
1

Towards a Robust Classifier: An MDL-Based
Method for Generating Adversarial Examples

Behzad Asadi and Vijay Varadharajan
The University of Newcastle, Australia

Abstract—We address the problem of adversarial examples
in machine learning where an adversary tries to misguide a
classifier by making functionality-preserving modifications to
original samples. We assume a black-box scenario where the
adversary has access to only the feature set, and the final hard-
decision output of the classifier. We propose a method to generate
adversarial examples using the minimum description length
(MDL) principle. Our final aim is to improve the robustness of
the classifier by considering generated examples in rebuilding
the classifier. We evaluate our method for the application of
static malware detection in portable executable (PE) files. We
consider API calls of PE files as their distinguishing features
where the feature vector is a binary vector representing the
presence-absence of API calls. In our method, we first create
a dataset of benign samples by querying the target classifier.
We next construct a code table of frequent patterns for the
compression of this dataset using the MDL principle. We finally
generate an adversarial example corresponding to a malware
sample by selecting and adding a pattern from the benign code
table to the malware sample. The selected pattern is the one that
minimizes the length of the compressed adversarial example given
the code table. This modification preserves the functionalities
of the original malware sample as all original API calls are
kept, and only some new API calls are added. Considering a
neural network, we show that the evasion rate is 78.24 percent
for adversarial examples compared to 8.16 percent for original
malware samples. This shows the effectiveness of our method in
generating examples that need to be considered in rebuilding the
classifier.

Index Terms—Classification, Minimum Description Length,
Adversarial Examples, Malware Detection, Transactional Dataset

I. INTRODUCTION

Machine learning algorithms have been widely deployed in
different applications as automated decision-making tools due
to their generalization capabilities. This includes autonomous
driving, and cybersecurity applications where false decisions
can have serious consequences. However, machine learning
algorithms have shown to be vulnerable in adversarial settings.
An adversary can influence the decisions of a machine learning
model both in the training phase and in the test phase.

In this work, we address the problem of adversarial examples
in the test phase. This is where an adversary modifies
original samples to misguide a trained classifier. Modifications
cannot be arbitrary, and must preserve the functionalities of
original samples. Most of the existing works addressing this
problem have been in the area of image classification. In
image classification, adversarial examples are generated by
adding perturbations to normal images; perturbations must be
imperceptible to human eyes to be considered as functionality-
preserving. There has also been some works in the area of
malware detection which is also our considered application

in this work. In malware detection, adversarial examples are
generated by modifying malware samples to be misclassified
as benign samples; modifications need to satisfy a set of
constraints defined to preserve the functionalities of original
malware samples.

Adversarial examples can be classified based on the adversary
specificity into targeted or non-targeted examples [1]. Targeted
examples are generated to be misclassified into a specific wrong
class. Non-targeted examples are generated to be misclassified
into an arbitrary wrong class. Adversarial examples can
also be classified based on the adversary knowledge of the
classifier into white-box, and black-box examples [1]. White-
box examples are generated by an adversary which has access
to all the parameters of the target trained classifier [2]–[7]. In
white-box scenarios, adversarial examples are generated using
gradient-based methods where the gradient can be computed
by knowing all the parameters of the classifier. Black-box
examples are generated by an adversary which does not have
access to the parameters of the target trained classifier; the
adversary has access to only the output of the classifier in
the form of either soft decision (confidence score) [8], [9] or
hard decision (label) [10]–[16]. In black-box scenarios where
the adversary has access to the hard-decision output of the
classifier, adversarial examples are mainly generated by first
constructing a substitute model for the target model, and then
using white-box methods for the substitute model. This idea
is based on the transferability of adversarial examples [17]
which says that adversarial examples constructed to misguide
a specific classifier can also misguide another classifier with a
totally different architecture.

As the final objective, we are trying to improve the
robustness of machine learning algorithms by taking into
account adversarial examples. There are some existing defense
mechanisms to make a classifier more robust to adversarial
examples such as defense distillation [18], and adversarial
training [19]–[21]. Distillation helps the classifier to generalize
better to slightly modified samples, and consequently becomes
more robust to adversarial examples. In adversarial training,
adversarial examples are generated and utilized during the
retraining process. Both white-box and black-box examples
are considered in the training process. Therefore, the classifier
gets exposed to such examples during the training process.

A. Existing Works and Contributions
In this work, we address the problem of adversarial examples

in a black-box scenario where the adversary has access to the
feature space and the hard-decision output of the target classifier.
We propose an approach to generate adversarial examples using
the minimum description length (MDL) principle.

ar
X

iv
:1

91
2.

