2005.06350v1 [cs.CR] 13 May 2020

arxXiv

Cyclic Bayesian Attack Graphs: A Systematic
Computational Approach

John Mace
Newcastle University

Isaac Matthews
Newcastle University

Newcastle upon Tyne, U.K. Newcastle upon Tyne, U.K. Newcastle upon Tyne, U.K.

1.J.Matthews2 @ncl.ac.uk

Abstract—Attack graphs are commonly used to analyse the
security of medium-sized to large networks. Based on a scan of
the network and likelihood information of vulnerabilities, attack
graphs can be transformed into Bayesian Attack Graphs (BAGs).
These BAGs are used to evaluate how security controls affect a
network and how changes in topology affect security. A challenge
with these automatically generated BAGs is that cycles arise
naturally, which make it impossible to use Bayesian network
theory to calculate state probabilities. In this paper we provide
a systematic approach to analyse and perform computations
over cyclic Bayesian attack graphs. Our approach first formally
introduces two commonly used versions of Bayesian attack
graphs and compares their expressiveness. We then present an
interpretation of Bayesian attack graphs based on combinational
logic circuits, which facilitates an intuitively attractive systematic
treatment of cycles. We prove properties of the associated logic
circuit and present an algorithm that computes state probabilities
without altering the attack graphs (e.g., remove an arc to remove
a cycle). Moreover, our algorithm deals seamlessly with all cycles
without the need to identify their types. A set of experiments using
synthetically created networks demonstrates the scalability of the
algorithm on computer networks with hundreds of machines,
each with multiple vulnerabilities.

Index Terms—vulnerabilities, attack graphs, Bayesian net-
works, security risk assessment, probabilistic graphical models

I. INTRODUCTION

An attack graph is a representation of a system and its
vulnerabilities in the form of a directed acyclic graph. It
models how a system’s vulnerabilities can be leveraged during
a single attack to progress through a network. In recent years,
several authors have pursued to combine Bayesian statistics
with attack graphs to automatically prioritise network vulner-
abilities from a probabilistic view point, resulting in Bayesian
Attack Graphs [1]-[8]. The literature discusses a variety of
considerations when generating BAGs [9], [10], including
using the Common Vulnerability Scoring System (CVSS) to
associate probabilities with vulnerabilities [! 1]. This approach
has received uptake in practical security analysis systems,
in particular in MulVAL [12], which automatically generate
BAGs from network scans and CVSS information.

Once a BAG has been generated it can be analysed in
various ways. One approach is an exclusively static analysis,
in order to identify the weakest areas of a network as well
as identify quantitatively the risk that a certain asset will be
compromised in the case of an attack. Further extensions to

Aad van Moorsel
Newcastle University
Newcastle upon Tyne, U.K.

Sadegh Soudjani

Newcastle University

this kind of analysis include the introduction of attack profiles
to modify the probabilities; for example this could be done
using the attack complexity metric in the CVSS base vector
to determine the ease of an attack. One approach to this is
detailed by Cheng et al. [13] along with a method to include
dependency relationships between vulnerabilities. Another ap-
plication of the BAG is as a dynamic risk assessment tool
where an administrator can model new security controls and
their effects on a network, as well as dynamically analyse
a deployed network’s most likely attack paths, that can be
updated dependent on information from an intrusion detection
system [14].

The majority of the techniques used to calculate probabili-
ties for BAGs require that they do not contain ‘cycles’ but are
allowed to have ‘loops’ [9], [11], [15]. Such acyclic BAGs
follow the monotonicity principle, that an attacker will never
return to a previous state. However, networks that arise in
practice when using tools such as MulVAL routinely contain
cycles. These cycles arise naturally, as we will illustrate in
Section II-A for a canonical example.

To deal with cycles in BAGs, the existing literature suggest
to remove edges from the graph to prevent the attacker
backtracking [7], [11], [16]. There are a number of practi-
cal drawbacks to this approach, especially when carried out
outside the analysis algorithm, thus altering the model. For
instance, removing an edge can make reasoning about the
graph for a cyber security professional confusing, if the graph
is examined by hand to identify specific routes and there are
edges missing for the calculations. In addition, avoiding cycles
that occur when generating the BAG could be impractical and
take a ‘“substantial amount of time” [17] to ensure an edge is
not cycle-causing whenever a new edge is being added to the
graph.

In this paper we propose a systematic computational ap-
proach for analysing cyclic BAGs, combining formalising
models (attack graphs, BAGs and variants) and their prop-
erties throughout. We integrate the resolution of cycles in the
algorithm for computing state probabilities of the BAG. The
benefit of our approach is twofold. First, we establish a more
formal base for the discussion of attack graphs, (cyclic) BAGs
and solution techniques for BAGs, something that has not
been strongly developed in the literature thus far. Secondly,
we provide a single unified solution algorithm for BAGs that

resolves the problem of cycles for any cyclic BAG, without
altering the attack graph.

Our most significant contribution is a single unified solution
to the static analysis of any BAG that does not modify the
graph in any way while being able to run on graphs containing
cycles. This can be used to properly analyse security threats to
a network and correctly prioritise remediation steps. Moreover,
when applied to acyclic BAGs, our solution provides exactly
the same results identical with the outcome of approaches in
the literature that deal only with the acyclic case, thus is a
generalisation of these approaches.

More specifically, we first formalize two common types
of attack graphs, and compare their expressiveness. The
AND/OR style of attack graphs is the most powerful and is
used subsequently throughout the paper. We then introduce a
novel interpretation and formalization of attack graphs using
combinational logic circuits that helps us reason about cycles
more effectively. Combinational circuits allows one to capture
intuitively the notion of subsequent visits to the same state,
which we use to reason about cycles. We show that the types
of cycles studied in the literature correspond to different ways
in which probabilities change as a function of the visit count
of a state.

Based on the formalization and the associated intuition, we
derive an algorithm that handles cycles in BAGs regardless of
their type in a natural manner. Due to the reasons mentioned
above, the algorithm does not explicitly identify the edges in
the attack graph that should be removed. Instead, it integrates
the identification of cycles with the solution algorithm and
then terminates the recursion. The algorithm is suitable for
solving state probabilities in the BAG, and gives results for
acyclic BAGs that are identical with the output of traditional
solvers for acyclic BAGs.

To study the scalability of our algorithm, we generate
synthetic BAGs of various size, in a manner similar to [3].
We conclude that the algorithm can be used with BAGs of
size 15000 nodes with reasonable computation time, implying
it can scale to be used with networks of at least 750 hosts
each with 5 vulnerabilities.

The rest of this paper is organised as follows. Section II
introduces the network architecture that will be used as a
running example throughout the paper. It also provides the
motivation for our contributions and discusses two common
formalisms for the construction of BAGs, then relates and
shows the equivalence between the two formalisms. Section III
introduces Bayesian networks and relates the process of Vari-
able Elimination for Bayesian networks to the calculation of
probabilities in acyclic BAGs. Section IV shows how an attack
graph can be interpreted as a deterministic combinational
circuit with probabilistic inputs. Section V presents our unified
solution for dealing with both cyclic and acyclic BAGs, and
section VI details the experiments run for our solution on
both common and simulated examples. Finally, related works
and our conclusions are presented in Sections VII and VIII,
respectively.

Internet W eb

Server [°

net

DMZ '

Internal
Firewall

Database
. Server
L
T
User %l

External
Firewall

Internal
—

W orkstations

User

O—

Fig. 1. Network architecture used as a running example.

II. MOTIVATION AND PROBLEM FORMULATION

A. Running Example

As a motivating example for this work, we will consider a
network architecture that could be used in a small enterprise
situation. It is an example that has been used in the literature
[8], [18]. The architecture is shown in Figure 1. The network
comprises of a Database server on the internal network.
This can be accessed through an internal firewall by both
the user Workstations and the Webserver, that exists in the
demilitarized zone subnet. This Webserver connects to the
Internet via an external firewall.

For this scenario, we suppose a vulnerability scan has been
run on the network, revealing three vulnerabilities that are
present. There is a MySQL vulnerability on the Database
server, an Apache vulnerability on the Webserver, and an
Internet Explorer vulnerability on the Workstations. The work-
stations are modelled as a single host and imagined to be
all similarly set up and patched. This is not necessarily the
case however, and will depend on the specific setup for the
organization.

Figure 2 is the corresponding BAG for this situation. It is
comprised of two node types; diamonds (OR nodes) represent
a state that an attacker can be in like a certain level of privilege
with respect to a host, and ellipses (AND nodes) are actions
like exploiting a vulnerability or connecting to a host. Section
II-B gives a formal definition of these nodes. For clarity, all
Leaf nodes are removed so that the different routes to the
Database server are easier to see, and have been numbered so
they may be referred to (a description of each node can be
found in Appendix B). The directed edges are dependencies,
an OR node can be reached if any of the parents are reached,
whereas an AND node can only be reached if every parent
has been reached. The colours correspond to the colours in
Figure 1; blue is a node that relates to the Workstations, green

Fig. 2. An excerpt of the BAG of the running example. Node colours correspond with the components of the network presented in Figure 1.

to the Webserver, and red to the Database server. Node O in
white represents an attacker from the Internet.

