
Privacy-Preserving Biometric Matching Using
Homomorphic Encryption*

*This paper is a corrected and extended version of [1].

Gaëtan Pradel
INCERT, Luxembourg

Royal Holloway, University of London
Egham, United Kingdom

gpradel@incert.lu

Chris Mitchell
Royal Holloway, University of London

Egham, United Kingdom
me@chrismitchell.net

Abstract—Biometric matching involves storing and processing
sensitive user information. Maintaining the privacy of this data
is thus a major challenge, and homomorphic encryption offers
a possible solution. We propose a privacy-preserving biometrics-
based authentication protocol based on fully homomorphic en-
cryption, where the biometric sample for a user is gathered by a
local device but matched against a biometric template by a remote
server operating solely on encrypted data. The design ensures
that 1) the user’s sensitive biometric data remains private, and 2)
the user and client device are securely authenticated to the server.
A proof-of-concept implementation building on the TFHE library
is also presented, which includes the underlying basic operations
needed to execute the biometric matching. Performance results
from the implementation show how complex it is to make FHE
practical in this context, but it appears that, with implementation
optimisations and improvements, the protocol could be used for
real-world applications.

Index Terms—Privacy-Preserving, Multiparty Computation,
Biometrics Homomorphic, Encryption

I. INTRODUCTION

This paper proposes a privacy-preserving biometric-based
authentication protocol based on fully homomorphic encryp-
tion (FHE), designed for use in the case where the biometric
sample for a user is gathered by a local device but matched
against a biometric template by a remote server. The goal is
to enable this to occur without the remote server,modeled as
a honest-but-curious adversary,gaining access to any of the
sensitive biometric data. The privacy-preserving and authen-
tication properties of the protocol are formally established.
A proof-of-concept C/C++ implementation building on the
TFHE library due to Chillotti et al. [2] has also been de-
veloped, in which face matching is used as the biometric.
Performance results from this implementation are presented.
The results of the implementation confirm the difficulty of
making FHE practical in such a scenario, but we suspect that,
with optimisations and improvements, the protocol could be
used for real-world applications.

As part of the proof-of-concept, all the elementary op-
erations necessary to execute the protocol using FHE were

Supported by the Luxembourg National Research Fund (FNR) (12602667).

implemented. Thus, as a side contribution, we have provided a
set of elementary arithmetic routines in the ciphertext domain1,
which could be useful for other prototype implementations.

a) Homomorphic encryption: Homomorphic encryption
allows one to perform computations on encrypted data, without
ever decrypting it. This enables users to perform operations
in untrusted environments. The idea of performing computa-
tions on encrypted data was introduced in 1978 by Rivest,
Shamir and Adleman [3]. While many homomorphic schemes
have been proposed [4]–[7], it wasn’t until 2009 that Gentry
presented [8] the first FHE scheme, based on ideal lattices.
Gentry’s breakthrough rests on a technique called bootstrap-
ping. An FHE scheme based on Gentry’s blueprint enables
an arbitrary number of additions and multiplications, i.e. any
function, to be computed on encrypted data. Since then,
many other schemes have been proposed [9]–[14], including
schemes not using the bootstrapping technique. For example,
in 2012, Brakerski, Gentry and Vaikuntanathan [15] presented
a scheme based on the ring version of the Learning With Errors
problem, introduced by Regev [16]. A second type of FHE
scheme was introduced by Gentry, Sahai and Waters [17]. This
scheme was further improved [18], [19], and most recently by
Chillotti et al. [2], [20].

b) Biometric authentication: The use of biometrics for
authentication has been discussed for several decades, and
has seen growing use. International organisations suggest
passwordless2 systems for authentication, and biometrics can
solve this issue. Advances mean that in some circumstances
biometric recognition algorithms perform better than humans,
even for face recognition [21]. Nonetheless, biometric au-
thentication faces a range of challenges [22], in particular
regarding the protection of users’ sensitive data. Biometric
data, such as a fingerprint, is fixed for a lifetime, meaning
that its use gives rise to significant privacy concerns. Ideally,
biometric data should not be processed without protection

1The implementation is hosted here: https://github.com/lab-incert/threats.
2See for example the World Economic Forum: https://www.weforum.

org/agenda/2020/04/covid-19-is-a-reminder-that-its-time-to-get-rid-of-
passwords/.

ar
X

iv
:2

11
1.

12
37

2v
1

 [
cs

.C
R

]
 2

4
N

ov
 2

02
1

https://github.com/lab-incert/threats
https://www.weforum.org/agenda/2020/04/covid-19-is-a-reminder-that-its-time-to-get-rid-of-passwords/
https://www.weforum.org/agenda/2020/04/covid-19-is-a-reminder-that-its-time-to-get-rid-of-passwords/
https://www.weforum.org/agenda/2020/04/covid-19-is-a-reminder-that-its-time-to-get-rid-of-passwords/

or anonymisation. Homomorphic encryption offers a possible
solution to this problem [22], as it allows the authentication
provider to perform biometric matching on (encrypted) data,
while protecting the privacy of sensitive biometric data.

c) Related work: The use of homomorphic cryptography
in the context of biometric matching is not new [23], [24].
However, most previous work uses partially homomorphic
encryption and not FHE. Some of this work has promising
performance results, e.g. Blanton and Gasti [25] who calculate
the Hamming distance between two iris feature vectors in only
150 ms. However, because of the additive-only (partially ho-
momorphic) characteristic of the encryption schemes they use,
they are not able to evaluate a circuit much more complex than
for Hamming distance. Yasuda et al. [26] used a homomorphic
scheme that also enables multiplications in the ciphertext
domain, but still only compute the Hamming distance between
two biometric vectors; moreover, the approach is vulnerable
against malicious attackers [27]. Back in 2008, Bringer and
Chabanne [28] proposed an authentication protocol based on
the homomorphic properties of two partially homomorphic
encryption schemes.

Biometric matching based on FHE has been previously
proposed; perhaps the first example is the private face veri-
fication system of Troncoso-Pastoriza et al. [29]. Cheon et al.
[30] proposed Ghostshell, a tool that works on iris templates,
that is computationally costly. More recently, Boddeti [31]
showed how to execute a secure face matching using the Fan-
Vercauteren FHE scheme [32] and obtained practical results
by packing the ciphertexts in a certain way.

d) Structure of the paper: Section II introduces the
notions necessary for the rest of the paper. Sections III and IV
are the core of the paper, presenting the design and security
properties of the protocol. Finally, Sections V and VI give
results from the protocol implementation and conclude the
paper.

II. PRELIMINARIES

N, Z, R and B represent the sets of natural numbers,
integers, reals and bits, respectively.

A. Security notions

We next introduce some formal security notions. For more
complete versions of Definitions 1-5, see Goldreich [33].

Definition 1 (Negligible). We say a function f : N 7→ R is
negligible if for every polynomial p there exists an N such
that, for all n > N :

f(n) <
1

p(n)
.

Definition 2 (Probability ensemble). Let I be a countable
index set. A probability ensemble indexed by I is a sequence
of random variables indexed by I . Namely, any X = (Xi)i∈I ,
where each Xi is a random variable, is an ensemble indexed
by I .

Definition 3 (Polynomial-time indistinguishability). Suppose
X = (Xi)i∈N and Y = (Yi)i∈N are ensembles with index set

N, where Xi, Yi ∈ Bn for all i. Then X and Y are said to be
indistinguishable in polynomial-time if, for every probabilistic
polynomial-time algorithm D : Bn → B, every polynomial p,
and all sufficiently large n:

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < 1

p(n)
.

We write X
c≈ Y.

Remark 1. We follow common practice and refer to compu-
tational indistinguishability instead of indistinguishability in
polynomial-time.

