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Abstract—Network function virtualization (NFV) simplifies the
configuration and management of security services by migrating
the network security functions from dedicated hardware devices
to software middle-boxes that run on commodity servers. Under
the paradigm of NFV, the service function chain (SFC) consisting
of a series of ordered virtual network security functions is
becoming a mainstream form to carry network security services.
Allocating the underlying physical network resources to the
demands of SFCs under given constraints over time is known
as the SFC deployment problem. It is a crucial issue for
infrastructure providers. However, SFC deployment is facing new
challenges in trading off between pursuing the objective of high
revenue-to-cost ratio and making decisions in an online manner.
In this paper, we investigate the use of reinforcement learning to
guide online deployment decisions for SFC requests and propose
a Policy network Assisted Monte Carlo Tree search approach
named PACT to address the above challenge, aiming to maximize
the average revenue-to-cost ratio. PACT combines the strengths
of the policy network, which evaluates the placement potential of
physical servers and the Monte Carlo Tree Search, which is able
to tackle problems with large state spaces. Extensive experimental
results demonstrate that our PACT achieves the best performance
and superior to other algorithms by up to 30% and 23.8% on
average revenue-to-cost ratio and acceptance rate, respectively.

I. INTRODUCTION

With the rapid development of computer network tech-
nology and its wide range of application scenarios, network
security has attracted more attention. How to ensure the secu-
rity of the network has become an important topic. Security
management is a tedious and manual process involving the
implementation, deployment, operation, and maintenance of
diverse security functions. Traditionally, security functions
are deployed on specialized hardware appliances, which have
short life cycles and are usually expensive and customized. In
addition, dynamically adding new security function is usually
cumbersome and challenging [1].

Network function virtualization (NFV) has emerged as
a promising network paradigm which is promoted by the
European Telecommunications Standards Institute (ETSI) [2].
By taking advantages of virtualization techniques and high
capacity servers. NFV decouples the implementation of net-
work security functions, such as firewall, load balancer, deep
packet inspection (DPI) and intrusion prevention system (IPS),
from dedicated hardware devices and implements them in the
form of software middle-boxes that run on top of commodity
servers [3]. Under the paradigm of NFV, network security
functions or applications are deployed in the form of virtual

network functions (VNFs). For example, network traffic may
need to pass through a set of VNFs in a specific order to
achieve a security service (e.g. Firewall⇒DPI⇒IPS), which
is known as the service function chain (SFC) [4]. Infras-
tructure providers (InPs) usually need to dynamically create
and configure diverse SFCs to observe, filter or monitor the
network traffic and address particular security requirements for
different application types.

Due to the various advantages of NFV, NFV-based SFC has
become a primary form of network service. However, SFC
deployment, which allocates resources of underlying physical
network to the demands of SFCs under given constraints over
time, is a crucial and challenging issue for InPs as it has
a direct effect on the network performance and revenue but
is proved to be NP-hard [2]. Many authors have proposed
exact approaches to obtain the optimal solution for the small
instances of the SFC deployment problem [5], [6]. However,
these approaches are computationally expensive, which makes
them not suitable for large scale network. Therefore, numerous
heuristic-based approaches are proposed [7], [8],which try to
get the optimal solution within an acceptable time. Never-
theless, these heuristic-based algorithms lack adaptability to
various environments. In recent years, reinforcement learning
has show super performance in dealing with complex tasks. A
significant number of reinforcement learning-based approaches
are proposed to solve the SFC deployment [9], [10]. These
approaches show great effectiveness, but their effectiveness
will decrease when the space of actions is enormous. In sum-
mary, there is an urgent requirement to design a new intelligent
approach to balance pursuing the optimal deployment and
making decisions in an online manner.

In this paper, we investigate the use of RL to guide
online deployment decisions for SFC requests. To this end,
we propose a Policy network Assisted Monte Carlo Tree
search approach, named PACT, to address the above challenge.
PACT combines the strengths of the policy network which
evaluates the potentials of physical servers and the Monte
Carlo Tree Search (MCTS) which is able to tackle problems
with large state spaces. The effectiveness of PACT is evaluated
by extensive simulations. The main contributions of this paper
are summarized as follows:
• We investigate the online SFC deployment problem in the

NFV-enabled network. The problem is proven to be an
NP-hard problem and formulated as a Markov decision



process (MDP) with carefully-designed states, actions,
rewards and transitions.