A feature of this graph is the presence of loops that
has been already studied in the literature. For instance, the
sequence of nodes (11,9,8,7,6,4,3,23,11) forms a loop
(cf. Definition 2.1). Another important aspect of the graph is
the presence of cycles. For instance, the sequence of nodes
(14,12,11,9,8,7,6,21,14) forms a cycle due to node 21
joining back to node 14. This cycle represents the fact that
there are two different ways to gain access to a Workstation,
and that once access is achieved a future state also allows a
Workstation to be compromised. A user can simply access a
malicious website, shown on the route along nodes 15 and
14, or alternatively an attacker could exploit the vulnerability
on the Webserver (nodes 22, 8, 7, 6) and then compromise a
website from there using the Webserver to gain access to the
workstation.

Because this cycle can be entered into from multiple nodes
(either 14 or 8), calculating the probability of an attacker
reaching node 14, or indeed any other node in the cycle,
cannot be done using basic approaches to solving BAGs.
The monotonicity principle, which states that an attacker will
always increase their privilege [19], cannot be used to remove
the edge (between 21 and 14) either. This is because it is
possible for an attacker to reach node 14 for the first time
using the edge (21 to 14) that needs to be removed, if they
enter the cycle travelling from node 22 to node 8. As such there
is no loss of privilege and the graph cannot be simplified. Our
approach performs the computation on the graph without the
need for any simplification.

A more complete discussion of the scenario and attack
graph, including the specific vulnerabilities, can be found in
Appendix B.

B. BAG Formalisms

In this section, we introduce two different attack graph for-
malisms widely used in the literature for modeling a network
from the security perspective. The first one is proposed in
[17] and the second one in [20]. We will then show in Section
II-C that the second formalism is more general than the first
one and work with that representation after this section. Note
that both formalisms require the attack graph to be acyclic. We
use these formalisms as a basis for generalising them to cyclic
graphs. We first define cycles and loops in directed graphs.

Definition 2.1: Given a directed graph G = (V, E) with the
set of nodes V' and the set of edges £ C V x V, a cycle is

a sequence of nodes (v1,vs,...,v,) such that (v;,v;41) € E
for all ¢ and v,, = vy. The graph is called acyclic if it does not
have any cycles. A loop is a sequence of nodes (vy,vs, ..., v,)
such that v, = vy and for any i, either (v;,v;+1) € E or
(Ui+1;vi) € F.

Loops can be seen as cycles in the undirected version of the
graph, i.e., when the pair (v,v’) is treated the same as (v’, v).
According to Definition 2.1, any cycle is also a loop but in
the sequel, we use the word ‘loop’ to refer to those that are
not cycles. Moreover, an acyclic graph can still have loops.
Most of the literature on BAGs is focused on acyclic graphs
as defined next.

1) Plain BAGs:

Definition 2.2: An attack graph G is a directed graph G =
(EUC,R, UR;) where E is a set of exploits, C' a set of
conditions, and R, CC x F and R; C E x C.

Remark 1: According to Definition 2.2, the attack graph is

bipartite, i.e., the set of nodes of the graph is divided into two
disjoint and independent sets £ and C' such that every edge
can only connect a node from one to another. That is why the
set of nodes is partitioned into a subset of C' x E and a subset
of E x C.
The edges connecting conditions to exploits have a particular
meaning: all the conditions connected to an exploit must be
satisfied in order to execute that exploit. This is the equivalent
of taking the conjunction of the incoming conditions to the
exploit. Similarly, any of the exploits connected to a condition
can be used to satisfy that condition. This is equivalent to
a disjunction between multiple exploits that satisfy the same
condition. Such an interpretation together with individual
scores assigned to the nodes fully characterises the attack
model.

Definition 2.3: Given an acyclic attack graph G = (E U
C, R, UR;), and an individual score assignment function p :
E U C — [0,1], the cumulative score function P : EUC —
[0,1] is defined as

(e) = p(e) - eer, () Ple

(¢)=p(c), if Ri(c)=10)]
(c) =p(c) - Beeri(Ple), if Ri(c) # 0,

where ©.cp, ()P (e) is the probability of the union of exploits
in R;(c) and is computed assuming the exploits are indepen-
dent.

The acyclic attack graph G = (EUC, R, U R;) together with
the individual scores defines a plain BAG. Note that attack

P
P
P

graphs can in general have cycles but plain BAGs are defined
with acyclic attack graphs.

2) AND/OR BAGs: The second formalism of BAG is de-
fined by Ou [20] and is used in MulVAL [12].

Definition 2.4: A Bayesian attack graph is defined as a
directed acyclic graph G = (V, &) where nodes V are con-
nected by edges £. The set of nodes is comprised of three
types of nodes, V = V; UV, UV, and edges are defined as
ei; € E,e;; = e(v;,v;) where each edge e defines a mapping
from node v; to node v;.

The sets of nodes are defined as follows:

e V: the leaves in the graph, having no parents, and repre-
sent specific configurations and conditions in the network;
this includes information about programs running on a
host, network connection information in the form of
HACLs (host access control lists), and the existence of
vulnerabilities.

e V,: the AND nodes, which have requisite conditions all
of which have to be fulfilled in order to be accessed. In
other words there is a conjunctive relationship between
the parents of such a node. This set of nodes is used
to represent specific actions that can be taken when
the conditions are fulfilled; this can be something like
movement between hosts when an attacker has fulfilled
the prerequisite of access to one machine and there exists
a configuration node for access between the two nodes,
or could be the remote exploit of a specific vulnerability
given remote access and the existence of the vulnerability
as prerequisites.

e V,: the OR nodes, which have requisite conditions of
which at least one must be fulfilled in order to be ac-
cessed. There is a disjunction between the parents of such
a node. These are specific micro-states in the network
that define something about an attacker’s position in the
system, for example the ability to execute arbitrary code
on a specific host or network access to a specific host. A
macro-state for an attacker would be an enumeration of
these nodes demonstrating the privilege they have with
respect to every host on the network.

Vulnerabilities in the network have a chance to be exploited
when their preconditions are fulfilled, and by exploiting a
vulnerability an attacker achieves a specific state. This state,
once reached, may then afford the attacker a privilege level
on the network that is a requirement for another exploit, or
node. A chain of nodes in the network connected in this way
represents an attack path or route.

We define the access probability P(v) on the node v as the
likelihood of the node being reached in an attack situation.

Definition 2.5: For a given BAG G = (V,€) and a local
probability function p : ¥V — [0,1], the access probability
P .V — [0,1] is defined recursively using the access
probabilities of all parents to the node in conjunction with

the local probability by

p(v ifveV
(v) P’ ifveV,

P(’U) = 3 v’elg(v) (2
p)[1— J[a-Pw@))] ifveV,

v’ €pa(v)

where pa(v) represents the parent set of the node v € V,

pa(v) :={v' € V|(v',v) € E}.
The access probability has a slightly different interpretation
depending on the specifics of the node. For v € V,, P(v)
represents the probability that the attacker will achieve the
state described by node v. For v € V,, P(v) represents the
probability that an attacker will travel along that specific route
to reach the goal state that follows. For v € V;, P(v) represents
the probability of successful exploitation if the node defines
a vulnerability, or is the probability that a specific entry-route
will be used.

Remark 2: Access probabilities P defined in (2) assume
that probabilities P(vp,) are independent from each other
and takes the product of these probabilities to find the access
probability for their child node. This assumption is only true if
the graph of the BAG does not have loops. Otherwise, P(v) in
(2) will only be an approximation of true access probabilities
that can be computed using joint distributions to reflect the
dependencies between the related events. One of these exact
methods is Variable Elimination discussed in Section III-B.

C. Relation Between the Two Formalisms

In the following proposition, we show that the AND/OR
definition of BAGs is more general than plain BAGs, as it
abstracts away the type of nodes being exploits or conditions.
Instead, it puts emphasis on their role in the computation of
access probabilities.

Proposition 2.6: Any plain BAG modelled as in Defini-
tions 2.2-2.3 can be transformed into a BAG modelled as in
Definitions 2.4-2.5.

Proof: Suppose we have a plain BAG with the acyclic
attack graph G = (E U C, R, U R;). Define the set of leaf
nodes as V; := {c € C'|R;(c) = (I}, the set of OR nodes
V, := C\V], and the set of AND nodes V, := E. Take V =
ViUuV,UV, and £ = R, UR;. Then G = (V,€) is an
attack graph satisfying all the requirements of Definition 2.4.
Note that attack graphs of AND/OR BAGs are not necessarily
bipartite, which makes them more general than plain BAGs.

|

IIT. COMPUTATION OF ACCESS PROBABILITIES

The main approach for computing access probabilities of all
nodes is to translate the model into a Bayesian network (BN)
and apply off-the-shelf techniques developed in the literature
for BNs. We first provide the translation of the BAG into a
BN in section III-A and then discuss variable elimination as
one of the techniques for performing probability computations
over BNs in section III-B.

A. BAG Translation to a Bayesian Network

Definition 3.1: A Bayesian network (BN) is a tuple B =
(V,&,T). The pair (V, £) is a directed acyclic graph represent-
ing the structure of the network. The nodes in V are (discrete
or continuous) random variables and the arcs in £ represent
the dependence relationships among the random variables. The
set 7 contains conditional probability distributions (CPD) in
forms of tables or density functions for discrete and continuous
random variables, respectively.