Definition 4 (Statistical distance). Suppose X = (Xi)i∈N and
Y = (Yi)i∈N are ensembles with index set N, where Xi, Yi ∈
Bn for all i. Then the statistical distance function ∆: N→ R
is defined as:

∆(n)
def
=

1

2

∑
α∈Bn

|Pr[Xn = α]− Pr[Yn = α]|.

Definition 5 (Statistical indistinguishability). Suppose X =
(Xi)i∈N and Y = (Yi)i∈N are ensembles with index set N,
where Xi, Yi ∈ Bn for all i. Then X and Y are said to
be statistically indistinguishable if their statistical distance is
negligible.

We write X
s≈ Y .

Remark 2. If the ensembles X and Y are statistically
indistinguishable, then they are also computationally indis-
tinguishable. The converse is not true.

Definition 6 (Adversary). An adversary A for a cryptographic
scheme is a polynomial-time algorithm (or a set of polynomial-
time algorithms) that models a real-world attacker. It is
equipped with defined computational resources and capabil-
ities, and is designed to attack the security of the scheme
typically as a participant in a security game.

Definition 7 (Challenger). A challenger for a cryptographic
scheme is a polynomial-time algorithm (or a set of polynomial-
time algorithms) that models a real-world instance of the
scheme. It is usually assumed to possess unlimited compu-
tational resources and capabilities, and is viewed as a ‘black
box’ which responds to queries made by an adversary in a
security game.

Definition 8 (Security game). A security game models an
attack on a cryptographic scheme involving an adversary and
a challenger.

Definition 9 (Advantage). In the context of a cryptographic
scheme and a security game for this scheme, the advantage
of an adversary is a function of the probability that the ad-
versary wins the security game that measures the adversary’s
improvement over random choice.

B. Homomorphic Encryption

We next formally introduce homomorphic encryption and
certain associated notions. For more complete versions of these
definitions, see Armknecht et al. [34].

Definition 10 (Homomorphic Encryption scheme). A homo-
morphic encryption scheme E for a circuit family Π consists
of four PPT algorithms (KeyGen, Enc, Dec, Eval) with the
following properties.
• (sk, pk, evk)← KeyGen(1λ). Given the security param-

eter λ ∈ N, KeyGen outputs a key triple made up of a
secret key sk, a public key pk and an evaluation key evk.
The plaintext space M and the ciphertext space M are
determined by pk.

• m← Enc(pk,m). Given a public key pk and a plaintext
m ∈M, Enc outputs a ciphertext m ∈M.

•

{
m

⊥ ← Dec(sk,m). Given a secret key sk and a

ciphertext m, Dec outputs either the plaintext m ∈M if
m← Enc(pk,m) or ⊥.

• m′ ← Eval(evk, π,m). Given an evaluation key evk, a
circuit π ∈ Π, where Π is a circuit family (see Appendix A
for details) and a ciphertext m ∈ M, Eval outputs
another ciphertext m′ ∈M.

Remark 3. Depending on the scheme, the evaluation key evk
might be part of, or equal to, the public key pk. For simplicity
of presentation, here and throughout we assume that the circuit
input to Eval has input size corresponding to the size of the
input ciphertext(s).

Definition 10, and those below, holds for a range of types of
plaintext, including both bit strings and vectors of plaintexts.
Some algorithms, such as KeyGen, take as input a security
parameter λ, which will be denoted as such throughout this
paper unless stated otherwise. This input is usually written in
unary representation 1λ because we want an algorithm that
runs in time polynomial in the size of λ to be considered as
efficient. We refer to the outputs of Enc as ‘fresh ciphertexts’
and those of Eval as ‘evaluated ciphertexts’.

Definition 11 (Correctness). Suppose E = (KeyGen, Enc,
Dec, Eval) is a homomorphic encryption scheme with security
parameter λ. We say E is correct for a circuit family Π if
E correctly decrypts both fresh and evaluated ciphertexts,
namely, for all λ ∈ N, the following two conditions hold.
• Suppose (sk, evk, pk) ← KeyGen(1λ). If m ∈ M

and m ← Enc(pk,m) then m ← Dec(sk,m). Else
⊥← Dec(sk,m).

• For any key triple (sk, evk, pk) ← KeyGen(1λ), any
circuit π ∈ Π, any plaintext m ∈ M and any ciphertext
m ∈M with m← Enc(pk,m), if m′ ← Eval(evk, π,m)
then Dec(sk,m′)→ π(m).

Definition 12 (Indistinguishability under Chosen-Plaintext At-
tacks security game). Suppose E = (KeyGen,Enc,Dec,Eval)
is a homomorphic encryption scheme with security parameter
λ. Suppose also that A is a PPT adversary. The indistinguisha-
bility under chosen-plaintext attacks (IND-CPA) security game
is as follows.

1) A challenger runs (sk, pk, evk) ← KeyGen(1λ) and
shares pk with A.

2) A generates two distinct plaintexts {m0,m1} and submits
a query to the challenger to request the encryption of one
of them with pk.

3) The challenger chooses i ∈ B uniformly at random,
computes m← Enc(mi, pk) and sends m to A.

4) A outputs a pair (mj ,m), where j ∈ B, and wins the
game if i = j.

We denote this security game by IND-CPAAE (1λ) and a win in
an instance of this security game by IND-CPAAE (1λ) = 1.

Definition 13 (Advantage for the IND-CPA security game).
Suppose E = (KeyGen,Enc,Dec,Eval) is a homomorphic
encryption scheme with security parameter λ. Suppose A is
an adversary in the IND-CPA security game. The advantage
of A with respect to E , denoted AdvEA(λ), is defined to be:

AdvEA(λ)
def
=

∣∣∣∣2 · Pr
[

IND-CPAAE (1λ) = 1

]
− 1

∣∣∣∣.
Definition 14 (IND-CPA security). Suppose E , A and λ are
as in Definition 13. E is IND-CPA secure if the advantage
AdvEA(λ) for A in the IND-CPA security game is negligible.

III. A NOVEL PRIVACY-PRESERVING PROTOCOL

We now describe the privacy-preserving biometric matching
protocol. In fact we give two descriptions: in §III-A we give an
informal introduction, explaining the motivation for the design,
and then in §III-B we give a formal description which we
use as the basis for the analysis in Section IV. For simplicity
of presentation we suppose that the public key pk and the
evaluation key evk are equal.

A. Informal description of the protocol

We describe a protocol involving two parties, a client C and
a server S, where C is acting on behalf of user U . C wishes
to access a certain service, not offered by S, which requires
an initial authentication of the user U associated with C to
S. The process of authentication uses sensitive biometric data
such as face images or iris information for U that is gathered
by C. If S successfully authenticates U , S sends an ID token
τ , to C. C can now use τ to access the requested service.

Note that C is trusted by S to correctly gather a fresh
biometric sample from U . In the protocol, S verifies that
the gathered sample matches the appropriate user template,
and also authenticates C to S. Note that the protocol neither
provides authentication of S to C nor provides encryption
of transferred messages; it is implicitly assumed that these
properties are provided by the communications channel, e.g.
using a server-authenticated TLS session.

In the description below, Step 0 (registration) is performed
once before use of the protocol. Steps 1-4 of the protocol are
performed every time the user U wishes to be authenticated
to S (via C).

Step 0: Registration
C generates a key pair (skC , pkC) for a homomorphic

encryption scheme E , and obtains by some means a biometric
template t for its associated user U . C then encrypts t as
t ← Enc(pkC , t) and sends t to S via a trusted channel. S

stores t, and subsequently uses it for biometric matching when
the protocol is executed (see Step 2). In the remainder of this
description we suppose that S, by some means, is assured of
the identity of U and that the encrypted biometric template t
for U is genuine.

Step 1: Initialisation
C takes a fresh biometric sample s from U and, using E ,

computes an encrypted version s← Enc(pkC , s) and sends it
to S.