• We design a RL based approach (PACT) which ap-
proximates optimal decisions with a search tree using
prioritized samples learned by policy network in the de-
cision space. It could seek a trade-off between optimizing
efficiency and precision.

• We conduct comprehensive simulations to evaluate the
efficiency of the proposed algorithm. The results demon-
strate that our algorithm achieves the best performance,
and superior to other algorithms by up to 30% and
23.8% on average revenue-to-cost ratio and acceptance
rate, respectively.

The rest of the paper is organized as follows. We describe
the related work in Section II. We present the system model
and problem formulation of SFC deployment in Section III.
We define the problem as a MDP, and give our PACT approach
in Section IV. The simulation results are shown in Section V.
Finally, we summarize the paper in Section VI.

II. RELATED WORK

The SFC deployment problem has been extensively studied
in recent years. Comprehensive surveys are already given in
[2] and [11]. In this section, we summarize the related works
and categorize them into the following three groups.

A. Exact approach
In recent years, a significant number of papers modelling the

SFC deployment problem as a mathematical model in the case
of one or multiple objectives and utilize the exact approaches
to obtain the optimal solution for the small instances of the
problem. We can divide these works into different categories
according to their mathematical model. The commonly used
mathematical models are integer linear program (ILP), mixed-
integer linear program (MILP), and binary integer linear
program (BILP). Tomassilli et. al. [5] formulated the SFC
deployment problem as an ILP problem with the objective to
minimize the amount of used physical servers, and proposed a
randomized rounding method to solve it. Jang et. al. [6] mod-
eled the SFC deployment problem as a MILP problem with the
objective of minimizing the energy cost and utilized a linear
relaxation and rounding method to find the optimal solution.
Mijumbi et. al. [12] formulated the SFC deployment problem
as a BILP problem with the objective to minimize the server
setup cost, and proposed a greedy approximation method to
solve it. However, due to the dependence of prior knowledge
of SFCs and the high computational complexity, these offline
approaches are difficult to apply to online placement scenarios.

B. Heuristic based approach
A variety of heuristic-based approaches have been pro-

posed in the current works. Heuristic-based algorithms usually
leverage some artificial rules to reduce the search space,
which is generally effective and could be implemented in
actual scenarios. Kuo et. al. [7] proposed a dynamic pro-
gramming based heuristic algorithm to solve the SFC de-
ployment problem, which follows the guidance of the link
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Fig. 1. An example of SFC deployment.

and server usage to maximize the resource utilization in
the offline scene. Khebbache et. al. [8] proposed a multi-
stage graph construction method to solve the SFC deployment
with the objective of maximizing the acceptance rate in the
online situation. Liu et. al. [13] proposed a novel heuristic
dynamic programming based cost optimization algorithm to
solve the SFC deployment to minimize the server running cost
and communication cost. Heuristic based algorithms might
perform well in the network where the environment is not
dynamic. When considering the online scenario, heuristic
solutions might fall into the local optimum.

C. Reinforcement learning (RL) based approach

Nowadays, RL based approaches have shown great potential
to deal with combinatorial optimization problems. Mijumbi et.
al. [9] proposed a distributed Q-Learning based algorithm for
SFC deployment to maximize the acceptance rate. Khezri et.
al. [10] proposed a deep Q-network (DQN) based approach for
SFC deployment with the objective to minimize the deploy-
ment cost. Xiao et. al. [14] proposed a deep reinforcement
learning approach for SFC deployment with the objective to
minimize the operation cost and maximize the acceptance
rate jointly. Pei et. al. [15] proposed a double deep Q-
network (DDQN) based approach for SFC deployment with
the objective to minimize the end-to-end delay. However, these
approaches have to deal with huge search space, which makes
them not suitable for online decision.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we conduct a detailed analysis of the SFC
deployment in the NFV-enabled network. The key notations
used in this paper are summarized in Table I.