05
94

5v
1

 [
cs

.L
G

]
 1

1
D

ec
 2

01
9

2

We consider the application of static malware detection
in portable executable (PE) files where their API calls are
used to decide whether they are benign or malicious. As
mentioned earlier, in malware detection, adversarial examples
are generated by making functionality-preserving modifications
to original malware samples such that they are misclassified
as benign samples. Hu and Tan [14] addressed this application
using a dataset consisting of 160 different API calls. Their
approach is based on constructing a substitute model for the
target classifier and using generative adversarial networks [22].
We address this application using a dataset consisting of a
much larger number of features; our dataset consists of 22761
unique API calls.

In our MDL-based approach, we first create a dataset of
samples all identified as benign samples by querying the target
classifier. We then construct a code table of frequent patterns
for the compression of samples in this benign dataset using
the MDL principle. We finally generate an adversarial example
corresponding to a malware sample by selecting and adding
a pattern from the benign code table to the malware sample.
The selected pattern is the one that minimizes the length of the
compressed adversarial example given the benign code table.
Note that, in our method, we do not construct a substitute
model as we only need a dataset of benign samples. Also, our
method preserves the functionalities of malware samples as
only some new API calls are added to malware samples without
removing any existing ones. Considering a neural network as
the classifier, using our method, the evasion rate for adversarial
examples is 78.24 percent compared to 8.16 percent for original
malware samples. This shows the necessity for considering
these generated adversarial examples in rebuilding the neural
network.

II. STATIC MALWARE DETECTION

Malware detection is one of the areas that machine learning
algorithms have been able to contribute. Traditional algorithms
for malware detection search for known patterns which requires
them to have a copy of all malware samples. These algorithms
are not effective nowadays as (i) polymorphism is used within
a malware family, (ii) the number of new malware families is
increasingly growing, and (iii) they are not capable of zero-day
malware detection. This makes machine learning algorithms
good candidates for automated malware detection. This is
because they can extract complex patterns using different
attributes of a malware, and they can also help with zero-day
malware detection as they can generalize to new samples [23].

Malware detection can be divided into two main categories
of dynamic (behavioral) and static (code) malware detection.
In dynamic malware detection, samples are executed, and their
run-time behavior is monitored to create indicators of malicious
activities. In static malware detection, binary codes of samples
are examined without executing them to create indicators of
malicious activities.

As mentioned earlier, we consider static malware detection
in PE files. Different types of features have been used for this
task such as API calls [6], byte-level N-grams [24], features
from the PE header [25], and a combination of different types

of features [26]. We consider API calls of PE files to distinguish
between malware and benign samples. The presence-absence
of API calls forms a transactional dataset which is explained
in the following section.

III. TRANSACTIONAL DATASETS

In this section, we present some preliminaries for transac-
tional datasets required in this work. A transactional dataset,
denoted by D, is a non-empty multiset (bag) of transactions,
i.e., D = {T1, T2, . . . , Tn}. Each transaction is a subset of
I = {1, 2, 3, . . . ,m} where I represents the set of all items
(i.e., Tj ⊆ I ∀j). We say that a transaction Tj supports an
itemset P (which is also a subset of I) if P ⊆ Tj . The
support of an itemset P , denoted by sup(P), is the number of
transactions that support the itemset. Considering that D(P)
is the multiset of transactions that support the itemset P , and
D(Q) is the multiset of transactions that support the itemset
Q, we therefore have
• sup(P) = |D(P)|,
• D(P ∪Q) = D(P) ∩ D(Q),
• If P ⊆ Q, then D(P) ⊇ D(Q),
• If P ⊆ Q, then sup(P) ≥ sup(Q),

where | · | denotes the cardinality of the multi-set. An itemset is
considered to be frequent if its support is greater than or equal
to a user-decided threshold, denoted by minsup. A frequent
itemset is closed if it has no superset with the same support.

IV. MDL PRINCIPLE AND ITS APPLICATIONS

In this section, we present the MDL principle, and its
applications for classification, and pattern summarization.

A. MDL Principle

Kolmogorov complexity theory, also known as algorithmic
information theory, was developed to measure the information
in objects in isolation, i.e., without knowing the distribution
underlying the object. As in data mining, we normally do not
know the underlying distribution of our data, we use algorithmic
information theory to measure the information in our data.
The Kolmogorov complexity of an object is the descriptive
complexity of that object which is the length of the shortest
computer program that can describe the object. This is formally
defined as follows [27].

Definition 1: The Kolmogorov complexity of an object x
with respect to a universal computer U , denoted by KU (x), is
defined as

KU (x) = min
prog:U(prog)=x

`(prog),

which is the minimum length over all programs that print x
and halt.