Step 2: Construction of the Matching Token
Phase 1: Matching Computation

We suppose that S is equipped with a biometric matching
function f : M×M→ B which inputs a biometric template
and a biometric sample and outputs an indication of whether
there is a sufficiently close match between them. Suppose πf ∈
Πf , where Πf is the circuit family associated with E which
implements f. S now computes

b← Eval(pkC , πf , 〈s, t〉),
where b is the encrypted version of a boolean b indicating
the success or not of the biometric matching, i.e. b ←
Enc(pkC , f(s, t)).

In a naı̈ve version of the protocol, S now sends C the
encrypted matching result b; C decrypts it to obtain b ←
Dec(skC , b), and sends b to S. S can now use b to decide
whether not to generate the ID Token τ . For obvious reasons
this is not secure (b is not authenticated), and hence we need
a slightly more elaborate protocol.

In order to enable S to authenticate C, we introduce the
notion of a Matching Token, denoted by y. In Phase 2 this
token is constructed by S as a function of b (whilst still
encrypted) in such a way that S can, when provided by C
with a decrypted version of the token in Step 4, (a) verify its
authenticity, and (b) determine the value of b.

Phase 2: Signature Computation We suppose S has an
implementation of the function

g(b, r0, r1) = (1− b) · r0 + b · r1.

S first selects two random numbers r0
$← Bλ and r1

$← Bλ,
and stores them for use in Step 4. S next computes

r0 ← Enc(pkC , r0) and r1 ← Enc(pkC , r1).

In the encrypted domain of E (under pkC), S now uses
b, r0 and r1 to compute the encrypted matching token y as:

y ← Eval(pkC , πg, 〈b, r0, r1〉),
where πg ∈ Πg, the circuit family associated with E which
implements g. That is, S obtains y ← Enc(pkC , g(b, r0, r1))
although, of course, S does not have access to b; i.e. at this
stage S does not know whether or not the biometric matching
succeeded. S sends now y to C.

Note that this part of the protocol requires S to retain the
random values r0 and r1 until Step 4, and hence the protocol
is stateful.

Step 3: Decryption of y
C receives y from S and computes

y ← Dec(skC , y).

At this point it is still the case that neither C nor S know
whether the biometric matching succeeded. C only possesses
a string which looks random, and S cannot decrypt any data
encrypted with pkC . C now sends y to S.

Step 4: Authentication of C
Phase 1: Verification

S receives y from C, and checks whether it is equal to r0 or
r1. If so, S has successfully authenticated C; if not S rejects
C.

Phase 2: Token generation
S generates an ID Token τ where τ ← ACCEPT if y = r1,

and τ ← REJECT otherwise, and sends it to C. As a result, C
has a valid ID Token, which can be used to access the desired
service, if and only if the biometric matching was successful
and S has authenticated C.

B. Formal description of the protocol

We now formally present the protocol, referred to as P . The
protocol is summarised in Figure 1, where λE is the security
parameter of E . Protocol initialisation, described immediately
below, assumes Step 0 has been successfully completed.

Input to C:
C has a biometric sample s, and a key pair (skC , pkC)

generated with a homomorphic encryption scheme E . This
is represented by the tuple (s, skC). We denote the plaintext
space and the ciphertext space associated with E by ME and
ME respectively.

Input to S:
S has an encrypted biometric template t ← Enc(pkC , t)

generated by C in a pre-computation phase. This is represented
by the tuple (t).

The following functions are used by S.
• f : M×M−→ B indicates whether or not two biometric

values match, where M is the set of possible biometric
values and an output of 1 indicates a match.

• g : B×Bλ×Bλ −→ Bλ creates a matching token y from
a boolean b and two random numbers, where

g : (b, ri, rj) 7−→ (1− b) · ri + b · rj , where i, j ∈ N.

The above two initialisations are expressed formally as P :
C(s)↔ S(t).

Common input:
Both parties know the homomorphic encryption scheme E

and the public key pkC generated by C.
Protocol transcript:

(i) [C Pre-computation]:
a) (skC , pkC)← KeyGen(1λE);
b) Take a fresh biometric sample t from U to be used as

template;
c) t← Enc(pkC , t).

(ii) [C −→ S Pre-computation]:

a) Send t to S.
1) [C −→ S] C executes the following:

a) Take a fresh biometric sample s from U ;
b) Compute s← Enc(pkC , s);
c) Send s to S.

2) [S −→ C] S executes the following:
a) (Phase 1) Compute b← Eval(pkC , πf , 〈s, t〉);
b) (Phase 2) Generate r0, r1

$← Bn;
c) Compute r0 ← Enc(pkC , r0);
d) Compute r1 ← Enc(pkC , r1);
e) Compute y ← Eval(pkC , πg, 〈b, r0, r1〉);
f) Send y to C.

3) [C −→ S] C executes the following:
a) Compute y ← Dec(skC , y);
b) Send y to S.

4) [S −→ C] S executes the following:
a) If y 6= r0 and y 6= r1, S terminates execution;

b) Compute τ ←
{

ACCEPT if y = r1,

REJECT if y = r0;
c) Send τ to C.

Client C Server S

Precomputation

(skC , pkC)← KeyGen(1λE)

t← U

t← Enc(pkC , t)

Send t

Computation

s← U

s← Enc(pkC , s)

Send s

b← Eval(pkC , πf , 〈s, t〉)

r0
$← Bλ

r1
$← Bλ

r0 ← Enc(pkC , r0)

r1 ← Enc(pkC , r1)

y ← Eval(pkC , πg, 〈b, r0, r1〉)
Send y

y ← Dec(skC , y)

Send y

If y 6= r0 and y 6= r1,

S terminates execution.

If y = r1 then τ := ACCEPT

If y = r0 then τ := REJECT

Send τ

Fig. 1. Protocol summary

C. Proof of knowledge

The protocol P is an instance of an interactive proof system,
as defined by Menezes et al. [35, Chapter 10]. We next show
that P is a proof of knowledge, i.e. it has the properties
of completeness and soundness. The following definition is
adapted from [35, Chapter 10].

Definition 15 (Completeness). An authentication protocol is
complete if, given an honest client C and an honest server
S, the protocol succeeds with overwhelming probability (i.e.
S accepts C’s claim).

Theorem 1 (Completeness). The protocol P is complete.

Proof: Suppose P is run with an honest client C that
sends a validly constructed value s ← Enc(pkC , s) for a
sample s to server S. We consider two cases.
(a) Suppose the sample s matches the template t, i.e. suppose

f(s, t) = 1. Then, by definition, b = Enc(pkC , 1), and
thus y = r1. Hence, if y ← Dec(skC , y) then y = r1.
Thus, S accepts C.

(b) Suppose the sample s does not match the template t, i.e.
suppose f(s, t) = 0.
Then, by definition, b = Enc(pkC , 0), and thus y = r0.
Hence, if y ← Dec(skC , y) then y = r0. Thus, S does
not accept C.

That is, S accepts C if and only if the sample s matches the
template t.

The following definition is adapted from [35, Chapter 10].

Definition 16 (Soundness). An authentication protocol is
sound if there exists an expected polynomial time algorithm A
with the following property: if a dishonest client C ′ (imper-
sonating C) can with non-negligible probability successfully
execute the protocol with S, then A can be used to extract
from C ′ knowledge (essentially equivalent to C’s secret) which
with non-negligible probability allows successful subsequent
protocol executions.

We first need the following preliminary result.

Lemma 1. Suppose a client C∗ engages in the protocol P
with the server S, using sample sC∗ , and that S accepts C∗.
It follows that:

(a) the sample sC∗ matches the template t held by S;
(b) C∗ has access to the value r1 chosen by S in Step 2b of
P .