In a BN, knowledge is represented in two ways: quali-
tatively, as dependencies between variables by means of a
directed acyclic graph; and quantitatively, as conditional prob-
ability distributions attached to the dependence relationships.
Each random variable v; € V is associated with a conditional
probability distribution Prob(v;|pa(v;)).

Proposition 3.2: Any BAG G = (V,) as in Definition 2.4
with local probability function p : V — [0, 1] in Definition 2.5
can be translated into a BN B = (V,&,7). The random
variables in)V are all Boolean and the probability tables in

T are constructed as follows. For all v € V],
Prob(v =1) =p(v) and Prob(v=0)=1—-p(v). (3)

For all v € V,, let pa(v) = 1 indicate that all variables in
pa(v) take value equal to one. Then,

Prob(v = 1|pa(v) = 1) = p(v),

Prob(v = 1|pa(v) # 1) =0, 4)
Prob(v = 0|pa(v) =1) = 1 — p(v),

Prob(v = Olpa(v) # 1) = 1.

For all v € V,, let pa(v) = 0 indicate that all variables in
pa(v) take value equal to zero. Then,

Prob(v = 1|pa(v) = 0) = 0,

Prob(v = OJpa(v) = 0) =1 5)
Prob(v = 1[pa(v) # 0) = p(v),

Prob(v = O|pa(v) # 0) =1 — p(v).

Then if the BAG G does not have any loops, we get P(v) =
Prob(v = 1) for all v € V with access probabilities P defined
in (2).

Figure 3 illustrates the construction of probability tables
for an AND node. In this figure, the local probabilities are
p(A) = 0.7,p(B) = 0.8, and p(C) = 0.6. The probability
tables for A and B are constructed according to (3) and for
C according to (4).

B. Variable Elimination

Based on the results of section III-A, the computation of ac-
cess probabilities is equivalent to the computation of marginal
probabilities Prob(v = 1) in the associated BN. Variable
elimination (VE) is a simple and general algorithm developed
in the literature that computes exact values of these marginal
probabilities (e.g., [21]). Given that the structure of the graph
(V, &) models the independence between random variables
associated with the nodes, we can obtain the joint distribution

0.2 038

/

C
A B F T
F F 10 00
F T 10 00
T F 10 0.0
T T 04 06

Fig. 3. A simple BAG with the associated probability tables constructed
according to Proposition 3.2. Local probabilities are p(A) = 0.7, p(B) =
0.8, and p(C) = 0.6.

(o)
e > S
@0@0@0

Fig. 4. A subgraph of the running example indicating a loop.

of the variables as the product of the conditional probability
tables], ., Prob(v'|pa(v’)). Then the marginal probabilities
are computed by taking the sum over the unwanted variables:

Z H Prob(v' |pa(v”)). (6)

v'#v,w'€{0,1} v/ €V

Prob(v) =

VE provides a procedure for the computation of the sum-
product in (6). The main goal of the algorithm is to specify
at each iteration which tables to multiply and which variable
to sum over. The reader may refer to the book [21, Chapter
9] for a detailed discussion on VE.

Proposition 3.3: The access probabilities of Definition 2.5
are equal to the marginal probabilities of the BN of Defini-
tion 3.1 obtained by variable elimination in the case that the
BAG does not have any loops.

In the case that the BAG does have loops, the access
probabilities will not necessarily be equal to the marginal
probabilities calculated using VE. This can be shown by taking
the first loop from Figure 2 and using the local probabilities
shown in Figure 4, then marginalizing node 8 with VE and
calculating the access probability for the same node using (2)
of Definition 2.5. The former gives a probability of 0.7104 for
node 8 being True; the latter gives 0.7795. This discrepancy is
due to nodes 15 and 22 being assumed to be independent while
having a common ancestor (cf. Remark 2). In other words
the probability at node O is being allowed to contribute more
than it should to the final result, hence the higher calculated
probability. This level of discrepancy is already studied in the
literature: VE is known to give the exact values while other

Fig. 5. Logic gate representation of AND and OR nodes.

C
A B F T
F T Ip) pv)
T F 1pv) pv)
T T 1p) pv)

Fig. 6. A graph using definitions 2.4-2.5, with local probability in OR node
C.

computational approaches give approximate values for BAGs
with loops [22].

IV. COMBINATIONAL CIRCUITS WITH PROBABILISTIC
INPUTS

As one of the main contributions of this paper, we look
at the attack graph from a different perspective and model
it as a deterministic combinational circuit with probabilistic
inputs. This interpretation paves the way towards including
and analysing cycles directly in the computation of access
probabilities over attack graphs. Combinational circuits are
mainly studied in the literature [23], [24] from the perspective
of constructing a certain distribution on the output of the
circuit by applying random inputs.

Let us enlarge the attack graph (1, £) with the set of nodes
V = {vi,vs,...,v,} to an augmented attack graph (V,&)
with nodes V := {v1,v2,...,0,,0},v5,...,v,} and edges
E = EU{(v),v1),...,(v),v,)}. The augmented graph is
obtained by adding one node v’ for each node v € V and
connecting it directly to v. The added node v’ has the role
of modeling local probabilities at node v and renders the
behaviour of this node non-probabilistic. Assuming a delay
in the computation of the value of the node, we get one of the
following two equations for each node:

v(k +1) = ga(pa(v)(k),v)

v(k +1) = go(pa(v)(k),v"),

A B F T

F F 1 0

F T 0 1 C

T F 0 1 C o F T

T T 0 1
F F 1 0
F T 1 O
T F 1 0
T T 0 1

Fig. 7. The graph of Figure 6 transformed into a graph with probabilities
only on leaves.

where v(k+1) and pa(v)(k) indicate respectively the value of
node v at k+ 1% iteration and the values of the parent nodes of
V at k™ iteration. The two functions g, and g, correspond to
the AND node or the OR node respectively, and are depicted
in Figure 5 using logic gates. Note that the Leaf nodes can be
treated as either AND nodes or OR nodes.

A demonstration of enlarging an attack graph to make
internal nodes behave in a non-probabilistic way can be seen
in Figures 6 and 7. Figure 6 is an AND/OR BAG, with
the probability table for the OR node shown to the right.
We can move the local probability to a Leaf node, and as
such all the internal probability tables simply become logical
AND and OR tables. This is shown in Figure 7, where the
equivalent BAG is shown, and the left and central probability
tables can be recognised as logical OR and AND truth tables
respectively, with the rightmost probability table containing
the local probability on a leaf of the graph.

Theorem 4.1: The behaviour of an attack network can be
modelled as a combinational circuit with probabilistic inputs.
The value of the variables are changing according to the
equation

vi(k+1) = gi1(pa(vy)(k), v1)
va(k +1) = ga(pa(va)(k), v3)
: @)
Un(k 4+ 1) = gn(pa(vn)(k), vy,),
where £ = 0,1, 2, ... models the progression of an attacker in
gaining access to the nodes or satisfying conditions along the
time axis, g; € {ga, go} for all 4, with g,, g, defined according
to Figure 5. The nodes v, take values {0,1} according to
the local probabilities. The notation (k) is used for the k™
iteration.
Access probabilities are equivalent to the computation of
reachability probabilities over the augmented graph:

Prob(v = 1) = Prob{v(k) = 1 for some k}, (8)

where the probability is computed over all combination of val-
ues of {v],vh,...,v),} € {0,1}". Unlike previous formalisms
that are not able to handle cycles, our new interpretation can
easily encode cycles without the need for any modification.

Next we prove a property of this interpretation that helps in
developing our algorithm for the computation of reachability
probabilities in (8).

Proposition 4.2: The system of equations (7) iS monotoni-
cally increasing, i.e., v;(k + 1) > v;(k) for any k and ¢ and
any instantiation of {v},v5,... v} }.

Proof: Fix an instantiation of {v}, v}, ..., v} }. First we
show that the function g, is monotonically increasing, which
is the property that g, (w,v") > g,(w’,v") for any w,w’ with
w > w' element-wise. Note that g, (w’,v') = 0 if an element
of w’ or v’ is zero, which means the inequality holds. If all
elements of w’ and v’ are one, then all elements of w is
also one, which means g,(w,v’) = go(w’,v’) = 1 and the
inequality holds.

Next we show that the function g, is monotonically increasing,
which is the property that g,(w,v’) > go(w’,v") for any
w,w’ with w > w’ element-wise. This holds due the identity
go(w,v") = 1 — go(1 — w,1 — ') that the OR gate is the
complement of the AND gate:

w>uw=1-w<l-uw

= go(1—w,1 =) < gl —w',1—7)
=>1—g(l—w,1—-v)>1—g(1 —w';1-7)

= go(w,v") > go(w',v').

Now the claim follows inductively from the fact that initially
v(k) = 0 for k = 0, and functions g, and g, are non-negative
and monotonically increasing.]

Theorem 4.3: The solution of (7) converges to a unique
steady state in finite time, i.e., there is a time instance k*
such that v;(k* + 1) = v;(k*) for any ¢ and any instantiation
of {v],vh,...,ul}.

Theorem 4.4:

For an acyclic BAG with the time instance k* defined in
the previous theorem, Prob(v(k*) = 1) is the same as the
probability computed via Variable Elimination on the BAG.
Furthermore, if the BAG does not have loops, this quantity is
the same as access probabilities in (2).