However, we cannot compute the Kolmogorov complexity of
an object. Therefore, in practice, the MDL principle is utilised.
Using the crude MDL version, we choose a model from a set
of models, M, that minimises the two-term objective function
`(x | Mi) + `(Mi) where `(x | Mi) is the number of bits
required to describe the object given the model, and `(Mi) is

3

the number of bits required to describe the model itself. Hence,
based on the crude MDL, we have

`best(x) = min
Mi∈M

(`(x |Mi) + `(Mi)).

B. MDL-based Classifier

We here explain how to utilize the MDL principle to build a
binary classifier. Supervised learning consists of two phases of
training and test. In the training phase, we select a model for
the training dataset of each class based on the MDL criterion,

MD1 = argmin
Mi∈M

(`(D1 |Mi) + `(Mi)),

MD2 = argmin
Mi∈M

(`(D2 |Mi) + `(Mi)).

In the test phase, if for the transaction T , we have

`(T |MD2) ≤ `(T |MD1),

this implies that

Pr(T | D2) ≥ Pr(T | D1).

Consequently, we classify the sample T under the second class.
Otherwise, we classify it under the first class. Note that the
term `(M) in the crude MDL criterion prevents the model to
be overfitted during the training phase. This is because, by
using a complex (overfitted) model, we can minimize the term
`(D | M). Therefore, using only this term as the selection
criterion can result in overfitting. By considering both `(D |M)
and `(M) terms in the selection criterion, this scenario can be
avoided.

C. MDL-based Pattern Summarization

The MDL principle can be used for pattern summarization
where we want to select a small subset of an existing large set
of candidate patterns denoted by F . In this part, we present
the algorithm proposed by Vreeken et al. [28] which uses
the MDL principle for pattern summarization. This algorithm
performs pattern summarization by searching among code
tables of patterns as the family of models to describe the
data. A code table, denoted by CT , has two columns: the first
column consists of selected patterns, and the second column
consists of binary codes used to encode the patterns in the
first column. This algorithm, which basically outputs a semi-
adaptive compression dictionary, selects the best code table
as

CTbest = argmin
CT

(`(D | CT) + `(CT)). (1)

In the algorithm proposed by Vreeken et al. [28], as the
search space for constructing code tables is very large, a
heuristic approach is used to select the best code table. This
heuristic approach consists of three steps. In the first step,
candidate patterns in the set F are ordered descending first
by their support, second by their length. In the second step,
a standard code table consisting of all singleton items is
constructed. In the third step, candidate patterns from the
ordered F are examined one by one. In this step, if adding a
candidate pattern to the current code table results in a smaller

objective function, i.e., `(D | CT) + `(CT), it is kept in the
code table, otherwise it is dropped. This leads to keeping only
a small subset of F in the final code table. The final code table
is considered as the selected model by the MDL principle,
and the patterns in the final code table are considered as the
patterns chosen by the MDL principle.

We here explain how the two terms `(D|CT) and `(CT)
in equation (1) are calculated. The first term in equation (1),
`(D | CT), is calculated as

`(D | CT) =
∑
T ∈D

`(T | CT) =
∑
T ∈D

∑
P∈C(T)

`(P | CT),

where `(P | CT) is the length of the binary code for the pattern
P in the second column, and C(T) is the set of patterns used
to cover T . The patterns covering a transaction satisfy the
following properties

∀ Pi,Pj ∈ C(T), if Pi 6= Pj then Pi ∩ Pj = ∅,

and ⋃
P∈C(T)

P = T .

As there can be several ways (different sets of patterns)
to cover a transaction, the patterns in the code table are
ordered descending first by their length, next by their support;
the patterns are selected according to this order to cover a
transaction.

The lengths of binary codes in the second column of the code
table, i.e., `(P | CT), are determined by the Shannon code
which is a prefix code. The more a pattern used in the cover
of transactions, the shorter its code. Therefore, by defining the
usage of a pattern P as

usage(P) = |{T ∈ D : P ⊆ C(T)}| ,

the code for the pattern P is of length

`(P | CT) = d− logPr(P | D)e

=

⌈
− log

(
usage(P)∑

P′∈CT usage(P ′)

)⌉
.

The second term in equation (1), `(CT), is calculated as

`(CT) =
∑
i∈I

ni log(|I|+ 1) +
∑
P∈CT

log(|I|+ 1)

+
∑
P∈CT

`(P | CT), (2)

where ni is the number of times that item i appears in the
patterns in the first column of the code table. The number of
all possible items in first column of the code table considering
a separator between each two patterns is |I| + 1. The first
two terms on the left-hand side of equation (2) correspond to
encoding the first column of the code table. The last term on
the left-hand side of equation (2) corresponds to encoding the
second column of the code table consisting of prefix binary
codes.