Proof:
(a) Since S accepts C∗, it immediately follows from Theo-

rem 1 that the sample sC∗ matches the template t.
(b) In Step 4 of P , S accepts C∗ if and only if the value y

sent by C∗ to S in Step 3 equals r1. The result follows.

We can now give our main result.

Theorem 2. The protocol P is sound.

Proof: Suppose P is run with a dishonest client C ′,
impersonating an honest client C, that sends a validly con-
structed value sC′ ← Enc(pkC , sC′) for a sample sC′ to
server S in Step 1 of P . Suppose also that there is a non-
negligible probability that C ′ is accepted. We need to establish
that C ′ can, with non-negligible probability, engage in further
successful protocol executions with S.

Since S accepts C ′ in the protocol execution with non-
negligible probability, by Lemma 1 we know that C ′ with non-
negligible probability has access to r1, which was provided
to C ′ in encrypted form in Step 2 of P . Hence C ′ must
have access to an oracle O that, given an input encrypted

using C’s public key, with non-negligible probability returns
its decrypted version.

Assume a subsequent instance of the same protocol P .
1) In Step 1, C ′ uses the sample s∗C′ = sC′ , computes s∗C′

using the public key of C, and sends it to S.
2) Step 2 is executed as specified by S, where the two

random values chosen by S are denoted by r∗0 and r∗1 .
Clearly s∗C′ matches t (from (a) above), and hence the
value y∗ sent to C ′ will satisfy y∗ = r∗1 .

3) In Step 3, C ′ uses oracle O which will, with non-
negligible probability, correctly decrypt y∗; that is, the
value y∗ output by O will satisfy y∗ = r∗1 with non-
negligible probability. C ′ then sends y∗ to S.

4) In Step 4, since y∗ = r∗1 with non-negligible probability,
S will accept C ′ with non-negligible probability.

That is, there exists a PPT algorithm A, using O as a
subroutine, that for any instance of P can be used to arrange
that C ′ will be accepted by S with non-negligible probability.

IV. SECURITY PROPERTIES

A. Security model

We suppose the protocol P is carried out in the real world
between a challenger and an adversary. In the real world,
adversaries can play the role of the client or the server. We
suppose adversaries are static, i.e. they cannot change their
role within an instance of the protocol, and cannot play both
roles at the same time. We distinguish between two classes of
adversary:
• Honest-but-curious adversaries execute a protocol hon-

estly, although ‘on the side’ they can make any other
calculations with the purpose of obtaining information to
which they are not entitled.

• Malicious adversaries execute a protocol in ways not
permitted in the specification, perform any calculations,
and use any means to obtain information.

In our setting, we model an honest-but-curious adversary.

B. Privacy of the biometric data

One of the main goals of P is to give C (and U) assurance
regarding the privacy of biometric data shared with S, i.e.
all samples and templates. As we next show, this property
relies on the IND-CPA security (see Definition 14) of the
homomorphic encryption scheme.

Definition 17 (Privacy-preserving). If a biometric authentica-
tion protocol preserves the privacy of the biometric data of
the client against a honest-but-curious adversary (a server or
external party), then the protocol is privacy-preserving.

Definition 18 (Privacy-preserving game). Suppose the pre-
computation phase of the protocol P is run with an honest
client C that sends a validly constructed encrypted value
s ← Enc(pkC , s) for template t ← Enc(pkC , t) to server
S. Suppose also that A is a PPT adversary. The privacy-
preserving game is as follows.

1) A challenger chooses i ∈ B uniformly at random and
generates two distinct samples {s0, s1} as follows.

(a) f(si, t) = 1, and
(b) f(s1−i, t) = 0.

2) The challenger encrypts the two samples as s0 ←
Enc(pkC , s0) and s1 ← Enc(pkC , s1).

3) The challenger sends {s0, s1, t} to A.
4) A outputs a pair (sj , t), where j ∈ B, and wins the game

if i = j.

We denote this security game by PRI-PREAP (1λ), where λ
is the security parameter of the homomorphic encryption
scheme E and a win in an instance of this security game by
PRI-PREAP (1λ) = 1.

Definition 19 (Advantage for the PRI-PRE game). Suppose
that P , λ and A are as in Definition 18. The advantage of the
adversary with respect to P , denoted by AdvPA(λ), is defined
to be:

AdvPA(λ)
def
=

∣∣∣∣2 · Pr
[

PRI-PREAP (1λ) = 1

]
− 1

∣∣∣∣.
Definition 20 (PRI-PRE security). Suppose P , A and λ are
as in Definition 19. If the advantage AdvPA(λ) for A in the
PRI-PRE game is negligible, then P is PRI-PRE, i.e. privacy-
preserving.

Theorem 3. The protocol P is privacy-preserving.

Proof: Suppose that the protocol P is not privacy-
preserving, i.e. by Definition 20, there exists an adversary A
that has a non-negligible advantage in the privacy-preserving
game. By definition this means that A has a distinguisher D
that distinguishes, with non-negligible probability, which of
two encrypted samples s0 and s1 will match an encrypted
template t.

We next construct an adversary B against the IND-CPA
security of E . Suppose B generates a triple of values (s, s′, t)
satisfying f(s, t) = 1 and f(s′, t) = 0. B now submits the
pair (s, s′) to a challenger in the IND-CPA security game. B
receives back from the challenger the ciphertext s∗, where s∗

equals either s or s′ (with equal probability).
B first computes s and t from s and t, and then runs the

distinguisher D with inputs s∗ and s as the encrypted samples
and t as the encrypted template. If D returns s∗ (which we call
event eX), then B outputs (s, s∗) in the IND-CPA game. If D
returns s (which we call event eY), then B outputs (s′, s∗) in
the IND-CPA game.

To evaluate the probability that B wins the game, we
consider two cases.
• Suppose s∗ = s (event eA which has probability 0.5).

Then the two encrypted samples s∗ and s submitted to
D both match the template. Hence the probability that D
will return s∗ (event eX) = the probability it returns s
(event eY) = 0.5.

• Suppose s∗ = s′ (event eB which also has probability
0.5). Then of the two encrypted samples s∗ and s
submitted to D, only s will match the template. Hence

the probability that D will return s (event eY) is 0.5 + p,
where p > 0 is non-negligible (this follows since D is a
distinguisher).

Hence we have:

Pr(eA ∧ eX) = Pr(eA)Pr(eX) = 0.52 = 0.25; and
Pr(eB ∧ eY) = Pr(eB)Pr(eY) = 0.5(0.5 + p) = 0.25 + 0.5p.

If eX occurs then, by assumption, B outputs (s, s∗) in
the IND-CPA game. The probability this wins is simply
Pr(eA|eX). Similarly, if eY occurs then the probability of B
winning is Pr(eB |eY). Hence, since events eX and eY are
mutually exclusive, the probability that B wins the game is:

Pr(eA|eX)Pr(eX) + Pr(eB |eY)Pr(eY)

= Pr(eA ∧ eX) + Pr(eB ∧ eY) = 0.5(1 + p).

By definition the advantage for B is 2(0.5(1+p))−1 = 2p,
which is non-negligible since p is non-negligible. This contra-
dicts the assumption that E is IND-CPA secure, and hence P
is privacy-preserving.

C. Entity authentication

We next show that Steps 2–4(a) of P constitute a secure
authentication protocol. We follow the approach of Boyd et
al. [36], based on the Bellare-Rogaway model [37], adapting
a proof of Blake-Wilson and Menezes [38]. We first give an
informal definition of entity authentication.

Definition 21 (Menezes et al. [35]). Entity authentication is
the process whereby one party is assured (through acquisition
of corroborative evidence) of the identity of a second party
involved in a protocol, and that the second has actually
participated (i.e. is active at, or immediately prior to, the time
the evidence is acquired).