Reachability probabilities Prob(v(k*) = 1) are well-defined
on combinational circuits regardless of the existence of cycles.
Therefore, the above theorem gives a nice direction for gen-
eralizing computations to cyclic BAGs. In the next section,
we provide an algorithmic computation of probabilities while
replacing the joint distributions with product of marginal
distributions, similar to (2).

V. CALCULATION ON CYCLIC BAGS
A. Algorithmic Inference

We have created an algorithm to propagate probabilities
through an attack graph and thus generate a BAG based on the
probabilities assigned at the leaves of the graph. The algorithm,
shown in Algorithm 1, works by detecting all attack paths that
lead to a node. It moves through each step in each attack
path collapsing cycles by the method previously discussed

(prevention of multiple instances of the same node from
contributing to the probability multiple times) and calculating
probabilities using the recursive conjunction and disjunction
functions. Probabilities on a path are calculated fully for each
node as the chance of a node being reached, but will not
necessarily reflect its contribution to the proceeding nodes. In
essence this means that when a node is being calculated, all
the nodes that contribute to this probability are identified and
only allowed to contribute to the final calculation once, thus
ensuring that no nodes in a loop inflate the final probability
by being counted multiple times. The order of calculation for
the nodes does not matter and can be performed in a random
order as contributions to a probability are explicitly calculated
for each node every time.

The input to the algorithm is the graph with local proba-
bilities. The pop (int) function used in the Disjunction and
Conjunction functions in Algorithm 1 is a list function that
returns the item, in this case a probability, at the given list
index then removes it from the list.

This algorithm achieves a calculation for node probabilities
that makes sense given the context of network security without
the normal requirement for removing edges from the graphs.
This means that attack routes on graphs can be better under-
stood while also improving the versatility of graphs as extra
portions can be added and the new nodes can be calculated
correctly as no edges have been removed.

B. Complexity of the Algorithm

The complexity of Algorithm 1 can be calculated as
O(n x max, |Pre(v)|) where n is the number of nodes
in the attack graph. In the worst case, when every added
node is required to be present in the calculation of every
other node, the complexity of the algorithm is O(n?). If the
cyclicity of the graph is known, then the complexity becomes
O(n(en + max, |Pre(v)|)) where 0 < ¢ < 1 and ¢ is the
portion of nodes that are in at least one cycle.

C. Selection of Local Probabilities

In order to infer the access probabilities for the nodes passed
to the algorithm, an initial set of local probabilities must be
provided. These were originally generated from a simplistic
evaluation of the ease to exploit a vulnerability (with non
leaf local probabilities set to 1 as discussed earlier in Section
3.2). In order to determine the ease of access, the CVSS
vector [25], [26] for the vulnerability is collected from NIST’s
National Vulnerability Database (NVD). Currently the Access
Complexity (CVSSv2) or the Attack Complexity (CVSSv3) is
used to define the probability of transitioning to a state. This
is on a scale of Low, Medium and High for version 2 and Low
and High for version 3, with High meaning there is a great
deal of skill or timing required to exploit the vulnerability
and as such is associated with the lowest probability scoring.
A demonstration of how these values could inform the local
probabilities is shown in Table I.

The local probabilities are taken from the contribution
that the NVD gives to a vector score when calculating the

Input: Attack Graph; nodes v in V' with local probability

p(v)

Output: Bayesian Attack Graph; nodes v in V' with

access probability P(v)
forveV:
| P(v) =RecursiveProbability (v,v)

def RecursiveProbability (node v, origin node

U()T'igin) .
ifoel:
| return p(v)
else:

for Upa S ‘/parents :
if vy IS Vorigin ¢

| append O to p_list
elif v,,, has been visited already :
if v, €V :

| append p(vp,) to p_list
else:

| append O to p_list
else:
append

RecursiveProbability (VUpq,

'Uorigi'n,) to p_llst
ifoeV,:

| return Conjunction (p_list)
ifoeV,:

| return Disjunction (p_list)

Disjunction (Probability List P)
/* Calculating the disjunctive
probabilities for OR nodes
Input: List of probabilities
Output: Disjunction of the probabilities
p = P.pop(0)
if length of P is larger than 1 :
recursive_p = Disjunction (P)
p = p + recursive_p - recursive_p X p
elif length of P is equal to 1 :
| return p + P[O] - px P[0]
else:
| return p
return p

*/

Conjunction (Probability List P)
/* Calculating the conjunctive
probabilities for AND nodes
Input: List of probabilities
Output: Conjunction of the probabilities
p= P.pop(0)
if length of P is larger than 1 :
recursive_p = Conjunction (P)
p = recursive_p X p
elif length of P is equal to 1 :
| return p x P[0]
else:
| return p

return p

*/

Algorithm 1: Propagating probabilities through the attack
graph. The conjunctive and disjunctive functions corre-
spond to calculating probabilities on OR and AND nodes,

respectively.

TABLE I
COMPLEXITY SCORES AND THEIR LOCAL PROBABILITIES.

Vector Score CVSS Version Local Probability

Low/L 2,3 0.71
Medium/M 2 0.61
Unknown - 0.61
High/H 2,3 0.35

whole CVSS score. While this is a useful approximation, it
is very abstract and ignores a great deal of the information
that can be gleaned from the information available about the
vulnerabilities. A discussion of this can be found in Section
VIL

VI. EXPERIMENTAL RESULTS
A. Application to Simulated Networks

In order to test the practicality of the algorithm, it was
implemented in Python, alongside a simulator that can gener-
ate attack graphs with cycles. This simulator builds a random
attack graph with a specifiable quantity of cycles; it is given
a percentage of cycles to artificially add, and ensures that
the given percentage of OR nodes are involved in cycles (as
this is where cycles originate, from the state of privileged
access that allows potential future access to a vulnerability
that has already been exploited). The graph is built out of
nodes generated with a Leaf:AND:OR ratio of 50:35:15 in
order to model the fact that approximately half a common
attack graph comprises of configuration Leaf nodes, and there
are fewer nodes representing states than there are representing
attack steps (this is due to the fact that multiple different AND
nodes can lead to the same OR node i.e. many actions can lead
to the same state).

Attack graphs were simulated in increasing sizes, from 500
to 15000 in step sizes of 500, and in four different groupings;
‘0% cyclic’ where there are no cycles in the graph, ‘5% cyclic’
where five percent of OR nodes are involved in cycles, ‘25%
cyclic’, and ‘100% cyclic’ where every node, excluding Leaf
nodes, is included in a cycle. Every situation was simulated
five times, and the computation time required to complete
exact inference using the algorithm was timed. These results
are shown in Figure 8. Plotted are the average values for each
amount of nodes, as well as range bars for the minimum and
maximum values.

As can be seen, the algorithm can generate probabilities
for graph sizes of at least 15000 nodes in the worst possible
case in a moderate time frame, around 155 minutes. Thus the
algorithm is suitable for use on medium-large sized networks,
especially if modeling techniques like consolidating similar
work stations into singles nodes is used. By way of compari-
son, an enterprise with 300 machines, each with an average of
5 vulnerabilities, would create a graph of around 6000 nodes.
In a worst case situation regarding cycles, the probabilities
could be calculated in approximately 600 seconds.

The effect of increasing the percentage of cycles at fixed
node quantities was also examined, with results displayed in

10000
& 0% cyclic
e 5% cyclic
8000 29% cyclic

L] 100% cyclic

G000

Time [s]

4000

2000

2000 4000 GOOO BOOO

Nodes

10000 12000 14000

Fig. 8. Time performance of Algorithm 1.

600

Nodes
= 1000 = 3000 6000
0 0 20 30 40 B0 60 VO B0 90

Percentage of nodes in cycles

100

Fig. 9. Impact of cyclicity on the computation time.

Figure 9. Graphs were simulated with 1000, 3000 and 6000
nodes, with the percentage cycles being part of cycles is
increased from 0 to 100 in steps of 10. The contribution of
the cycles to the computation time increases with the quantity
of cycles on the graph, up to an approximate 75% increase in
computation time in the worst case in the ranges of nodes that
we experimented with. This can be seen in both Figures 8-9 by
comparing the results for 0% cyclicity with 100%. Including
cycles seems like a somewhat expensive addition to graphs;
however when any changes are to be modelled there will be
no requirement to recompute the graph and as such the upfront
cost will mean that only small portions of the graph will have
to be computed after changes are made as the structure of the
graph will be correct. In other words the upfront increase in
time significantly reduces the cost of future adaptations and
analyses of the graph.

B. Application to Realistic Networks

To confirm the applicabality of the results to realistic
scenarios, we have implemented the algorithm on a collection
of realistic networks. These are networks designed to replicate
common real-life networking implementations for testing and

modelling purposes. They are set up as a combination of
virtual and real assets that function as an enterprise network,
with different numbers of hosts and different vulnerabilities on
each machine. These network scenarios return the same scan
results that one would expect from running a vulnerability scan
on the real network equivalent of the scenario.