1) Example: We here provide an example for pattern
summarization. In this example, we consider the following
dataset which consists of five items and 10 transactions.

4

1 2 3 4 5
1 1 1 1 0
1 1 1 1 0
1 1 0 1 0
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Each row represents a transaction. This dataset can be repre-
sented as

D =
{
{1, 2, 3, 4}2, {1, 2, 4}, {2, 3, 4, 5},

{3, 4, 5}, {4, 5}, {2}, {3}, {4}, {5}} ,

where D is a multiset, and the superscript for an element shows
the multiplicity of that element. We perform closed frequent
pattern mining (CFPM) with minsup = 1 to extract all closed
frequent patterns (CFPs) of this dataset. This is to form the
list of candidate patterns required to construct an MDL-based
code table for this dataset. In this work, we use the Linear
Time Closed Itemset Mining (LCM) algorithm [29] for CFPM.
Using extracted CFPs, the ordered list of candidate patterns is

P sup(P)
{4} 7
{3} 5
{2} 5
{3, 4} 4
{2, 4} 4
{5} 4
{2, 3, 4} 3
{1, 2, 4} 3
{4, 5} 3
{1, 2, 3, 4} 2
{3, 4, 5} 2
{2, 3, 4, 5} 1

and the final code table using the described approach is

P binary code length
{1, 2, 4} 3
{4} 3
{3} 2
{2} 4
{5} 3
{1} 8

This shows the effectiveness of the MDL principle for pattern
summarization. In the second column of the code table, we
have provided the lengths of binary codes than binary codes
themselves. This is because the lengths are important than the
codes themselves. Note that item 1 does not appear in the
cover of any transactions, i.e., its usage is equal to zero. We
keep all singleton items in the final code table by giving them
a small usage when their usage is zero. This is to be able to
cover any unseen transactions.

V. MDL-BASED MODEL SELECTION

In this section, we explain our recently proposed MDL-based
model-selection method [30], shown in Fig. 1. The method
used for the example in Section IV-C can be computationally
very expensive for large datasets. This is because we may
face pattern explosion in extracting all CFPs. To address
this problem, we have recently proposed a method where we
use clustering in conjunction with CFPM to form the list of
candidate patterns. We have shown that this approach extracts
a subset of all CFPs by giving priority to longer CFPs. This is
important as the compression is mainly achieved through longer
patterns. In our method, we first cluster the dataset. We use the
Clustering with sLOPE (CLOPE) algorithm [31] which is a fast
algorithm for clustering transactional datasets. In the CLOPE
algorithm, we do not need to know the number of clusters in
advance, but we need to set the maximum number of clusters.
This can be decided based on the parameter minsup. The larger
the parameter minsup, the smaller the maximum number of
clusters. For a large minsup, we do not face pattern explosion,
and therefore we do not need clustering. After clustering, we
rank clusters according to the following criterion

Quality(Ci) =
H(Ci)

|Ci|
, (3)

where H(Ci) and |Ci| are the height and the number of
transactions of cluster i respectively. The height of cluster
Ci is defined as

H(Ci) =

∑
Tj∈Ci

|Tj |
| ∪Tj∈Ci Tj |

.

The cluster quality takes a value between zero and one. It
is equal to one where all the transactions of a cluster are
the same (the highest quality). We next select a subgroup
of clusters as high-quality (HQ) clusters by setting a quality
threshold, and perform CFPM in only HQ clusters. In HQ
clusters, transactions share majority of their items, and as a
result the number of CFPs in these clusters is not large even
by considering a small minsup. Low-quality (LQ) clusters are
the main reason for pattern explosion, and the output of CFPM
in these clusters consists of mainly short patterns.

As the output of the pattern-mining stage, we take the union
over the outputs of CFPM in HQ clusters. We finally construct a
code table of patterns according to Section IV-C as the selected
model.

VI. PROPOSED MDL-BASED ADVERSARIAL EXAMPLES

In this section, we propose an MDL-based method to
generate adversarial examples. In our recent work [30], we
designed an MDL-based classifier where we showed that one
of the main advantages of using the MDL principle for the
task of classification is about interpretability. This means that,
to some extent, we can explain the reasons why a sample is
classified under a specific class rather than other classes. As we
saw in Section IV-B, the better a sample is compressed using
the model of a class, the higher the probability that the sample
belongs to that class. Therefore interpretability is about finding
the reasons why a sample can be compressed better using the

5

Clustering Selecting
HQ Clusters

D MD
MDL-Based
Code Table

Cluster 1HQ
CFPM

Merging
CFPs

···

···

Ranking &

Cluster 2HQ
CFPM

Cluster 3HQ
CFPM

Cluster qHQ
CFPM

Fig. 1. MDL-based model selection Method.

model of a specific class. This can be done by considering the
structure of the family of the models chosen for compression.
This motivates utilizing the MDL principle to define a metric
to generate adversarial examples. By knowing the reasons why
a sample can be compressed better using a model, it is possible
to modify the sample to have a shorter compressed version
considering the model for a wrong class. This increases the
probability that the sample is classified under the wrong class.