Steps 2–4(a) of P by design constitute a unilateral entity
authentication protocol, i.e. only C authenticates to S. Before
formally defining the authentication notion, we need the con-
cept of matching conversations due to Bellare and Rogaway
[37]. We suppose that an adversary A has access to an infinite
family of oracles denoted by Ωia,b, where a and b are in the
space of participants of a protocol, i ∈ N denotes the i-th
instance of a protocol, and the oracle behaves as if entity a is
performing protocol P in the belief it is communicating with
the entity b for ith time.

Definition 22 (Conversation). For any oracle Ωia,b, its con-
versation for instance i is the following n-tuple

K = (t1, α1, β1), (t2, α2, β2), ..., (tn, αn, βn)

where at time tj , the oracle Ωia,b received αj and sent βj
(1 ≤ j ≤ n).

We can now define matching conversations, again following
Bellare and Rogaway [37, Definition 4.1]. We assume that the
number of moves n in a protocol is odd (n even is investigated
by Boyd et al. [36]).

Definition 23 (Matching conversations). Suppose P is a n-
move protocol, where n = 2k − 1 for some integer k. Run P
and suppose oracles Ωia,b and Ωjb,a engage in conversations
Ki and Kj , respectively. If there exist t0 < t1 < ... < tn and
α1, β1, ..., αk, βk such that Ki is prefixed by

(t0, ∅, α1), (t2, β1, α2), (t4, β2, α3), ..., (t2k−2, βk−1, αk)

and Kj is prefixed by

t1, α1, β1), (t3, α2, β2), (t5, α3, β3), ...,

(t2k−3, αk−1, βk−1), (t2k−1, αk, ∗)
then Kj is a matching conversation to Ki.
∅ means that the oracle has no input, because it initiates the

protocol; we call it an initiator oracle; otherwise, an oracle
is a responder oracle. ∗ means that the oracle has no output,
because the protocol ends with this last move.

Informally, this means that conversation Kj of Ωjb,a (a
responder oracle) matches conversation Ki of Ωia,b (an ini-
tiator oracle). We also need the following definition, which
has been modified for the unilateral (as opposed to mutual)
authentication case.

Definition 24 (No match). Suppose P is a protocol and A
is an adversary. Suppose also that when P is run against A
there exists an initiator oracle Ωia,b with a conversation Ki

in the ACCEPT state but no oracle Ωjb,a has a conversation
matching with Ki. We denote this event by No-MatchAP and
its probability by Pr(No-MatchAP).

These preliminaries enable us to state the following key
definition. Note that this definition corresponds to the case
where the protocol responder (entity b) is authenticated by
the protocol initiator (entity a), i.e. in the case of protocol P
where the server is entity a and the client is entity b.

Definition 25 (Secure unilateral authentication protocol). A
protocol P is a secure unilateral entity authentication protocol
if for every adversary A:

1) If Ωia,b and Ωjb,a have matching conversations, then the
initiator oracle Ωia,b accepts;

2) Pr(No-MatchAP) is negligible.

The first condition refers to completeness. The second
condition says that the only way for an adversary to corrupt
an honest responder oracle to the ACCEPT state is to relay
the messages in the protocol without modification, i.e. an
adversary can only observe and relay messages.

We can now state the main result.

Theorem 4. If E is IND-CPA, then Steps 2–4(a) of P form a
secure unilateral authentication protocol.

Proof: Since for the purposes of the Theorem we are
ignoring Steps 1, 4(b) and 4(c) of P , the server is the protocol
initiator and the client is the responder, although the reverse is
true for P in its entirety. Suppose λ is the security parameter of

the underlying homomorphic encryption scheme E . Suppose
also that Steps 2–4(a) of P do not form a secure authentication
protocol. From Theorem 1, we know that P is complete, i.e.
that the first condition of Definition 25 holds. Thus the second
condition does not hold, i.e. there exists a PPT adversary A
such that Pr(No-MatchAP) is non-negligible.

We say that A succeeds against Ωia,b if, at the end of
A’s operation, there exists an initiator oracle Ωia,b with a
conversation Ki in the ACCEPT state but no oracle Ωjb,a
has a conversation Kj matching with Ki. We denote the
probability that A succeeds against the initiator oracle Ωia,b by
Pr(A succeeds) = p. Then, by assumption, p is non-negligible.
Suppose also A possesses the public key pkA of a genuine
client. We next construct an adversary B from A against the
IND-CPA security of E .

We consider the details of the conversation of the oracle
ΩiS,C . Since we only consider Steps 2–4(a) of P , we have
n = 3. Suppose the conversation for ΩiS,C is

K = (t0, ∅, α1), (t2, β1, α2)

where at time t0, the oracle sent α1 and at time t2 the oracle
received β1 and sent α2. Then it follows that we have α1 =
y = Enc(pkC , rw) (where w is 0 or 1), β1 = y, and α2 =
∗), where we ignore the ID token τ since its construction is
independent of the design of the protocol.

Since A is successful against ΩiS,C with probability p, it
follows that y ∈ {r0, r1} with probability p. Since r0 and r1
are chosen uniformly at random for each conversation instance,
and since we are also assuming that there is no matching
conversation, A must have a means for recovering rw from
Enc(pkC , rw) which works with probability at least p. Hence
A must have access to an oracle O which, when given an
input encrypted using the public key of C, with non-negligible
probability returns its decrypted version. However, since A
does not have access to the private key of C, this oracle can
immediately be used to construct an adversary B against the
IND-CPA security of E . This gives the desired contradiction
and hence it follows that P is a secure unilateral authentication
protocol.

V. IMPLEMENTATION

The protocol has been implemented using the C/C++ Fully
Homomorphic Encryption over the Torus (TFHE) library due
to Chillotti et al. [39]. One feature of TFHE is that it
implements gate bootstrapping, i.e. at each evaluated gate the
bootstrapping method is executed. This enables the evaluation
of arbitrary circuits on encrypted data. In practice, TFHE
offers the fastest gate bootstrapping in the literature, namely of
the order of 13 milliseconds per gate on a single core; however,
“bootstrapped bit operations are still about one billion times
slower than their plaintext equivalents” [2].

In Section II, we described a homomorphic encryption
scheme as a public key encryption system. The TFHE scheme
is symmetric but can easily be used in the context of P because
it provides a pair of keys: a secret key sk and a cloud key ck.
In the context of P (see Section III), sk is kept secret and

used by the client C to encrypt and decrypt data. C sends ck
to the server S during the registration phase. S is then able to
compute arbitrary circuits on data encrypted under sk using
ck without being able to decrypt them. For further information
on the design and security of TFHE see Chillotti et al. [2].

A. Biometric matching

We chose facial recognition as the biometric method for our
proof-of-concept implementation for two main reasons: it is a
mature technology (see, for example, the NIST report [40])
and one that suits the homomorphic setting. For our purposes,
facial samples and templates are vectors x = 〈x1, ..., xn〉 ∈
(Zm)n, where Zm is the set of the integers modulo m
(for some m). Samples and templates are compared using
Euclidean distance, as defined below.

Definition 26 (Euclidean distance). Suppose x,y ∈ (Zm)n.
The Euclidean distance between x and y is defined to be:

∆x,y =

√√√√ n∑
i=1

(yi − xi)2.

To simplify calculations, we used the square of the distance
as the metric. As in the following definition, a sample and a
template are deemed to match if the (square of) the distance
is at most B, for some B.

Definition 27 (Match). A pair of vectors x,y ∈ (Zm)n are
said to match if and only if (∆x,y)2 ≤ B.

The function f , defined in §III-B, is implemented in accor-
dance with Definition 27 as follows: f : (Zm)n × (Zm)n −→
B, where f(x,y) = 1 if and only if (∆x,y)2 ≤ B, and
we assume this implementation throughout Section V. The
algorithm used to implement f is given in Appendix A (see
Algorithm 1).

For comparison purposes, when verifying the correctness
of the implementation, we also implemented the Manhattan
distance, defined below.