We have considered three networks with respectively 10, 15,
and 15 hosts; the first network comprises of a Linux database
and workstation, an iOS device, a peripheral device that uses
SMB and a Windows server, with all the remaining hosts
being Windows workstations. The workstations have various
commonly used applications installed (Chrome, iTunes, JDK)
and are in various patching states. The other networks have
similar enterprise topologies, see Appendix D for more details.
Each network is scanned using a modified version of the
OpenVAS vulnerability scanner [27], and then an attack graph
is generated for each using MulVAL [!2]. The number of
nodes in the attack graphs generated from these networks
is 1053, 2234 and 2341; all have naturally occurring cycles.
This gives us attack graphs that are roughly 5% cyclic. The
mean runtime of our algorithm is 3, 11, and 12 seconds,
respectively. This runtime confirms the quantities reported in
Figure 8: the simulations for attack graphs with 5% cyclicity
and 1000 and 2000 nodes have mean runtimes of 2 and 18
seconds respectively when run on the same machine used for
the realistic networks.

C. Evaluation on Examples from Literature

To demonstrate the validity of our method we have applied
Algorithm 1 on two common attack graphs from the literature;
an acyclic graph generated from a scenario presented by Wang
et al. [28], and the cyclic example in Figure 2 that was created
by Ou et al. [20] and had probabilities calculated by Homer
et al. by creating a larger equivalent graph that is acyclic
[8]. The full demonstration of these comparisons can be seen
in Appendix C. Once the acyclic example was converted
from a plain BAG into an AND/OR BAG, our algorithm
was run on both examples. The results were identical to the
expected results in the other papers, demonstrating that this
algorithm gives correct results for common network scenarios
and generalises them to the larger class of cyclic BAGs.

D. Comparison with Exact Methods

In order to verify and compare our results on acyclic
graphs, we implemented the Variable Elimination algorithm
of Section III-B on the simulated graphs that are acyclic. Due
to the limitations of Variable Elimination, we implemented it
on a series of small simulated graphs from 2 to 26 nodes, and
compared the results with our algorithm. The average error of
the quantities computed by our algorithm is £0.011.

As can be seen in Figure 10, Variable Elimination despite
being exact scales very poorly with one run on a 24 node
graph taking approximately the same amount of time as a
11500 node run with our algorithm. Due to this poor scaling,
the fact that Variable Elimination cannot run on cyclic graphs,

3 e Variable Elimination
10 Our Algorithm

@ 10°
g
£ 10
10°
10°
107
10
4.0 8.0 12.0 16.0 20.0 24.0
Nodes
Fig. 10. Comparing computational time of our algorithm with Variable

Elimination on acyclic graphs.

and the low average error from our algorithm, our approach
is a much better choice for all practical applications.

VII. RELATED WORK

Network vulnerability analysis using graph based ap-
proaches has been widely covered in the literature. A large
body of work exists using attack graphs which propose ap-
proaches and tools for improved generation [17], [20], [29]-
[31], visualization [32], [33], and analysis [19], [34], [35],
or provide summaries of existing techniques [36]-[39]. Of
the many types of attack graphs that exist, we have used de-
pendency attack graphs, which facilitate understanding of the
importance of individual vulnerabilities [40]. For a complete
overview of the different techniques as well as a taxonomy for
their formalisms we refer to Kordy et al. [38].

Bayesian network based network analysis has also been
studied (e.g. [5], [10], [14], [15], [41]) as well as their
generation. In particular, Choi et al. propose a method for
deleting network edges from a Bayesian network in order
to generate models through approximate inference [42]. In
[22], Mufioz-Gonzdlez et al. apply an approximate inference
approach called loopy belief propagation to Bayesian attack
graphs and shows its performance compares favourably to the
widely used exact inference technique, Junction Tree (JT).
In [3] the authors explore an exact inference method using
network clustering which they show enables the JT algorithm
to become tractable and scale linearly with the number of
nodes.

In order to improve the accuracy of these graphs, insight-
ful local probabilities should be generated to maximise the
information available to the Bayesian network. Doynikova
and Kotenko demonstrate in [7] a more complex method for
achieving more accurate results from CVSS data than simply
using the complexity score, while also modelling attacks that
do not rely on vulnerability exploitation through the use
of the CAPEC list (Common Attack Pattern Enumeration

and Classification), a taxonomy of different attack patterns
described using the MITRE schema [43]. Cheng et al. model
dependency relationships of the base metrics in the vectors
and attempt to combine them in such a way that a user can
weigh specific aspects for their local probability assignment
[44].

A number of Markovian approaches have been taken to
generate Bayesian attack graphs and facilitate vulnerability
analysis and the design of optimal defence strategies. Jha et al.
use a model checker to automatically generate attack graphs
annotated with probabilities and analyse their vulnerabilities
using Markov Decision Process (MDP) algorithms [45]. Mace
et al. used a similar approach to find the optimal data collection
strategies for accurate Bayesian attack graph input parame-
ters (e.g. conditional probability tables) [46]. In [47] Pietre-
Cambacédes et al. model attack trees as Boolean logic Driven
Markov Processes (BDMP), suggesting they are dynamic
and inherit readability and appropriation of attack trees but
with mathematical properties reducing combinatorial problems
and processing. Continuous Time Markov chains have been
applied by Jhawar et al. to the Bayesian attack graph approach
in order to analyse attack defence graphs, that is, attack graphs
which define the modelling of defences in their specification.
Wang et al. in [28], estimate attack states and define a cost-
benefit heuristic to automatically infer optimal defences for
attack graphs integrated with Hidden Markov Models while
Miehling et al. [9] and Zhisheng et al. [48] assume the
defender can only partially observe the attacker’s capabilities
at any given time, thereby modelling Bayesian Attack Graphs
as partially observable Markov decision processes (POMDPs).
In this sense a resulting defence strategy is both reactive and
anticipatory.

Dealing with cycles in Bayesian attack graphs has also been
tackled (e.g. [49], [50]). Klopotek et al. who use Markov
Chains, suggesting the state of a variable is not influenced
by itself but rather the future state is influenced by the past
one [51]. Doynikova and Kotenko consider the processing of
three simple types of cycle in Bayesian attack graphs [7].
Two of the three types contain cycles between nodes at the
same level in the graph structure. These are either removed
once the probabilities to reach each node for the first time
have been calculated, or enumerated as separate paths. The
third type contains cycles between nodes at different levels of
the graph structure. In this case, the cycle is simply removed
under the backtracking assumption, that is an attacker does
not come back to a node already exploited. In [1], Aguessy
et al. present a Bayesian network-based extension to attack
graphs, called a Bayesian Attack Model (BAM), which is
capable of handling cycles by breaking them. The authors
argue that using the backtracking assumption to break cycles
suppresses possible attacker actions which cannot be known a
priori. To keep all possible paths, the only way to break cycles
is to enumerate all paths starting from every possible attack
source. In other words, unfolding the cyclic graph structure
to an equivalent acyclic graph structure such that each node
appears exactly once in each path. This process causes a

combinatorial explosion in the number of nodes whilst the
inference algorithm is shown to remains efficient only for
networks of up to 70 hosts. Homer et al. suggest their approach
correctly handles both cycles and shared dependencies in
attack graphs, that is the probabilities along multiple paths
leading to a node are dependent on each other [8]. The authors
suggest enumerating all paths is unnecessary if data flow
analysis is applied to the cyclic nodes enabling the same
probabilities to be evaluated as on the unfolded graph. The data
flow analysis process uses dynamic programming and other
optimizations to avoid increasing computational complexity.
The algorithm is limited by the number of nodes and paths
within cycles which must be considered when calculating
probability values and which can cause evaluation time to
be exponential in the worst case. The evaluation is based on
the number of nodes and vulnerabilities per node and does
not consider how the number of cycles impacts computation.
Wang et al. made a number of crucial observations about
cyclic attack graphs and proposed a customized probabilistic
reasoning method that can handle cycles in the calculation
[28]. However, when combining probabilities from multiple
attack paths, the method uses a formula that assumes the
multiple probabilities are independent. Such dependency needs
to be accounted for to prevent a distortion of results.

VIII. CONCLUSION

In this paper we have created and demonstrated a systematic
approach to analyse Bayesian attack graphs, including those
with cycles. Since cycles naturally arise in BAGs that are
generated from scanning software (e.g., using MulVAL), it is
imperative to establish practical approaches to handle cyclic
BAGs. We presented a formal treatment of the problem domain
and introduced a solution algorithm that can be applied to any
BAG, cyclic or acyclic. This results in a method by which
Bayesian attack graphs can be automatically evaluated with
respect to what states are available to an attacker and how
easily they are reached. Our solution deals directly with the
cycles and integrate cycle resolution with the computation
of state probabilities without the need for identifying or
differentiating the cycle types. Our approach does not alter the
attack graph by removing edges to make it acyclic. Instead,
we preserve all the information in the graph, and no potential
attack routes are lost when new data is added to the graph.

Our computational approach is currently restricted to single
state probabilities and cannot compute joint probabilities for
multiple nodes. A solution that allows the computation of joint
probabilities is a next step to further advance the presented
approach to cyclic BAGs. Future work will also involve
extending the local probability assignment to have a more
meaningful value; a temporal metric can be included given
that the longer a vulnerability is known about the more likely
an exploit has been published for it, increasing the ease of an
attack. Scaleable solution algorithms then need to be identified
to automate the analysis of these graphs to prioritise fixing
of vulnerabilities and identifying most vulnerable network
hosts, with regard to their criticality to an enterprise. Finally,

although the proposed algorithm can handle large models, for
yet larger networks approximate solutions could be considered.