We consider a black-box scenario where the adversary has
access to only the input and the hard-decision output of the
target classifier. In our method, we first select a class, and
construct a dataset Dsel in which all samples are classified
under the selected class by the target classifier. This is done
by querying the target classifier. We then choose a model that
best describes the dataset Dsel using the MDL principle,

MDsel = argmin
Mi∈M

(`(Dsel |Mi) + `(Mi)). (4)

Now considering that T is a sample not belonging to the
selected class, we generate an adversarial example Tadv corre-
sponding to T based on the following metric

Tadv = argmin
T ′∈S(T)

`(T ′ |MDsel), (5)

where S(T) represents the set of all modified versions of T
with the same functionalities. In our approach, we are actually
trying to choose the vector T ′ from S(T) which has the
maximum P (T ′ | Dsel). This is to misguide the classifier
to identify the adversarial example Tadv as a member of the
selected class.

In the application of malware detection, adversarial examples
are generated by modifying malwares samples to be misclassi-
fied as benign samples. Therefore, we first need to construct
a dataset of samples all identified as benign by the target
classifier. We then, using (4), choose a model that best describes
the benign dataset. We finally, using (5), generate adversarial
examples corresponding to original malware samples.

Note that in our proposed approach, we do not construct a
substitute model for the original classifier. This is as opposed
to black-box methods in which, first, a substitute model is
constructed, and then, a white-box method is employed to
generate adversarial examples for the substitute model. For

instance, in the application of malware detection, for creating
a substitute model, we need a dataset of malware samples
in addition to a dataset of benign samples. In our approach,
we only need a dataset of benign samples which is easier to
construct than a dataset of malware samples.

A. Algorithm

We here propose an algorithm as a suboptimal implemen-
tation of our approach for the application of static malware
detection in PE files. API calls of PE files are used as distin-
guishing features. As mentioned in Section II, the presence-
absence of API calls forms a transactional dataset. In order to
preserve the functionalities of original malware samples, we
define S(T) = {T ′ | T ′

⋂
T = T }. This allows us to only

add some API calls to a malware sample without removing
any existing ones in order to generate an adversarial example.

In our algorithm, shown as Algorithm 1, we first create
a dataset of samples all identified as benign samples by the
target classifier, denoted by Db. We next construct a code table
of patterns, CTb, for this dataset using the MDL principle,
as described in Section V. We finally generate an adversarial
example for a malware sample T by selecting a pattern P from
the final code table CTb, and adding it to the malware sample.
The selected pattern is the one that minimizes `(T ′ | CTb)
where T ′ = T

⋃
P .

Algorithm 1 MDL-based Adversarial Examples
1: Creating Db as a dataset of samples all identified as benign

by the target classifier
2: Constructing a code table of patterns, CTb, using the MDL

principle
3: for each malware sample Ti do
4: P∗ = argmin

P∈CTb

`(Ti
⋃
P | CTb)

5: Ti adv = Ti
⋃
P∗

6: end for

In our algorithm, we do not need to search among singleton
patterns in CTb. This is because adding a singleton item can
only lead to a smaller `(T

⋃
P | CTb) compared to the original

`(T | CTb) if it forms a longer pattern with some of the existing

6

items. As we check all non-singleton patterns, therefore we
do not need to check singleton patterns. This is helpful as we
normally have a small number of non-singleton patterns in the
final code table CTb, and consequently our search space is
much smaller compared to considering all patterns.

B. Example
We here provide an example for our method. In this example,

we consider the dataset in the example of Section IV-C as the
dataset of benign samples constructed by querying the target
classifier, i.e.,

D =
{
{1, 2, 3, 4}2, {1, 2, 4}, {2, 3, 4, 5},

{3, 4, 5}, {4, 5}, {2}, {3}, {4}, {5}} .