A. Physical Network Model

We consider an undirected graph G = (V , E) to represent
the NFV-enabled substrate/physical network, where V denotes
the set of physical servers and E denotes the set of physical
links. For any link e ∈ E, let Be represent its remaining
bandwidth. Each server v ∈ V hosts a certain amount virtual
machines (VMs), which is denoted as Nv , and the set M



TABLE I. SUMMARY OF KEY NOTATIONS

Notation Description
Network G(V, E)
V The set of physical servers, with v ∈ V
E The set of physical links, with e ∈ E
Be The remaining bandwidth of physical link e
Nv The number of VMs on each server
M The set of VMs hosted on different servers,

with m ∈M
Cm The remaining computing capability of VM m

F The set of all VNF types supported by the
physical network

SFC sk

µ The arrival rate of SFC request
F sk The VNF set requested by SFC sk

cfk
t

The computing demand of the t-th VNF of
k-th SFC request

bk The bandwidth demand of SFC request k
ak The arrival time of SFC request k
lk The lifetime of SFC request k
ok The ingress vertex of the SFC request k
dk The egress vertex of the SFC request k

with fk
t ∈ F sk

pk The selected mapping path of SFC request k
MDP Mk

φk
t The state of the physical network and SFC

request k at time t
Ak

t The action set of deploying SFC request k
at time t

Rt The immediate reward after selecting a server
vt for placement fk

t at time t

represent all VMs hosted on different servers. For each VM
m ∈M , let Cm denote its remaining computing capability. We
assume that the physical network can support a set of VNFs F
and each VM m ∈M can only run one type of VNF f ∈ F .
However, different VMs might run the same type of VNF.
Besides, we assume that the bandwidth between VMs on the
same server v is sufficient to support the maximum bandwidth,
allowing different VNFs of the same SFC to be deployed
on the same server. An example of a physical network is
illustrated in the bottom of Fig. 1. The physical network
contains five servers and seven links. Each server consists of
three VMs. The numbers around the VMs and links are the
available resources for them.

B. SFC Request Model

In this paper, we use µ to denote the arrival rate of SFC
requests, which follows a Poisson distribution. Let sk ={
fk1 , . . . , f

k
t , . . . , f

k
Tk

}
represent the k-th SFC request. The

set of VNFs for SFC request sk is denoted as F sk={ fkt |t ∈
[1, T k]}, where fkt is the t-th VNF of k-th SFC request. For
each VNF fkt , let cfk

t
indicate the computing demand of it.

As F represents the set of all VNF types supported by the
network, we assumed that any VNF fkt ∈ F is used at most
once in each SFC request to ensure that no duplicate type
of VNF occurs. We assume that each SFC request sk has a
bandwidth demand bk, ok and dk are denoted as the ingress
vertex and egress vertex of SFC request sk, respectively.
Moreover, let ak and lk be the arrival time and lifetime of
SFC request sk, respectively. An example of a SFC request
is illustrated in the upper of Fig. 1. The SFC request contains
four different VNFs and connected by three virtual links. The
numbers around the VNFs and virtual links are the requested
resources.

C. Problem Formulation

The main objective of a SFC deployment is to effectively
allocate resources of the underlying physical network to the
demands of SFCs under given constraints over time.

1) Objective Function: To maximize the InP’s profit, which
is defined as the ratio between the generated revenue and the
placement cost, like previous work [16], we aim to maximize
the revenue-to-cost ratio, which is defined as:

F(sk) =


R(sk)

C(sk)
, if sk is accepted,

0 otherwise.
(1)

Revenue: The revenue of accepting a SFC request sk can
be defined as:

R(sk) =

η · ∑
fk
t ∈sk

cfk
t
+ β · (|sk| − 1) · bk

 · lk, (2)

where η and β are the unit prices charged for the computing
resource and bandwidth resource, which are determined by the
InPs [17].

Cost: After deploying a SFC request sk, the InP allocates
physical resources for the SFC and incurs a cost, which is
defined as:

C(sk) =

 ∑
fk
t ∈sk

cfk
t
+ |pk| · bk

 · lk, (3)

where |pk| is the length of the mapping path. It is worth noting
that if two consecutive VNFs of a SFC request are placed in
the same server, the bandwidth cost will be ignored.

2) VNF Placement Constraint: Each VM m ∈M can only
support one type of VNF f ∈ F . However, it can be shared
by different requests. That is, if several VNFs that belong to
different SFC requests are allocated to the same VM, those
VNFs must have the same type of VNF. In other words, if
m(fkt ) = m(fk

′

t′ ), then fkt = fk
′

t′ ,∀k, k′, t, t′. Therefore, a
VM is eligible to host a VNF fkt if:

f(m) = fkt , (4)
cfk

t
≤ Cm, ∀m ∈M, (5)

where f(m) is the type of VNF that VM m runs.
3) Link Capacity Constraint: For two adjacent VNFs in

the SFC request, we need to find the path between the two



mapped servers which can satisfy the bandwidth requirement
of the SFC request. For each SFC request sk, the selected
mapping path pk should carry the bandwidth requirement bk
and traverse through VNFs following the order specified in
the request. Since sk might be deployed on a path with loops
we need consider the total bandwidth consumed by the path
pk. We have:

the path mapped in the physical network

δe(p
k) · bk ≤ Be,∀e ∈ E, (6)

where δe(pk) represents the counts that path pk passes through
link e.

