasonable accuracy.

We also note that our network is handicapped by a lack of
training data. In the era of deep learning, where models are
routinely trained with millions of datapoints, we have sufficed
with a meagre 52 images. Despite the size of the dataset,



(a) Asics brand logo. (b) Block and ‘GEL’ features on the outsole.

Fig. 6: Highlights of relevant regions of outsoles shown in Figure 4. Encircled in blue is the input to the model of the right
outsole on week 42. Circled in red is the predicted reconstruction of the model for week 20, and circled in green is the
ground-truth image of week 20 from the dataset.

each pixel in the input image is a feature the model can
learn from, and the 640 × 256 resolution of our training data
is purely limited by processing power; allowing for a more
robust model to be trained using higher resolution images.
The generalisation ability of deep learning models can also
benefit from an adequately sized dataset that fully captures
the diversity of the problem domain.

Empirical evaluations are given in the next subsection.

TABLE I: Mean and standard deviation of SSIM scores.

Model IV-A Model IV-B
Mean 0.8645 0.8596
STD 0.0381 0.0345

C. Evaluation

For an objective evaluation of the performance of our
models, we use the standard metric of Structural Similarity
Index (SSIM) [29], by comparing the predictions of the models
against the ground-truth images from the validation dataset.
SSIM is defined in (3).

SSIM(f, g) = l(f, g)c(f, g)s(f, g) (3)

where 
l(f, g) =

2µfµg+C1

µ2
f+µ

2
g+C1

,

c(f, g) =
2σfσg+C2

σ2
f+σ

2
g+C2

,

s(f, g) =
σfg+C3

σfσg+C3

where l, c, and s denote the luminance, contrast, and struc-
ture comparison functions respectively. The term f denotes
the ground-truth image and g the predicted image. µ and σ
denote mean and standard deviation of image luminance and
contrast, respectively. σfg is the covariance between f and g.
C1, C2, and C3 are positive constants employed to avoid a
null denominator. The SSIM index is a postive value in [0, 1],
where 0 denotes no correlation and 1 denotes f = g.

The results are given in Table I. As evident, the models have
an average accuracy of 86%.

Additionally, we compared Peak Signal-to-Noise Ratio
(PSNR) (4) scores for our models.

PSNR(f, g) = 10 log10(2552/MSE(f, g)) (4)

Once again, in (4) as in (3), f and g denote the ground-truth
and predicted images, respectively; and MSE is the mean
squared error — i.e. MSE between f and g. The PSNR score
for model IV-A has an average of 22dB, while model IV-B
scores 21.3dB. Results are given in Table II.

TABLE II: Mean and standard deviation of PSNR scores.

Model IV-A Model IV-B
Mean 22.0065 21.3681
STD 1.8930 1.8820

VI. CONCLUSION

We present a convolutional neural network architecture in
the style of an auto-encoder that, for the first time, can model
the wear pattern collected in a unique dataset of shoeprints. We
show that the model can learn an accurate representation of the
pattern of wear-and-tear found in the shoeprints by applying it
to predict the wear pattern on the outsole after a given temporal
displacement; and by having it reconstruct the outsole back to
its original state at a previous point in time. We address the
drawbacks of the model and present objective evaluations of
its performance, which show the predictions of both models
to be 86% accurate.

This work adds to the scant literature on shoeprint wear
patterns by presenting a computational model of outsole wear.
The model presented within can be applied to supplement the
skills and expertise of the forensic examiner in their analysis
of crime scene shoeprints; and additionally to train the novice
forensic scientist to hone their skills.
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