Now let assume that we have a malware sample T1 = {1, 4},
and we are going to generate an adversarial example correspond-
ing to this sample. Considering the code table for this dataset,
presented in Section IV-C, we can see that `(T1 | CTb) = 11,
but by adding {1, 2, 4} to this sample, i.e., T1

⋃
{1, 2, 4}, we

have `(T1 adv | CTb) = 3. As discussed in the last section, we
only need to search among non-singleton patterns which is
only one pattern. This example confirms that this can make our
search space much smaller. We can see that the same result is
achieved by adding the singleton pattern {2} to the original
sample. This is only because this item together with the existing
items {1, 4} form the longer pattern {1, 2, 4}. Therefore we
do not need to check this pattern considering non-singleton
patterns.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our proposed algorithm, described
in Section VI-A, for the application of static malware detection
in PE files where API calls are used as features.

A. Dataset
We use the dataset provided by Al-Dujaili et al. [6]. Our

dataset consists of 14772 benign training samples, 14772
malware training samples, 4924 benign test samples, and 4924
malware test samples. The total number of API calls in the
dataset is 22761. Therefore, each sample of the dataset is a
binary sequence of size 22761 where the locations of ones
determine API calls of that sample.

B. Neural Network and Its Performance
We use fully connected feed-forward neural networks to

find the state-of-the-art performance for our dataset. We use
five-fold cross validation to optimize hyper-parameters of our
network. Our network consists of five layers: one input layer
of size 22761, three hidden layers of size 300, and one output
layer of size two. Rectified linear unit (ReLU) is used as the
activation function in the hidden layers, and softmax function
is used in the output layer. We use the drop out rate of 50
percent to avoid over-fitting. The size of mini-batches is 100
samples, the learning rate of Adam optimizer is 0.0001, and
the number of epochs is 50. The accuracy, false positive rate
(FPR), and false negative rate (FNR) obtained by this network
are 91.94, 7.96, and 8.16 percent respectively. This means that
the evasion rate for malware samples is 8.16 percent.

C. Evasion Rate of Adversarial Examples

We use the trained neural network presented in the last sec-
tion to test our proposed algorithm for constructing adversarial
examples. To construct the benign dataset Db required in our
algorithm, we use the benign test dataset consisting of 4924
samples, and remove the ones that are identified as malware
by the trained neural network. This dataset is then used to
construct the code table required for generating adversarial
examples. Note that benign test samples are independent of
benign training sample used to train our target neural network.

To create a list of candidate patterns required for code table
construction, we can directly use the LCM algorithm [29] to
extract all CFPs in Db. However, we face pattern explosion in
our dataset considering a small minsup. To avoid pattern explo-
sion, we use our recently proposed approach [30] presented in
Section V. We have shown that our approach acts as a pattern-
summarization method by giving priority to longer patterns and
without requiring to extract all CFPs. Considering our approach,
we cluster Db using the CLOPE algorithm [31] with repulsion
factor equal to four, and maximum cluster number equal to 16.
In the CLOPE algorithm, repulsion factor is used to control
intra-cluster similarity. Larger repulsion factor leads to clusters
in which transactions share more common items. The clustering
provides us with 16 clusters of qualities 0.20, 0.51, 0.71, 0.91,
0.75, 0.87, 0.51, 0.15, 0.50, 0.37, 0.31, 0.35, 0.34, 0.86, 0.29,
and 0.08. We consider only the cluster with quality 0.08 as
a low-quality cluster, and consider the remaining 15 clusters
as high-quality clusters. We then apply the LCM algorithm
to high-quality clusters separately with minsup = 0.001 |Db|.
The list of candidate patterns is created by taking the union over
the outputs of the LCM algorithm for high-quality clusters.

After creating the list of candidate patterns, we construct
CTb as described in Section IV-C. We finally generate one
adversarial example corresponding to each malware test sample.
This is done by selecting and adding a pattern from CTb to
each malware test sample. The selected pattern is the one that
minimizes the length of the compressed adversarial example
given CTb. The new evasion rate for adversarial examples is
78.24 percent which shows the effectiveness our algorithm.

VIII. DISCUSSION

In this section, we present some discussion on the properties
of our proposed method for generating adversarial examples,
and also on the adversarial-training defense mechanism.

As discussed in Section VI, one of the main properties of
our method is that we do not need to build a substitute model
for the target classifier. This makes our method more practical
in the scenarios where it is difficult to collect samples for all
the existing classes to build a substitute model. In our method,
to generate an adversarial example corresponding to a sample,
we only need a dataset of samples for a wrong class. Another
property of our method is that it is a general method, and can be
used in different applications. Equations (4) and (5) presented
in Section VI are the two key equations in our method. These
equations can be made specific to a particular application. In
this work, we have done this for the application of malware
detection using their API calls. This is by choosing a specific

7

family of models in the MDL principle, defining a set of
constraints to preserve the functionalities of original samples,
and an algorithm for finding the minimum of equation (5).