REFERENCES

[1] F. Aguessy, O. Bettan, G. Blanc, V. Conan, and H. Debar, “Bayesian
attack model for dynamic risk assessment,” CoRR, vol. abs/1606.09042,
2016.

[2] Y. Huangfu, L. Zhou, and C. Yang, “Routing the cyber-attack path
with the Bayesian network deducing approach,” in 2017 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), pp. 5-10, Oct 2017.

[3] L. Mufioz-Gonzélez, D. Sgandurra, M. Barrere, and E. Lupu, “Exact
inference techniques for the analysis of Bayesian attack graphs,” IEEE
Transactions on Dependable and Secure Computing, 2017.

[4] A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, “Real time
alert correlation and prediction using Bayesian networks,” in 2015 12th
International Iranian Society of Cryptology Conference on Information
Security and Cryptology (ISCISC), pp. 98-103, Sept 2015.

[5] J. Sembiring, M. Ramadhan, Y. S. Gondokaryono, and A. A. Arman,
“Network security risk analysis using improved mulval Bayesian attack
graphs,” International Journal on Electrical Engineering and Informat-
ics, vol. 7, no. 4, p. 735, 2015.

[6] R. Dantu, K. Loper, and P. Kolan, “Risk management using behavior
based attack graphs,” in International Conference on Information Tech-
nology: Coding and Computing, 2004. Proceedings. ITCC 2004., vol. 1,
pp. 445-449 Vol.1, April 2004.

[71 E. Doynikova and I. Kotenko, “Enhancement of probabilistic attack
graphs for accurate cyber security monitoring,” in 2017 IEEE Smart-
World, Ubiquitous Intelligence Computing, Advanced Trusted Computed,
Scalable Computing Communications, Cloud Big Data Computing,
Internet of People and Smart City Innovation, pp. 1-6, Aug 2017.

[8] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R. Rajagopalan, and
A. Singhal, “Aggregating vulnerability metrics in enterprise networks
using attack graphs,” Journal of Computer Security, vol. 21, no. 4,
pp. 561-597, 2013.

[9]1 E. Miehling, M. Rasouli, and D. Teneketzis, “Optimal defense policies
for partially observable spreading processes on Bayesian attack graphs,”
in Proceedings of the Second ACM Workshop on Moving Target Defense,
MTD ’15, (New York, NY, USA), pp. 67-76, ACM, 2015.

[10] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using Bayesian networks
for cyber security analysis,” in 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pp. 211-220, June 2010.

[11] M. Frigault, L. Wang, S. Jajodia, and A. Singhal, Measuring the
Overall Network Security by Combining CVSS Scores Based on Attack
Graphs and Bayesian Networks, pp. 1-23. Cham: Springer International
Publishing, 2017.

[12] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A logic-based
network security analyzer,” in Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, SSYM’05, (Berkeley, CA,
USA), pp. 8-8, USENIX Association, 2005.

[13] L. Wang, S. Jajodia, and A. Singhal, Network Security Metrics. Springer,
2017.

[14] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk manage-
ment using Bayesian attack graphs,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, pp. 61-74, Jan 2012.

[15] Y. Liu and H. Man, “Network vulnerability assessment using Bayesian
networks,” in Data Mining, Intrusion Detection, Information Assurance,
and Data Networks Security 2005, vol. 5812, pp. 61-72, International
Society for Optics and Photonics, 2005.

[16] D. Saha, “Extending logical attack graphs for efficient vulnerability
analysis,” in Proceedings of the 15th ACM Conference on Computer and
Communications Security, CCS *08, (New York, NY, USA), pp. 63-74,
ACM, 2008.

[17] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-attack
graph generation tool,” in Proceedings DARPA Information Survivability
Conference and Exposition 1I. DISCEX’01, vol. 2, pp. 307-321 vol.2,
June 2001.

[18] X. Ou and A. Singhal, Attack Graph Techniques, pp. 5-8. New York,
NY: Springer New York, 2011.

[19] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS ’02, (New York, NY,
USA), pp. 217-224, ACM, 2002.

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS ’06, (New York, NY,
USA), pp. 336-345, ACM, 2006.

D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The
MIT Press, 2009.

L. Mufoz-Gonzélez, D. Sgandurra, A. Paudice, and E. C. Lupu, “Ef-
ficient attack graph analysis through approximate inference,” CoRR,
vol. abs/1606.07025, 2016.

W. Qian, M. D. Riedel, H. Zhou, and J. Bruck, “Transforming probabil-
ities with combinational logic,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, pp. 1279-1292, Sep.
2011.

W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis of
combinational logic to generate probabilities,” in 2009 IEEE/ACM In-
ternational Conference on Computer-Aided Design - Digest of Technical
Papers, pp. 367-374, Nov 2009.

C. Team, “Common vulnerability scoring system v3. 0: Specification
document,” First. org, 2015.

P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEE Security & Privacy, vol. 4, no. 6, 2006.

Openvas, “Openvas website.” http://www.openvas.org/, 2019. [Online;
accessed 01-October-2019].

L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack
graph-based probabilistic security metric,” in IFIP Annual Conference
on Data and Applications Security and Privacy, pp. 283-296, Springer,
2008.

K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling
modern network attacks and countermeasures using attack graphs,” in
2009 Annual Computer Security Applications Conference, pp. 117-126,
Dec 2009.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in Proceedings 2002 IEEE
Symposium on Security and Privacy, pp. 273-284, 2002.

O. M. Sheyner, “Scenario graphs and attack graphs,” tech. rep.,
Carnegie-mellon Univ Pittsburgh Pa School Of Computer Science, 2004.
J. Homer, A. Varikuti, X. Ou, and M. A. McQueen, “Improving attack
graph visualization through data reduction and attack grouping,” in
Visualization for Computer Security (J. R. Goodall, G. Conti, and K.-L.
Ma, eds.), (Berlin, Heidelberg), pp. 68-79, Springer Berlin Heidelberg,
2008.

J. Lee, D. Moon, I. Kim, and Y. Lee, “A semantic approach to improving
machine readability of a large-scale attack graph,” The Journal of
Supercomputing, May 2018.

R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal security
hardening using multi-objective optimization on attack tree models
of networks,” in Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS ’07, (New York, NY, USA),
pp. 204-213, ACM, 2007.

S. Roschke, F. Cheng, and C. Meinel, “A new alert correlation algorithm
based on attack graph,” in Computational Intelligence in Security
for Information Systems (A‘ Herrero and E. Corchado, eds.), (Berlin,
Heidelberg), pp. 58—67, Springer Berlin Heidelberg, 2011.

M. Barik, A. Sengupta, and C. Mazumdar, “Attack graph generation and
analysis techniques,” Defence Science Journal, vol. 66, no. 6, pp. 559—
567, 2016.

K. Kaynar, “A taxonomy for attack graph generation and usage in
network security,” Journal of Information Security and Applications,
vol. 29, pp. 27 — 56, 2016.

B. Kordy, L. Pietre-Cambacedes, and P. Schweitzer, “DAG-based attack
and defense modeling: Don’t miss the forest for the attack trees,”
Computer Science Review, vol. 13-14, pp. 1 — 38, 2014.

S. Yi, Y. Peng, Q. Xiong, T. Wang, Z. Dai, H. Gao, J. Xu, J. Wang,
and L. Xu, “Overview on attack graph generation and visualization
technology,” in 2013 International Conference on Anti-Counterfeiting,
Security and Identification (ASID), pp. 1-6, Oct 2013.

R. Sawilla and X. Ou, Googling attack graphs. Defence R & D Canada-
Ottawa, 2007.

M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring network
security using dynamic Bayesian network,” in Proceedings of the 4th
ACM Workshop on Quality of Protection, QoP 08, (New York, NY,
USA), pp. 23-30, ACM, 2008.

[42] A. Choi, H. Chan, and A. Darwiche, “On Bayesian network approxi-
mation by edge deletion,” CoRR, vol. abs/1207.1370, 2012.

S. Barnum, “Common attack pattern enumeration and classification
(CAPEC) schema description,” Cigital Inc, http://capec. mitre. org/doc-
uments/documentation/CAPEC_Schema_Descr iption_v1, vol. 3, 2008.

P. Cheng, L. Wang, S. Jajodia, and A. Singhal, Refining CVSS-Based
Network Security Metrics by Examining the Base Scores, pp. 25-52.
Springer International Publishing, 2017.

S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
in Proceedings 15th IEEE Computer Security Foundations Workshop.
CSFW-15, pp. 49-63, June 2002.

J. C. Mace, N. Thekkummal, C. Morisset, and A. van Moorsel, “ADaCS:
A tool for analysing data collection strategies,” in Computer Perfor-
mance Engineering, EPEW’17, pp. 230-245, 2017.

L. Pietre-Cambacedes and M. Bouissou, “Beyond attack trees: Dy-
namic security modeling with Boolean logic driven Markov pro-
cesses (BDMP),” in 2010 European Dependable Computing Conference,
pp. 199-208, April 2010.

Z.Hu, M. Zhu, and P. Liu, “Online algorithms for adaptive cyber defense
on Bayesian attack graphs,” in Proceedings of the 2017 Workshop on
Moving Target Defense, pp. 99-109, ACM, 2017.