Theorem 1: The SFC deployment problem is NP-hard.
Proof 1: The multiple knapsack (MK) problem is known to

be an NP-hard problem [18]. To demonstrate the SFC deploy-
ment is NP-hard, we transform the SFC deployment problem
into an MK problem. Given a set of I items denoted as set
I = {1, 2, ..., I} with profit pi and weight wi for each item
i, and a set of J knapsacks denoted as set J = {1, 2, ..., J}
with capacity cj for each knapsack j ∈ J . The object is
to maximize the total profit

∑J
j=1

∑I
i=1 pix

i
j subject to the

knapsack capacity constraint
∑I

i=1 wix
i
j ≤ cj ,∀j ∈ J , where

xij indicates whether item i is assigned to the knapsack j.
Then we transform the SFC deployment problem into an

MK problem. SFC deployment mainly includes two stages,
namely, VNF placement stage and link mapping stage. First,
we only consider the VNF placement stage. If the VNF
placement stage is NP-hard, the SFC deployment problem can
be proved to be NP-hard. For each item set I, we use an
SFC request sk with I VNFs to represent, thus the computing
demand cfk

t
is equal to wi. For each knapsack j, we use the

physical server v, which host only one VM with computing
capacity Cm to represent, thus Cm is equal to cj . As the
objective of the VNF placement is maximizing the revenue-
to-cost ratio (the total profit of the MK). The VNF placement
problem is transformed into an MK problem. Therefore, the
SFC deployment problem is an NP-hard problem.

IV. POLICY NETWORK ASSISTED MONTE CARLO TREE
SEARCH APPROACH

In this section, we first model the SFC deployment problem
as a MDP. Then we introduce our proposed PACT algorithm,
which in NFV-enabled networks.

A. MDP Model for SFC Deployment

Nowadays, reinforcement learning approaches have shown
their great potentials to deal with combinatorial optimization
problems. In standard reinforcement learning model, the learn-
ing agent interacts with the environment and improves its
performance based on its own experience. In this paper, we
model the online SFC deployment as a sequential decision-
making problem, which can be formulated as a MDP. The
agent continuously solves the VNF placement and virtual link
mapping for each SFC request sk. The objective of the agent is
to seek a deployment strategy that can maximize the long-term
average revenue-to-cost ratio.

At a given time point, the SFC solver agent receives a SFC
request sk. We present the SFC deployment of sk as a finite-
horizon MDP Mk as follows:
• States: The state of Mk at a time step t is defined as:

φkt = (F k
t = F k

t−1\{fkt−1}, Vt(fkt )), (7)
where F k

t is the ordered set of VNFs that are yet to be
placed and fkt−1 is the VNF that have been placed in
the previous time step. Vt(fkt ) is the set of all candidate
servers that are available for placement fkt at state φkt .

• Actions: An action a selects a physical server vt from
the candidate server set Vt(fkt ) to place the VNF fkt . The
set of actions is defined as:

Ak
t = {$} ∪ {(fkt , vt) : ∀vt ∈ Vt(fkt )}, (8)

where $ represents the action that forces the transition
to the terminal state when Vt(fkt ) = ∅.

• Transitions: There are |Ak
t | possible next states based on

the selection of physical server for the placement of VNF
fkt at time step t.

• Rewards: After selecting a server vt for placement fkt at
time step t, the agent receives a reward Rt according
to Eq. (1). As partially placement of SFC does not
necessarily lead to complete deployment successfully, the
immediate reward Rt for all time step t ≤ T k are set zero
in this paper.

• Policy: The objective of the agent is to seek a policy π∗

that can maximize the overall rewards from initial state.

B. PACT Algorithm

The design of our proposed PACT is shown in Fig. 2.
It mainly including two phases, namely, offline training and
online decision-making.

1) Offline Training: In order to make full use of historical
data of SFC requests, we train a policy network (PN) [19]
to evaluate the placement potential of each physical server,
which consists of an input layer, a convolutional layer, a
softmax layer and a filter layer. The pseudocode of PACT
offline training process is shown in Algorithm 1.