After generating adversarial exmaples, as mentioned in the
introduction, one of the main defense mechanisms is adversarial
training [19]–[21]. In adversarial training, both normal and
adversarial examples are considered during the training process,
i.e., a training dataset augmented by adversarial examples. The
training dataset is augmented with both white-box and black-
box adversarially generated examples. However, this method
can be considered as a brute force method [32], and has not
been quite successful in improving the robustness of classifiers.
As discussed by Ross and Doshi-Velez [32], we also think
that explainability/interpretability for a classifier can help us
to improve its robustness in adversarial settings. We think that
explainability can make adversarial training more successful
by guiding us to add specific adversarial examples during
the training process. Methods to interpret machine learning
models are classified into two classes of intrinsic and post
hoc methods [33]. Intrinsic interpretability is when a machine
learning model itself is interpretable due to its structure. Post
hoc interpretability is when a method is developed to interpret
the decisions of a machine learning model after its training.
Machine learning models that are intrinsically interpretable can
also be used as a post hoc method by approximating the main
model in order to explain its decisions. In our recent work, we
have shown that we can use the MDL principle to build an
intrinsically interpretable classifier [30].

IX. CONCLUSION

We proposed a method to generate adversarial examples
using the minimum description length (MDL) principle. This
is to improve the robustness of classifiers by considering
these examples in their design process. We assumed that the
adversary has access to only the feature set, and the final
hard-decision output of the target classifier. We evaluated
our method for the application of static malware detection in
portable executable (PE) files. In malware detection, adversarial
examples are generated by making functionality-preserving
modifications to original malware samples to be misclassified
as benign samples. Our method requires only a dataset of
samples all identified as benign samples by the target classifier.
This can be constructed by querying the target classifier. We
considered a neural network to detect malware samples in PE
files using their API calls. Considering API calls, a feature
vector is a binary vector where the locations of ones determine
existing API calls. We showed that the evasion rate is 78.24
percent for adversarial examples compared to 8.16 percent for
original malware samples. This was done without changing
the functionalities of malware samples.

REFERENCES

[1] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Net. Learning Sys.,
Early Access, 2019.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy. (2015, Mar. 20)
Explaining and harnessing adversarial examples. [Online]. Available:
https://arxiv.org/abs/1412.6572v3

[3] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in Proc. Int. Conf. Learn. Represent. (ICLR), Toulon,
France, Apr. 2017.

[4] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE European Symp. on Security and Privacy (EuroS&P),
Saarbrucken, Germany, Mar. 2016, pp. 372 – 387.

[5] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, USA, June 2016, pp. 2574 – 2582.

[6] A. Al-Dujaili, A. Huang, E. Hemberg, and U. M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in Proc.
IEEE Security and Privacy Workshops (SPW), San Francisco, USA, May
2018, pp. 76 – 82.

[7] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in Proc. European Symp.
Research Comp. Security (ESORICS), Oslo, Norway, Sep. 2017.

[8] A. N. Bhagoji, W. He, B. Li, and D. Songi. (2017, Dec. 27) Exploring
the space of black-box attacks on deep neural networks. [Online].
Available: https://arxiv.org/abs/1712.09491v1

[9] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A case
study on pdf malware classifiers,” in Proc. Network and Distributed
System Security Symposium (NDSS).

[10] N. Papernot, P. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami. (2016, May 24) Practical black-box attacks against machine
learning. [Online]. Available: https://arxiv.org/abs/1605.07277v1

[11] Z. Zhao, D. Dua, and S. Singh. (2018, Feb. 23) Generating natural
adversarial examples. [Online]. Available: https://arxiv.org/abs/1710.
11342v2

[12] C. Xiao, B. Li, J. Zhu, W. He, M. Liu, and D. Song. (2019, Feb. 14)
Generating adversarial examples with adversarial networks. [Online].
Available: https://arxiv.org/abs/1801.02610v5

[13] H. S. Anderson, J. Woodbridge, and B. Filar, “DeepDGA: Adversarially-
tuned domain generation and detection,” in Proc. ACM Workshop on
Artificial Intelligence and Security.

[14] W. Hu and Y. Tan. (2017, Feb 20) Generating adversarial malware
examples for black-box attacks based on GAN. [Online]. Available:
https://arxiv.org/abs/1702.05983v1

[15] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici. (2018,
June 24) Generic black-box end-to-end attack against state of
the art API call based malware classifiers. [Online]. Available:
https://arxiv.org/abs/1707.05970v5

[16] B. F. H. S. Anderson, A. Kharkar, “Evading machine learning malware
detection,” in Proc. Black Hat, Las Vegas, USA, July 2017.