Definition 28 (Manhattan distance). Suppose x,y ∈ (Zm)n,
and let |z| denote the absolute value of z. The Manhattan
distance between x and y is defined to be:

δx,y =

n∑
i=1

|yi − xi|.

B. Results

To obtain performance results, the implementation was run
on an Ubuntu 20.04.1 LTS 64-bit machine with 8 GB of RAM
and a four-core Intel(R) Core(TM) i3-6100CPU @ 3.70GHz.
TFHE was used with the default parameter, which achieves
110-bit cryptographic security [39]. We chose to use biometric
vectors of length 128 (i.e. n = 128) because it is a likely real-
world value.

To obtain timing figures, we first measured the ‘homo-
morphic’ (ciphertext domain) computation times for most
of the arithmetic and bit comparison subroutines given in
Appendix A. For comparison purposes, we also implemented

and measured the performance of all the subroutines in the
plaintext domain. Table I summarises the results.

It is clear that homomorphic computations have a substantial
performance cost, with an order of magnitude of at least 106.
This finding is in line with previous work [34], despite the
optimisations included in the TFHE library [20].

TABLE I
PERFORMANCE RESULTS FOR BASIC OPERATIONS

Subroutines Execution time
on plaintexts
(in nanoseconds)

Execution time
on ciphertexts
(in seconds)

n-bit addition 335 9
Two’s complement 422 10
Absolute value 396 10
n-bit subtraction 1108 30
n-bit multiplication 2094 206
Manhattan distance 210370 5049
Euclidean distance 425022 33536

Building on the implementations of fundamental operations,
we implemented a naive version of P . The performance results
are shown in Table II, and confirm that the current proof-of-
concept implementation is certainly not practical, and needs
considerable optimisation in order to be usable in practice. For
comparison we also show computation results in the plaintext
domain. Note that none of the performance results given in
Table I include the encryption and decryption time.

TABLE II
PERFORMANCE RESULTS FOR THE PROTOCOL P AND ITS UNDERLYING

FUNCTIONS

Subroutines Execution time
on plaintexts
(in microseconds)

Execution time
on ciphertexts
(in seconds)

Function f 790 34308
Function g 5 456
Protocol P 810 34765

These results demonstrate the importance of optimising
the design of an algorithm and its implementation. The
performance results are not only due to the homomorphic
paradigm, but also because we implemented the most naive
routines without any optimisations or parallelisations. We
project from those results that with an optimised and targeted
implementation P could be practical in the real world.

To conclude, we showed that, implemented naively, homo-
morphic encryption does not meet the performance criteria
for practical use, since a user cannot wait for a few hours
to be authenticated in most (if not all) authentication use
cases. Indeed, Nah [41] showed that a typical user will not
tolerate a wait of more than two seconds for a web page to
appear. Nonetheless, there are considerable possibilities for
optimisation, and the implementation and design of P can be
enhanced in various ways, as we next briefly discuss.

C. Possible optimisations

The most obvious improvement would be from the algo-
rithmics perspective. As explained above all the subroutines
are implemented in a very naı̈ve way.

There exist various public libraries that could be used to add
parallel computing features. One example would be a C++
library such as OpenMP. Many of the subroutines have for
loops in which all execution instances are independent.

Finally, perhaps the most effective optimisation would be
to mix the FHE schemes, as proposed by Boura et al. [42],
[43]. Existing libraries are optimised for certain targeted ho-
momorphic computations; the main idea is to switch between
libraries, choosing the most efficient for each homomorphic
computation. In our case, the arithmetic subroutines would be
faster on libraries other then TFHE; however, bit comparisons
are much better handled by the TFHE library. This idea is
practically effective, as shown by Lou et al. [44] who present
Glyph, a tool which switches between TFHE [39] and BGV
cryptosystems [15].

VI. CONCLUSIONS AND FUTURE WORK

We presented the design and a proof-of-concept implemen-
tation of a novel privacy preserving authentication protocol
based on fully homomorphic encryption. Human authenti-
cation is based on biometric matching, implemented in the
proof-of-concept using face matching. In the implementation,
all underlying operations are executed using FHE, including
biometric matching, Euclidean distance computation, and in-
teger comparison. We showed that the protocol is privacy-
preserving and a secure unilateral authentication protocol if
the underlying homomorphic encryption scheme is IND-CPA.

The implementation results are for a naive and unoptimised
version, i.e. the worst-case scenario. However, producing it in-
volved developing a set of elementary routines in the ciphertext
domain that can be used as low-level building blocks in other
applications. The results confirm that FHE is not practical
in a naive worst-case model, and real-world implementations
would require optimisations. However, the results suggest that,
with already identified improvements, the protocol can be
made ready for real-world adoption.

There are number of possible directions for future work in
improving performance. First, as identified in §V-B, mixing
FHE schemes to take advantage of the best of each scheme
(see [43], [44]) would significantly benefit performance with-
out compromising the IND-CPA security of the homomorphic
encryption scheme. Better algorithmics and implementation
design is also an obvious target for improvement. Another pos-
sibility would be to change the biometric matching paradigm.
Deep Learning is known to be useful in this context, and
the performance in particular for face matching has been
much improved recently thanks to initiatives such as that of
NIST3. However, when such deep learning techniques are
used in combination with homomorphic encryption, only the

3See https://www.nist.gov/speech-testimony/facial-recognition-technology-
frt-0 for more details.

https://www.nist.gov/speech-testimony/facial-recognition-technology-frt-0
https://www.nist.gov/speech-testimony/facial-recognition-technology-frt-0

inference phase is run homomorphically and the training phase
is run on clear data (see e.g. [45], [46]). To achieve the
level of security we showed in this paper with FHE, both
phases need to be executed in the ciphertext domain. However,
encrypting both phases may not be straightforward to achieve,
as recent experience shows that it is costly [44], [47], despite
improvements in making FHE practical.

REFERENCES

[1] G. Pradel and C. Mitchell, “Privacy-preserving biometric matching using
homomorphic encryption,” in TrustCom 2021. IEEE, 2021.

[2] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34–91, 2020.

[3] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[4] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in TCC, ser. Lecture Notes in Computer Science, vol. 3378.
Springer, 2005, pp. 325–341.

[5] D. Naccache and J. Stern, “A new public key cryptosystem based on
higher residues,” in CCS. ACM, 1998, pp. 59–66.

[6] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure
as factoring,” in EUROCRYPT, ser. Lecture Notes in Computer Science,
vol. 1403. Springer, 1998, pp. 308–318.

[7] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in EUROCRYPT, ser. Lecture Notes in Computer Science,
vol. 1592. Springer, 1999, pp. 223–238.

[8] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

[9] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in FOCS. IEEE Computer Society,
2011, pp. 97–106.

[10] ——, “Lattice-based FHE as secure as PKE,” in ITCS. ACM, 2014,
pp. 1–12.

[11] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully ho-
momorphic encryption over the integers,” in EUROCRYPT, ser. Lecture
Notes in Computer Science, vol. 6110. Springer, 2010, pp. 24–43.

[12] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
AES circuit,” in CRYPTO, ser. Lecture Notes in Computer Science, vol.
7417. Springer, 2012, pp. 850–867.

[13] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in Public Key Cryptography,
ser. Lecture Notes in Computer Science, vol. 6056. Springer, 2010, pp.
420–443.

[14] D. Stehlé and R. Steinfeld, “Faster fully homomorphic encryption,”
in ASIACRYPT, ser. Lecture Notes in Computer Science, vol. 6477.
Springer, 2010, pp. 377–394.

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” in ITCS. ACM, 2012, pp.
309–325.

[16] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in STOC. ACM, 2005, pp. 84–93.

[17] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in CRYPTO (1), ser. Lecture Notes in Computer Sci-
ence, vol. 8042. Springer, 2013, pp. 75–92.