PN takes the feature matrix X ∈ RN∗H as the input, where
N = |V | is the number of physical servers and the i-th row of
X refers to the feature vector with H-dimensions of physical
server i. Here, we extract remaining computing capability,
number of adjacent links, and the sum of remaining bandwidth
of adjacent links as features of each server, and normalize them
into [0, 1]. Then PN passes the X to the convolutional layer
with a convolution kernel and output a vector representing the
deployment potential of each server:

vi = w · xi + b, (9)
where vi is the i-th output of the convolutional layer, w is the
convolution kernel weight vector, and b is the bias. The vector
is subsequently passed to the softmax layer which transforms
the values of neurons to a probability distribution. Finally, PN
uses the filter layer to filter out servers that do not meet the
requirements and output the best server.
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Fig. 2. The process of SFC deployment based on PACT.

To better train the neural network, we assume that every
decision that the model makes to be correct and assign a label
to each output. That is, if we choose the i-th server, the manual
label would be a zero-filled vector y except the i-th position
which is one. We try to minimize the cross-entropy loss. After
placing the t-th VNF of the historical SFC request sk

′
, we

compute the gradient gt and stack it. If the request fails to be
deployed, the stacked gradients will be discarded. Otherwise,
we multiply the stacked gradients

∑Tk′

t=1 gt with revenue-to-
cost ratio r and learning rate α to achieve the final gradients
gf = α · r ·

∑Tk′

t=1 gt. Finally, we update the policy network
parameters when the batch size is reached.

2) Online Decision-making: Integrated with multi-armed
bandit algorithm which is able to seek a balance between ex-
ploration and exploitation, MCTS has shown its great potential
on solving MDP with large state spaces [17]. MCTS builds a
sparse search tree and uses Monte Carlo simulation to select
actions to deepen the tree in the most promising direction,
which guarantees asymptotic convergence to the optimum.
Therefore, PACT utilizes MCTS algorithm for online decision-
making, shown in Algorithm 2.

We consider a search tree for solving MDP Mk, whose
depth is represented by the horizon T k. MCTS treats the
current state as a root to progressively establish the search
tree and explores more promising area of the search tree.
The tree is initialized with the root node, which represents
the initial state of Mk (shown as Lines 1-2). The nodes
and edges in the search tree represent the states and actions,
respectively. A policy π is defined as the path from the root
to a leaf node. MCTS continues to carry out the four steps
(i.e., selection, expansion, rollout and backpropagation) until
the computational budget θ is achieved. The computational
budget θ represents the number of evaluated action samples
per selection cycle. After repeating the four steps θ times, the
child of the root with the highest average value is selected
as the optimal action and the MDP enters its next state. The

Algorithm 1 PACT’s offline training.

Input: Physical network G = (V,E), Learning rate r, Epoch
totalEpoch, Historical data historicalDate;

1: Build and initialize the policy network;
2: for episode ← 1, totalEpoch do
3: count = 1;
4: finalGradients[ ]← ∅;
5: for request ∈ historicalDate do
6: Sampling SFC request sk

′
;

7: nodeMap[ ]← ∅;
8: for VNF ∈ sk

′
do

9: input feature matrix X of the substrate network to
the policy network model;

10: Choose a server v randomly with the probability ε ,
otherwise choose the server v with the highest probability;

11: nodeMap.add(v);
12: compute the gradient gt and stack it;
13: end for
14: if nodeMap.size == |sk

′
| then

15: Use Dijkstra algorithm to find the linkMap based
on the nodeMap;

16: if linkMap exist then
17: Calculate reward r according to (6);
18: gf = α · r ·

∑Tk′

t=1 gt;
19: finalGradients.add(gf );
20: depoly the SFC request sk

′
and update G;

21: end if
22: else
23: clear the stacked gradients gt ;
24: end if
25: count← count+ 1;
26: if count == batchSize then
27: Using finalGradients update policy network;
28: count = 1;
29: finalGradients[ ]← ∅;
30: end if
31: end for
32: episode← episode+ 1;
33: end for

selected child is then chosen to be the new root of the search
tree. The four steps are described in details as follows:
• Selection: During the selection stage, the algorithm tra-

verses down the tree from the root until a non-terminal
and not yet completely expanded leaf node is reached. A
tree node is considered completely expanded only when it
has one child node for each action (shown as Lines 6-10).
The selection strategy should seek a trade-off between
the exploitation of states with high value estimates and
the exploration of states with uncertain value estimates.
Diverse strategies have been proposed in [20], [21]. In
this paper, we employs upper confidence bounds for trees
(UCT) [20], which is one of the most commonly used
selection strategies to select a child κ from:

κ ∈ argmax
i∈I

(
ni
σi

+D

√
lnσu
σi

)
, (10)

where u denotes the current node of the search tree, I
denotes its children set. ni denotes the value of node
i, and σi denotes the visit times of node i. D is the



Algorithm 2 PACT′s online decision-making.