[17] N. Papernot, P. McDaniel, and I. J. Goodfellow. (2016, May
24) Transferability in machine learning: from phenomena to
black-box attacks using adversarial samples. [Online]. Available:
https://arxiv.org/abs/1605.07277v1

[18] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. IEEE Symp. Security and Privacy (S&P), San Jose, USA, May
2016, pp. 582–597.

[19] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvari. (2016,
Jan. 16) Learning with a strong adversary. [Online]. Available:
https://arxiv.org/abs/1511.03034v6

[20] A. Kurakin, I. J. Goodfellow, and S. Bengio. (2017, Feb. 11)
Adversarial machine learning at scale. [Online]. Available: https:
//arxiv.org/abs/1611.01236v2

[21] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and
P. McDaniel. (2018, July 22) Ensemble adversarial training: Attacks and
defenses. [Online]. Available: https://arxiv.org/abs/1705.07204v4

[22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Neural Information Processing Systems (NIPS), Montreal, Canada,
Dec. 2014, p. 26722680.

[23] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in Proc. IEEE
Symp. Security and Privacy (S&P), Oakland, USA, May 2001, pp. 38–49.

[24] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious
executables in the wild,” Journal of Machine Learning Research, vol. 7,
no. 1, pp. 2721–2744, Dec. 2006.

[25] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “Pe-miner: Mining
structural information to detect malicious executables in realtime,” in
Proc. Int. Symp. Recent Advances in Intrusion Detection (RAID), Saint-
Malo, France, Sep. 2009, pp. 121–141.

https://arxiv.org/abs/1412.6572v3
https://arxiv.org/abs/1712.09491v1
https://arxiv.org/abs/1605.07277v1
https://arxiv.org/abs/1710.11342v2
https://arxiv.org/abs/1710.11342v2
https://arxiv.org/abs/1801.02610v5
https://arxiv.org/abs/1702.05983v1
https://arxiv.org/abs/1707.05970v5
https://arxiv.org/abs/1605.07277v1
https://arxiv.org/abs/1511.03034v6
https://arxiv.org/abs/1611.01236v2
https://arxiv.org/abs/1611.01236v2
https://arxiv.org/abs/1705.07204v4

8

[26] H. S. Anderson and P. Roth. (2018, Apr. 16) Ember: An open dataset for
training static pe malware machine learning models. [Online]. Available:
https://arxiv.org/abs/1804.04637v2

[27] T. A. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2006.

[28] J. Vreeken, M. V. Leeuwen, and A. Siebes, “Krimp: mining itemsets
that compress,” Data Min. Knowl. Disc., vol. 23, no. 1, pp. 169–214,
July 2011.

[29] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An efficient algorithm
for enumerating closed patterns in transaction databases,” in Proc. 7th
international conference on discovery science, Padova, Italy, Oct. 2004,
pp. 16–31.

[30] B. Asadi and V. Varadharajan. (2019, Oct. 9) An MDL-Based classifier

for transactional datasets with application in malware detection. [Online].
Available: https://arxiv.org/abs/1910.03751v1

[31] Y. Yang, X. Guan, and J. You, “Clope: A fast and effective clustering
algorithm for transactional data,” in Proc. Eighth ACM SIGKDD Conf.
Knowledge Discovery and Data Mining (KDD), Edmonton, Canada, July
2002, pp. 682–687.

[32] A. S. Ross and F. Doshi-Velez. (2017, Nov. 27) Improving
the adversarial robustness and interpretability of deep neural
networks by regularizing their input gradients. [Online]. Available:
https://arxiv.org/abs/1711.09404v1

[33] C. Molnar, Interpretable Machine Learning, 2019, https://christophm.
github.io/interpretable-ml-book/.

https://arxiv.org/abs/1804.04637v2
https://arxiv.org/abs/1910.03751v1
https://arxiv.org/abs/1711.09404v1
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

	I Introduction
	I-A Existing Works and Contributions

	II Static Malware Detection
	III Transactional Datasets
	IV MDL Principle and Its Applications
	IV-A MDL Principle
	IV-B MDL-based Classifier
	IV-C MDL-based Pattern Summarization
	IV-C1 Example

	V MDL-Based Model Selection
	VI Proposed MDL-Based Adversarial Examples
	VI-A Algorithm
	VI-B Example

	VII Performance Evaluation
	VII-A Dataset
	VII-B Neural Network and Its Performance
	VII-C Evasion Rate of Adversarial Examples

	VIII Discussion
	IX Conclusion
	References