P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using Bayesian networks
for cyber security analysis,” in 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pp. 211-220, June 2010.

G. Jiang and M. Ren, “Cyclic Bayesian network for software project
iterative process,” in 2018 International Conference on Mathematics,
Modelling, Simulation and Algorithms, MMSA’18, pp. 413—417, 2018.
M. A. Kiopotek, “Cyclic Bayesian network: Markov process approach,”
Studia Informatica: systems and information technology, vol. 1, 2006.

[43]
[44]
[45]
[46]

[47]

[48]
[49]
[50]
[51]

APPENDIX A
ATTACK GRAPHS WITH CYCLES

As we discussed in Section II, most of the literature on
BAG probability computations have focused on acyclic attack
graphs. This constraint ensures the probabilities on the nodes
become the chance that an attacker reaches the node at all. In
other words, paths that are enabled by access to a node should
not increase the probability that that same node is reached.
We presented a running example and showed that cycles can
occur in a number of situations. Thus, this property should be
extended for each node on the pathway calculations.

In the following, we first discuss types of cycles mentioned
in the literature and the methods currently used to deal with
these cycles. Next we put these types of cycles into the
perspective of our computational algorithm and show how they
can be interpreted over the associated combinational circuit.
We emphasise that our solution does not modify the graph in
any way while being able to run on graphs containing cycles.
Our solution deals directly with the cycles and integrate cycle
resolution with the computation of state probabilities without
the need for identifying or differentiating the cycle types.

A. Handling Cycles

There are three main types of cycles in an attack graph
[7], [11], and Figures 11 to 13 show what they look like
based on Definition 2.4. The first cycle type, Figure 11, can
be demonstrated as removable. This is because node 2 has two
prerequisites and one of them, node 5, is only fulfilled given
that node 2 has been accessed. As such node 2 can never
be true and the cycle will never occur and does not aid our
understanding or modelling of the graph.

Figure 12 shows the second type of cycle, one that cannot
be trivially removed like the first. Node 3 can be fulfilled by

http://www.openvas.org/

<D
<> <O

Fig. 11. Cycle of Type 1.

either 2 or 6 meaning that node 7 is reachable. Since node 6
can only be accessed after node 3 has been accessed, it should
not contribute to the likelihood of reaching nodes 3, 4, 5 or 7.
In essence the edge from node 6 to 3 could be removed from
the graph, and this is the necessary step in current acyclic
BAG techniques.

An important addition to this discussion is that while edge
removal does work for the second type of cycle, it is perhaps
not the preferred solution. Firstly removing the edge can make
the graph less understandable from an engineering perspective,
as logically if reaching a state allows access to another element
that was a prerequisite to a previous state then that route is
possible. Also, more importantly, removing an edge, the edge
from node 6 to node 3 in our example, removes information
that could be important in future. If it was desired that a
new vulnerability be added to the graph, for example in
such a way that it would transform Figure 12 into Figure
13, then a legitimate route would now be missing from the
graph and from any new calculations. As such, preserving the
structure of the graph is important for both future analysis and
understanding.

The third type of cycle, Figure 13, shows a cycle that
cannot be ignored or fixed through edge removal. It is the
same in structure as the Type 2 cycle but a node in the
cycle has an extra way of being accessed, meaning there
are now multiple routes to reach node 3. This type of cycle
should be dealt with by imagining probabilities are populations
of attackers and as such the quantities on the nodes should
represent unique attacker numbers ensuring we do not double
count attackers moving through the graph. Practically for this
simplistic example this will mean the probability at node 6
is the disjunction of attackers coming from node 7 and the
attackers reaching node 4 for the first time, i.e. the initial
population at node 1 minus any attackers lost moving through
nodes 2 and 3.

<>
O
<>
<2
D

Fig. 12. Cycle of Type 2.

D
O

DACD
O
LD

Fig. 13. Cycle of Type 3.

B. Cycles in Combinational Circuits

Using the combinational circuit paradigm introduced in
section 4, we can formally describe the different types of cycle.
The finiteness of £* mentioned in Theorem 4.3 enables us to
unfold the logic circuit £* number of times. Let us denote

pa(”z’) = {Uﬂ, Vi2y .« 7Ui,mi}'

The unfolding is done sequentially by replacing each v;;(k) in
the right-hand side of (7) with function g, (pa(v,)(k —1),v.)

where v, is the node associated with v;;. Starting this process
from k* and repeating it k* times gives us a full circuit as

Ul(k*) :fl(’l)/l,’l)é,...,’l};)
v2(k*) = fa(v],v3,...,vp)
)]

v (k*) = fn(vy,vh, ..., 00),

where f;’s are associated to the unfolded circuit with a
directed graph that does not have any cycles. Unfortunately,
the procedure of unfolding and probability computation over
(9) is computationally intense but it is very helpful in giving an
automatic characterisation of cycle types in BAGs discussed
in the literature [7], [11].

Cycles of Type 1 are seen when the steady-state value of a
node is zero: v;(k*) = 0 for some 7 and for any instantiation of
{v{, v}, ..., v }. This means that the node cannot be reached
and can be safely eliminated from the analysis. Any incoming
edges or outgoing edges to this node can also be eliminated. If
this elimination results in breaking a specific cycle, that cycle
is of Type 1.

Cycles of Type 2 need more elaboration and are defined
with respect to nodes that v;(k*) = 1. Let k} be the earliest
time that the value of node v; becomes one:

kX = ming{k,v;(k) = 1} for ¢ with v;(k*) = 1. (10)

It is obvious that k] depends on the instantiation of
{v{, v}, ...,v.} and is upper bounded by k*. The computation
of prob(v; (k*) = 1) requires unfolding (9) for k& times. Nodes
with the property that v;(k}) = 0 can safely be removed
together with their outgoing and incoming edges. These are
the nodes that do not have any influence on node v;. If
such elimination results in breaking a cycle, that cycle is of
Type 2. Note that the elimination is valid when we only need
to compute access probabilities of v; (the definition is with
respect to a particular node).

The previous two types of cycles require properties that
should hold for any instantiation of {v},v5,...,v,}. Cycles
of Type 3 are the ones that do not fit in the definition of cycles
of Type 2. Formally, for a given node v;, a cycle is of Type 3
if there exists a node v; on the cycle and an instantiation of
{v{,v4,...,v}} such that v;(k — 1) = 1. This means node
v; on the cycle can influence the access probability of node
v;, thus cannot be removed.

As discussed above, cycles of Type 3 cannot be removed and
requires a particular attention when performing the probability
computations. In the next subsection, we demonstrate the
computation on the running example and provide the full
algorithm in Section V.

C. Calculating Probabilities: Running Example

Here we discuss how a cycle’s probabilities should be
calculated, as is implemented in the algorithm in the following
section. Figure 14 is an excerpt from the larger attack graph of
the running example presented in Section II-A. It is a simple
example of how a Type 3 cycle (see Figure 13) can exist in
a real attack graph. This excerpt is a trivial demonstration of
the simplest occurrences of cycles in real attack graphs. The
cycle occurs because of the multiple routes that can be taken
to reach node 14, where an Internet Explorer vulnerability on
the Workstations can be exploited using an HTML document.
A user may visit a malicious website, represented by the route
from node 15 to 14, or alternatively the Webserver could be
targeted first, and used to provide the HTML document once
it has been compromised, shown in the route through nodes
8,7,6,21 and then 14.

The cycle is further complicated by the fact that the Web-
server can be accessed directly without going through the
Workstations, in the route from node 22 to 8. Without the
edge ea9 g, the edge causing the cycle (e21,14) could be safely
trimmed as the probability of the attacker reaching node 14
does not increase due to node 21 as node 14 is a prerequisite
for node 21 to be reached. Node 22 entering the cycle part
way through, however, will increase the probability of reaching
node 14 at some point in an attack as node 15 being accessed
is no longer a requirement.

The result of calculating the probability of reaching each
node, performed by disregarding nodes that have already
contributed, can be seen in Figure 15. In order to calculate
probabilities within the cycle, all the parent nodes are collected
exhaustively. Their contribution to the probability of the node
in question is then performed according to the relationships

defined by the graph, as in definition 2.5, with the caveat that
any node in the parent set may only contribute once to the
calculation. In this way, calculating the probability of node
12 on Figure 14 will involve the likelihood of any attacker
reaching node 14 from node 15, and also the likelihood of an
attacker reaching node 14 from node 21, but with the removal
of node 15°s contribution to the probability of reaching node
21 as node 15 has already been included. In this way each
nodes probability can be calculated without the removal of any
edge, as a node causing a loop in one place may contribute to
probabilities elsewhere on the graph and as such should only
be disregarded in specific calculations where it’s effects have
already been calculated. The ability for a node to be present in
multiple paths but contribute differing amounts demonstrates
the idea that a recursive algorithm that identifies each node’s
contribution to a path would be a correct solution to this
problem, preventing any node from contributing multiple times
to the same path.

APPENDIX B
FULL EXAMPLE

The complete attack graph for the running example scenario
can be seen in Figure 16, with the labels for the nodes written
out below. An important note is the reason the cycle exists:
the state at node 14, whereby a user on one of the Workstation
machines access a malicious website, can be reached via two
means. Firstly the user can simply visit a malicious website
allowing the attacker to exploit CVE-2009-1918 that is in
Internet Explorer on the Workstation. Alternatively, an attacker
that has achieved the ability to execute code on the Web Server
(node 6) can serve the user of a Workstation machine an
HTML document that exploits CVE-2009-1918 and thus also
achieves the state on node 14.