[18] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polynomial
error,” in CRYPTO (1), ser. Lecture Notes in Computer Science, vol.
8616. Springer, 2014, pp. 297–314.

[19] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic
encryption in less than a second,” in EUROCRYPT (1), ser. Lecture
Notes in Computer Science, vol. 9056. Springer, 2015, pp. 617–640.

[20] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
ASIACRYPT (1), ser. Lecture Notes in Computer Science, vol. 10031,
2016, pp. 3–33.

[21] C. Lu and X. Tang, “Surpassing human-level face verification perfor-
mance on LFW with gaussianface,” in AAAI. AAAI Press, 2015, pp.
3811–3819.

[22] E. Pagnin and A. Mitrokotsa, “Privacy-preserving biometric authentica-
tion: Challenges and directions,” Secur. Commun. Networks, vol. 2017,
pp. 7 129 505:1–7 129 505:9, 2017.

[23] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “Scifi - A system
for secure face identification,” in IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2010, pp. 239–254.

[24] B. Schoenmakers and P. Tuyls, “Efficient binary conversion for paillier
encrypted values,” in EUROCRYPT, ser. Lecture Notes in Computer
Science, vol. 4004. Springer, 2006, pp. 522–537.

[25] M. Blanton and P. Gasti, “Secure and efficient protocols for iris and
fingerprint identification,” in ESORICS, ser. Lecture Notes in Computer
Science, vol. 6879. Springer, 2011, pp. 190–209.

[26] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Packed homomorphic encryption based on ideal lattices and its appli-
cation to biometrics,” in CD-ARES Workshops, ser. Lecture Notes in
Computer Science, vol. 8128. Springer, 2013, pp. 55–74.

[27] A. Abidin, E. Pagnin, and A. Mitrokotsa, “Attacks on privacy-preserving
biometric authentication,” in NordSec 2014, ser. Secure IT Systems,
K. Bernsmed and S. Fischer-Hübner, Eds. Springer, 2014, pp. 293–294.

[28] J. Bringer and H. Chabanne, “An authentication protocol with encrypted
biometric data,” in AFRICACRYPT, ser. Lecture Notes in Computer
Science, vol. 5023. Springer, 2008, pp. 109–124.

[29] J. R. Troncoso-Pastoriza, D. González-Jiménez, and F. Pérez-González,
“Fully private noninteractive face verification,” IEEE Trans. Inf. Foren-
sics Secur., vol. 8, no. 7, pp. 1101–1114, 2013.

[30] J. H. Cheon, H. Chung, M. Kim, and K. Lee, “Ghostshell: Secure bio-
metric authentication using integrity-based homomorphic evaluations,”
IACR Cryptol. ePrint Arch., vol. 2016, p. 484, 2016.

[31] V. N. Boddeti, “Secure face matching using fully homomorphic encryp-
tion,” in BTAS. IEEE, 2018, pp. 1–10.

[32] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[33] O. Goldreich, The Foundations of Cryptography — Volume 1: Basic
Techniques. Cambridge University Press, 2001.

[34] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A.
Reuter, and M. Strand, “A guide to fully homomorphic encryption,”
Cryptology ePrint Archive, Report 2015/1192, 2015, https://eprint.iacr.
org/2015/1192.

[35] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[36] C. Boyd, A. Mathuria, and D. Stebila, Protocols for Authentication
and Key Establishment, Second Edition, ser. Information Security and
Cryptography. Springer, 2020.

[37] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in CRYPTO, ser. Lecture Notes in Computer Science, vol. 773. Springer,
1993, pp. 232–249.

[38] S. Blake-Wilson and A. Menezes, “Entity authentication and authen-
ticated key transport protocols employing asymmetric techniques,” in
Security Protocols Workshop, ser. Lecture Notes in Computer Science,
vol. 1361. Springer, 1997, pp. 137–158.

[39] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

[40] Facial Recognition Technology (FRT), National Institute of Standards
and Technology (NIST), https://www.nist.gov/speech-testimony/facial-
recognition-technology-frt-0. Accessed: 2020-02-06.

[41] F. F. Nah, “A study on tolerable waiting time: How long are web users
willing to wait?” in AMCIS. Association for Information Systems,
2003, p. 285.

[42] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Chimera: Combin-
ing ring-lwe-based fully homomorphic encryption schemes,” Cryptology
ePrint Archive, Report 2018/758, 2018, https://eprint.iacr.org/2018/758.

[43] ——, “CHIMERA: combining ring-lwe-based fully homomorphic en-
cryption schemes,” J. Math. Cryptol., vol. 14, no. 1, pp. 316–338, 2020.

[44] Q. Lou, B. Feng, G. C. Fox, and L. Jiang, “Glyph: Fast and accurately
training deep neural networks on encrypted data,” in NeurIPS, 2020.

[45] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in CRYPTO (3), ser.
Lecture Notes in Computer Science, vol. 10993. Springer, 2018, pp.
483–512.

[46] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in ICML, ser. JMLR Workshop and
Conference Proceedings, vol. 48. JMLR.org, 2016, pp. 201–210.

crypto.stanford.edu/craig
https://eprint.iacr.org/2015/1192
https://eprint.iacr.org/2015/1192
https://www.nist.gov/speech-testimony/facial-recognition-technology-frt-0
https://www.nist.gov/speech-testimony/facial-recognition-technology-frt-0
https://eprint.iacr.org/2018/758

[47] K. Nandakumar, N. K. Ratha, S. Pankanti, and S. Halevi, “Towards
deep neural network training on encrypted data,” in CVPR Workshops.
Computer Vision Foundation / IEEE, 2019, pp. 40–48.

[48] H. Vollmer, Introduction to Circuit Complexity — A Uniform Ap-
proach, ser. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 1999.

[49] J. L. H. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup, “Doing
real work with FHE: the case of logistic regression,” in WAHC@CCS.
ACM, 2018, pp. 1–12.

[50] A. A. Karatsouba and Y. P. Ofman, “Multiplication of multidigit numbers
on automata,” Soviet Physics — Doklady, pp. 595—-596, 1963.

[51] F. Bourse, O. Sanders, and J. Traoré, “Improved secure integer com-
parison via homomorphic encryption,” in CT-RSA, ser. Lecture Notes in
Computer Science, vol. 12006. Springer, 2020, pp. 391–416.

[52] A. C. Yao, “Protocols for secure computations (extended abstract),” in
FOCS. IEEE Computer Society, 1982, pp. 160–164.

APPENDIX

We next formally introduce notions related to circuits. For
more complete versions of these definitions, see Vollmer [48].

Definition 29 (Boolean function). A Boolean function is a
function f : Bn → B for some n ∈ N.

Definition 30 (Family of Boolean functions). A family of
Boolean functions is a sequence f = (fn)n∈N, where fn is
an n-ary Boolean function.

Definition 31 (Basis). A basis is a finite set consisting of
Boolean functions and families of Boolean functions.

Informally, a Boolean circuit is a directed acyclic graph
with internal nodes marked by elements of {∧,∨,¬}. Nodes
with no in-going edges are called input nodes, and nodes with
no outgoing edges are called output nodes. A node marked ¬
may have only one outgoing edge. Computation in the circuit
begins with placing input bits on the input nodes (one bit per
node) and proceeds as follows. If the outgoing edges of a node
(of in-degree d) marked ∧ (similarly for nodes marked ∨ and
¬) have values v1, v2, ..., vd then the node is assigned the value
∧di=1vi. The output of the circuit is read from its output nodes.
The size of a circuit is the number of its edges. A polynomial-
size circuit family is an infinite sequence of Boolean circuits
π1, π2, ... such that, for every n, the circuit πn has n input
nodes and size p(n), where p is a polynomial fixed for the
entire family.