Input: Physical network G = (V,E), SFC request sk, Computa-
tional budget θ;

Output: Placement strategy: result, nodeMap, linkMap;
1: φ1 ← (sk, G(V,E));
2: Create root(n = 0, σ = 0, state = φ1);
3: nodeMap[ ]← ∅;
4: while root.state is non-terminate do
5: while θ > 0 do
6: —Step 1. [Selection]

7: κ = argmaxi∈I

(
ni

σi
+D

√
lnσu

σi

)
;

8: if κ == $ then
9: return reject, ∅,∅;

10: end if
11: —Step 2. [Expansion]
12: Add child node κ to the search tree;
13: —Step 3. [Rollout]
14: while κ.state is non-terminate do
15: Use the parameters of trained policy network to

choose action;
16: κ.state = φnext;
17: end while
18: Calculate reward according to Eq. (1);
19: —Step 4. [Backpropagation]
20: while κ.parent exist do
21: κ.n ← κ.n+ reward;
22: κ.σ ← κ.σ + 1;
23: κ ← κ.parent;
24: end while
25: θ ← θ − 1;
26: root.σ ← root.σ + 1;
27: root.n ← root.n+ reward;
28: end while
29: snI ← argmaxi(

root.child[i].n

root.child[i].σ
);

30: root ← root.child[snI];
31: nodeMap.add(snI);
32: end while
33: if nodeMap.size == |sk| then
34: Use Dijkstra algorithm to find the linkMap based on the

nodeMap;
35: if linkMap exist then
36: return accept, nodeMap, linkMap;
37: end if
38: end if
39: return reject,∅, ∅;

exploration constant.
• Expansion: When reaching a non-terminate leaf node,

one or more of its children can be added to the tree. In
this paper, we always add the child node chosen in the
current iteration (shown as Lines 11-12). The added node
corresponds to the next state.

• Rollout: A rollout strategy is used to play the sim-
ulated placement until the terminate state is reached.
Uniformly randomly selected actions are able to achieve
the convergence of MCTS to the optimum given enough
time. However, rollout strategy which utilizes the specific
domain knowledge can accelerate the convergence speed
[22]. Therefore, we use the parameters of the trained
policy network to measure the potential of each physical

TABLE II. PARAMETER VALUES

Name Value Description
η 1 The unit price of computing resource
β 1 The unit price of bandwidth resource
α 0.005 The learning rate of policy network
D 0.5 The exploration constant
Nv 4 The number of VMs on each server
lk 100 The SFC request average lifetime
bk [150,190] The SFC request bandwidth demand
M ′ 100 The batch size
θ 10 The computational budget of PACT

server vt ∈ Vt(f
k
t ) for the placement of VNF fkt , and

select the physical server with the highest probability
instead of using the random strategy (shown as Lines
13-18).

• Backpropagation: When reaching a terminate state in
the rollout stage, the reward is calculated and backprop-
agated to the root node (shown as Lines 19-29).

If each VNF is successfully placed, the process will reach
the terminal state when t = T k + 1, and then the agent
solves link mapping by using the shortest path algorithm.
If link mapping is also successful, the SFC is accepted for
the deployment and the agent receives the reward RTk+1 =
R(sk)/C(sk). Otherwise, the SFC is rejected and RTk+1 =
0. If reaching the terminal state when t ≤ T k, it means that
there is no suitable servers for the placement of VNF fkt . This
is also implied that the SFC request will be rejected (shown
as Lines 30-36).

V. PERFORMANCE EVALUATION

In this section, we first describe the experimental settings
and then compare the performance of PACT with other al-
gorithms based on the average revenue-to-cost ratio and ac-
ceptance ratio. Through performance evaluation results, PACT
has been proven to solve the online SFC deployment problem
effectively.