This cycle is made more complex due to the ability to
access the Webserver without passing through the Worksta-
tions originally (visiting nodes 22 and 8). Because of this,
reaching node 14 via node 21 will not always mean that the
attacker is travelling backwards, and as such the monotonicity
principle does not apply and the probability of reaching node
14 becomes more challenging to calculate.

The vulnerabilities in this scenario are as follow:

o CVE-2009-1918' on the Workstations - Internet Explorer
vulnerability that allows an attacker to execute arbitrary
code on the machine after the user accesses a website
with purposely malformed elements that trigger memory
corruption

« CVE-2006-3747 on the Webserver - Apache vulnerabil-
ity that can be exploited to execute arbitrary code using
crafted URLs and requires network access to exploit

o CVE-2009-2446° on the Database Server - MySQL vul-
nerability where an authenticated user can cause a denial
of service and possibly execute arbitrary code

Thttps://nvd.nist.gov/vuln/detail/CVE-2009-1918
Zhttps://nvd.nist.gov/vuln/detail/CVE-2006-3747
3https://nvd.nist.gov/vuln/detail/CVE-2009-2446

Fig. 16. The BAG of the running example including leaf nodes.

Listing 1. MulVAL labels for Figure 16
, "attackerLocated (internet)"
, "execCode (dbServer, root)"
, "RULE 2 (remote exploit of a server
rogram) "
, "netAccess (dbServer,tcp,”’3306")"
, "RULE 5 (multi-hop access)"
, "hacl (webServer, dbServer,
cp, 33067)"
, "execCode (webServer, apache)"
, "RULE 2"
, "netAccess (webServer,tcp,’80’)"
9, "RULE 5"
10, "hacl (workStation,webServer,tcp,’80""
11, "execCode (workStation,userAccount)"
12, "RULE 2"
13, "vulExists (workStation,’CVE-2009-1918",
IE, remoteExploit,privEscalation)"
14, "accessMaliciousInput (workStation,
user, IE)"
15, "malicious website"
16, "visit of malicious website"
17, "vulExists (dbServer,’CVE-2009-2446",
mySQL, remoteExploit,privEscalation)"
18, "vulExists (webServer,’CVE-2006-3747",
apache, remoteExploit, privEscalation)"
19, "visit of compromised website"
20, "hacl (internet, webServer, tcp, ’807)"
21, "compromise of website"
22, "RULE 6 (direct network access"
23, "RULE 5"
24, "hacl (workStation,dbServer,tcp,’3306")

0
1
2
p
3
4
5
t
6
7
8

APPENDIX C
RESULTS OF ALGORITHM ON COMMON EXAMPLES

A. Acyclic Example

The network scenario, in Figure 17, is moving from a
Workstation to root access on a Database server through a
Firewall and possibly via a File server depending on the attack
path. There are three services running on Machine 1, the file
server, and two services running on Machine 2, the target
Database server. An attack graph has already been generated
for this scenario but using a different schema, shown in Figure
18. Here it can be seen that there are three possible paths for
achieving the goal of root access to Machine 2; the attacker can
either edit the trusted host list on Machine 2 to gain enough
access to the host in order to run the buffer overflow attack,
or the attacker can attempt to reach the same privilege by
changing the relationship between Machine 1 and Machine 2,
either by initially editing Machine 1’s trusted host list or by
attempting a buffer overflow attack against Machine 1.

First, an AND/OR BAG was generated from the plain BAG
in Figure 18 using the principles discussed in the paper. This
involves moving all less than one local probabilities to the
leaf nodes allowing easy logical calculation of the marginal
probabilities at each node. The algorithm was then run on
the new attack graph with the same probabilities associated
with the vulnerabilities as allocated in the original example
to generate a new Bayesian attack graph. This new graph,
Figure 19, shows the same probabilities for each part of the

>4
@ rsh o)
ftp 3 ssh
S
. File
{ \ Server
% g A Machine 1
Workstation Firewall Router
Machine 0
D e =
Database

ftp Server rsh
Machine 2

Fig. 17. Example of a network taken from [28].

user(0)
trust(0,1
st 0.1
0.72 sshd_bof(0,1)
\ /
user(1)
trust(0,2) trust(1,2)

user(2)

e
[=}
&
%\I

root(2)

Fig. 18. BAG of the network of Figure 17 which is acyclic [28].

graph. This demonstrates that the algorithm is correct for this
common acyclic graph example.

B. Probability computations on the running example

The probabilities are calculated and shown in Figure 20
by applying Algorithm | to the running example presented
in Section II-A and described in appendix C. This graph has
all the nodes displayed, including the leaf nodes that were
trimmed for clarity through the rest of the paper.

APPENDIX D
REALISTIC NETWORKS
A. 1053 Nodes

This network is a simple small enterprise setup, with several
workstations, some servers, and a collection of peripheral
devices. The full host inventory can be seen in table II.

B. 2234 Nodes

This network is a more complex enterprise example, and
includes a server running TWiki that all the workstations can

hacl(0,2.ftp):0.8 hacl(0,1,ftp):0.8

trust(2,0):0.8

vulExists(2,bof):0.1
local_bof(2):0.087
execCode(2,R000):0.087

Fig. 19. Converted graph from Figure 18 using the equivalence shown in
Section II-C

TABLE 11
HOSTS AND SOFTWARE FOR THE 1053 NODE REALISTIC NETWORK.

Type Amount Software

Windows Workstation 4 Internet Explorer, JDK, iTunes,
Office

Windows Server 2008 1 -

SMB Device 1 -

Linux Machine 2 Pidgin, Chrome, Firefox, Samba

Linux Database Server 1 -

i0S Machine 1 Apple TV

access for collaboration. The full host inventory can be seen
in table III

TABLE III
HOSTS AND SOFTWARE FOR THE 2234 NODE REALISTIC NETWORK.

Type Amount Software

‘Windows Workstation 4 Internet Explorer, JDK, Office,
DirectX, Edge

Windows Workstation 3 LiveMeeting, Edge

Windows Server 2008 1 -

SMB Device 2 -

Ubuntu Machine 2 Pidgin, Chrome, Firefox, Apport,
Python, Jasper, OpenSSL,
Libxml2, Poppler

Linux Database Server 1 -

TWiki Web Server 1 TWiki, PCRE, PHP, Samba

Remote Login Machine 1 OpenSSH

C. 2341 Nodes

This network has similar hosts to the 2234 Node example,
but introduces an outdated Windows XP machine to the
network, along with a machine for web development and a
Red Hat MRG machine. The full host inventory can be seen
in table IV.

16:0.8 0:1.0 20:1.0

14:0.82 13:0.9

TABLE IV

24:1.0 @ 10:1.0 HOSTS AND SOFTWARE FOR THE 2341 NODE REALISTIC NETWORK.

@ Old Windows Machine
18:0.2 @ Windows Workstation
Windows Workstation

Type Amount Software
1 Windows XP, Flash Player,
JavaFX, Adobe Air, Wireshark
‘Windows Workstation 2 Internet Explorer, JDK, Office,
DirectX, Edge
2 LiveMeeting, Edge
1 Internet Explorer, Office,
Chrome, ExpressionWeb, JScript
Windows Server 2008 1 -
SMB Device 2 -
Ubuntu Machine 2 Pidgin, Chrome, Firefox, Apport,
Python, Jasper, OpenSSL,
1 Enterprise MRG, Evince
Libxml2, Poppler
1 -
TWiki Web Server 1 TWiki, PCRE, PHP, Samba
Remote Login Machine 1 OpenSSH

Red Hat Enterprise
19:0.5 @ 5:1.0 Machine

Linux Database Server
@ 17:0.6

Cosd
<Josi>>

Fig. 20. Results of Algorithm 1 applied to the cyclic running example.

	I Introduction
	II Motivation and Problem Formulation
	II-A Running Example
	II-B BAG Formalisms
	II-B1 Plain BAGs
	II-B2 AND/OR BAGs

	II-C Relation Between the Two Formalisms

	III Computation of Access Probabilities
	III-A BAG Translation to a Bayesian Network
	III-B Variable Elimination

	IV Combinational Circuits with Probabilistic Inputs
	V Calculation on Cyclic BAGs
	V-A Algorithmic Inference
	V-B Complexity of the Algorithm
	V-C Selection of Local Probabilities

	VI Experimental Results
	VI-A Application to Simulated Networks
	VI-B Application to Realistic Networks
	VI-C Evaluation on Examples from Literature
	VI-D Comparison with Exact Methods

	VII Related Work
	VIII Conclusion
	References
	Appendix A: Attack Graphs with Cycles
	A-A Handling Cycles
	A-B Cycles in Combinational Circuits
	A-C Calculating Probabilities: Running Example

	Appendix B: Full Example
	Appendix C: Results of Algorithm on Common Examples
	C-A Acyclic Example
	C-B Probability computations on the running example

	Appendix D: Realistic Networks
	D-A 1053 Nodes
	D-B 2234 Nodes
	D-C 2341 Nodes