Definition 32 (Circuit). Let B be a basis. A Boolean circuit
over B with n inputs and m outputs is a tuple

π = (V,E, α, β, ω),

where (V,E) is a finite directed acyclic graph, α : E → N is
an injective function, β : V → B ∪ {x1, x2, ..., xn}, and ω :
V → {y1, y2, ..., ym}∪{∗}, such that the following conditions
hold:

1) If v ∈ V has in-degree 0, then β(v) ∈ {x1, x2, ..., xn} or
β(v) is a 0-ary Boolean function (i.e. a Boolean constant)
from B.

2) If v ∈ V has in-degree k > 0, then β(v) is a k-ary
Boolean function from B or a family of Boolean functions
from B.

3) For every i, 1 ≤ i ≤ n, there is at most one node v ∈ V
such that β(v) = xi.

4) For every i, 1 ≤ i ≤ m, there is at most one node v ∈ V
such that ω(v) = yi.

Remark 4. A Boolean circuit π with n inputs and m outputs
computes a Boolean function

f : Bn → Bm.

Definition 33 (Circuit family). Let B be a basis. A circuit
family over B is a sequence Π = (π0, π1, π2, ...), where for
every n ∈ N, πn is a circuit over B with n inputs. Let fn be
the function computed by πn. Then we say that Π computes
the function f : B∗ → B∗, defined for every w ∈ B∗ by

f(w)
def
= f|w|(w).

Remark 5. For simplicity of presentation, we often abuse
our notation slightly by considering circuit families (πn)n∈N,
where πn has p(n) rather than n input bits, for some fixed
polynomial p.

A. Biometric matching

Algorithm 1 implements the function f defined in §III-B.

Algorithm 1: Pseudo-code of the biometric matching
f

Input : x,y ∈ (Zm)n and B ∈ Z
Output: b ∈ B
∆x,y ←

∑n
i=1(yi − xi)2;

if ∆x,y ≤ B then
b = 1

else
b = 0

return b

B. Basic operations

As stated by Crawford et al. [49], a key step for practical
homomorphic encryption is to implement basic routines and
tools, e.g. binary arithmetic, and make them available for
use and optimisation. We implemented the following basic
arithmetic functions, needed to calculate Euclidean distance
(see §V-A). In each case pseudo-code (using mainly logic)
is provided below. Apart from the specified functions, we
also used the bitwise routines implemented in the TFHE
library4. All the functions are presented as they are executed
in the plaintext domain, although the implementations of those
routines are specific to the ciphertext domain.

1-bit addition
We denote naive binary addition by 1bit add. Two bits a

and b are XOR-ed with carry; the carry is updated and returned
for use in another 1-bit addition as part of n-bit addition.
Algorithm 2 implements the 1-bit addition routine.

n-bit addition

4A list is given at: https://tfhe.github.io/tfhe/gate-bootstrapping-api.html

https://tfhe.github.io/tfhe/gate-bootstrapping-api.html

Algorithm 2: Pseudo-code of 1-bit addition
Input : a, b, carryin ∈ B
Output: res, carryout ∈ B
res← a XOR b XOR carryin;
carryout ← (a AND b) XOR (a AND carryin) XOR

(b AND carryin);
return (res, carryout)

We denote naive bitwise addition by nbit add. This routine
uses 1bit add and applies to all bits of two n-bit numbers.
Algorithm 3 implements the n-bit addition routine.

Algorithm 3: Pseudo-code of n-bit addition
Input : a, b ∈ Bn
Output: res ∈ Bn+1

carry ∈ B;
carry ← 0;
for i← 1 to n do

(res, carry)← 1bit add(ai, bi, carry)

return res

Two’s complement
We implemented subtraction as addition between a number

and the two’s complement of the other number. Thus, we
require this subroutine. We denote by å the two’s complement
of a and by twos the two’s complement function. Algorithm 4
implements the two’s complement routine.

Algorithm 4: Pseudo-code of two’s complement
Input : a ∈ Bn
Output: å ∈ Bn+1

for i← 1 to n do
åi ← ai XOR 1

å← nbit add(̊a, 1);
return å

Absolute value
The absolute value was required when calculating the

Manhattan distance (see §V-A). We denote this function by
abs. MSB(a) below outputs the Most Significant Bit of a.
Algorithm 5 implements the absolute value routine.

Algorithm 5: Pseudo-code of absolute value
Input : a ∈ Bn
Output: |a| ∈ Bn
mask, tmp ∈ Bn;
for i← 1 to n do
|mask|i ← MSB(a)

tmp← nbit add(a,mask);
for i← 1 to n do
|a|i ← tmpi XOR maski

return |a|

n-bit subtraction
As explained above, when subtracting b from a, the routine

adds a to b̊. We denote this routine by sub. After the addition,
if the final carry denoted carryf over the sum is 1, the result
is positive and remains unchanged. If not (i.e. carryf is 0),
the result is negative thus its two’s complement is returned.
The cost of a branching condition being too great, a sequence
of instructions is used instead, leading to the genuine result.
Algorithm 6 implements the subtraction routine.

Algorithm 6: Pseudo-code of n-bit subtraction
Input : a, b ∈ Bn
Output: res, tmp, var ∈ Bn+1

b̊← twos(b);
tmp← nbit add(a, b̊);
for i← 1 to n+ 1 do

vari ← carryf

res← twos(tmp AND var) OR (tmp AND var);
return res

Multiplication
We implemented a naive multiplication algorithm; however,

other algorithms have smaller complexity, e.g. Karatsuba mul-
tiplication [50]. Implementing this is left for future work.
Algorithm 7 implements this routine denoted by mult.

Algorithm 7: Pseudo-code of n-bit multiplication
Input : a, b ∈ Bn
Output: res ∈ B2n

res← 02n;
tmp← 02n;
for i← 1 to n do

for j ← 1 to n do
tmpi+j ← aj AND bi

res← nbit add(res, tmp)

return res

1-bit comparison
Secure integer comparison has been studied for a long

time [51]. The first solution was probably that of Yao [52]
through the Millionaires’ problem. Integer comparison is very
costly in terms of computation when using FHE; this is why
it is usually better to avoid computing such an operation.
Moreover it can also be difficult to articulate in ciphertext
spaces. In TFHE, this operation is done using logic gates, and a
proposal for implementation is published in the tutorial section
in [39]. The authors use a MUX gate in their function, which
is exhaustively explained in [2, Section 3.4]. The authors
provide two functions, one to compare bitwise and the other
to compare two binary numbers, denoted by 1bit comp and
nbit comp, respectively. We adapted their function in our
implementation. Algorithm 8 implements the 1-bit comparison
routine.

n-bit comparison

Algorithm 8: Pseudo-code of 1-bit comparison
Input : a, b, carry ∈ B
Output: res ∈ B
res← MUX (a XNOR b, carry, a);
return res

This routine performs a comparison of two n-bit numbers
using the previous routine. Algorithm 9 implements the n-bit
comparison routine.

Algorithm 9: Pseudo-code of n-bit comparison
Input : a, b ∈ Bn
Output: res← a?b : carry
carry, tmp ∈ B;
carry ← 0;
for i← 1 to n do

tmp← 1bit comp(ai, bi, carry)

for i← 1 to n do
res← MUX(carry, bi, ai)

return res

	I Introduction
	II Preliminaries
	II-A Security notions
	II-B Homomorphic Encryption

	III A novel privacy-preserving protocol
	III-A Informal description of the protocol
	III-B Formal description of the protocol
	III-C Proof of knowledge

	IV Security properties
	IV-A Security model
	IV-B Privacy of the biometric data
	IV-C Entity authentication

	V Implementation
	V-A Biometric matching
	V-B Results
	V-C Possible optimisations

	VI Conclusions and future work
	References
	Appendix
	A Biometric matching
	B Basic operations