A. Experimental Setup

Our experiment follows settings similar to [7]. We use the
GT-ITM to generate the NFV-enabled physical network G,
which has 60 nodes and 150 links. We set the initial link
bandwidth for each link e ∈ E to 1 Gbps. We generate a set
of VNFs F , which contains 30 distinct VNFs. For each VM
m ∈ M , its initial computing capability Cm is set to 10000
and f(m) is randomly selected from F .

Each SFC request sk is constructed by randomly selected
2 to 8 different VNFs from F . We assume the computing
demand cfk

t
for each VNF fkt ∈ sk is associated with the

bandwidth demand bk. Therefore, for each fkt , we set cfk
t
=

10bk and cfk
t
= 10bk ln (bk) with probabilities 90% and 10%,

respectively. The arrival rate of the SFC follows the Poisson
distribution with an average arrival rate of one per second.
When the request leaves, resources are released.
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Fig. 3. Loss on the training set.
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Fig. 4. Performance comparison of the aver-
age revenue-to-cost ratio.
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Fig. 5. Performance comparison of the accep-
tance rate.
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Fig. 6. Average revenue-to-cost ratio with
different traffic load.
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Fig. 7. Acceptance rate with different traffic
load.
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Fig. 8. Performance comparison of the pro-
cessing time.

We employ TensorFlow to build our policy network and
generate 2000 SFC requests that follow the above distribution
as the training set to train the model. We use the stochastic
gradient descent (SGD) optimizer to update all parameters in
policy network and train our network for 100 epochs. All the
simulation experiments are executed on a computer with 2.90
GHz Intel Core i7-10700F CPU and 16GB RAM. Table II
gives the values of some key parameters.

To evaluate the effectiveness of the proposed PACT, we
compare it with the following algorithms:
• Local Resource Capacity (LRC): It is a node ranking

algorithm proposed in [16], which using LRC metric to
map VNFs onto servers in a load-balanced manner.

• Tarbu Search (TS): It is a meta-heuristic search method
proposed in [23], which using tarbu search to find the
least cost SFC deployment strategy.

Both of them utilizes the shortest path algorithm to conduct
link mapping.

B. Simulation Results

1) The variation of loss in the training process: We employ
decaying ε-greedy strategy to train the model. It starts with a
high ε to conduct better exploration and decreases the ε over
time to converge smoothly towards the optimal policy. Fig. 3
shows the variation of loss in the training process. It can be
observed that the loss decreases through the training stage and
reaches stability gradually.

2) Comparison of the average revenue-to-cost ratio: Fig.
4 shows the average revenue-to-cost ratio under different
accumulated number of arrived SFC requests. We can see that
our proposed PACT algorithm achieves the highest average
revenue-to-cost ratio of 0.84, which outperforms PACT (with-
out MCTS), LRC, TS and PACT (without PN) algorithms by
up to 30%, 28%, 20% and 9% respectively. This is because
by combining the strengths of MCTS and PN, our PACT can
better evaluate each placement strategy and make decisions
more intelligently.

3) Comparison of the acceptance rate: We use the ratio
of the number of accepted SFCs N (ŝk) to the number of the
arrived SFCs N (sk) as the acceptance rate, which is given by:

pa =
N (ŝk)

N (sk)
. (11)

The acceptance rate under different accumulated number of
arrived SFC requests is illustrated in Fig. 5. We can observe
that at the beginning, the acceptance ratios of all the four
algorithms decrease because the resources of the physical
network are gradually occupied as SFC requests arrive. Finally
our proposed PACT algorithm achieves the highest acceptance
rate of 86.6%, which outperforms PACT (without MCTS),
LRC and TS, PACT (without PN) algorithms by up to 23.8%,
21.4%, and 14.2% and 6%, respectively. It indicates that our
PACT algorithm can makes better utilization of the substrate
resources and reserves more resources for future SFC requests.



4) Impact of the traffic load: In order to estimate the impact
of traffic load to the performances of algorithms, we range
the average lifetime of SFC requests from 70s to 130s. Fig.
6 and Fig. 7 show that the proposed PACT can achieve better
performance compared to TS and LRC algorithms in all cases.
When the traffic load is high (i.e., average lifetime is 130s),
our proposed PACT still has the highest average revenue-to-
cost ratio of 0.76 and acceptance rate of 77%. Even in the
case of high workload, the acceptance rate and the average
revenue-to-cost ratio of PACT are comparable, indicating that
our PACT algorithm has strong robustness.

5) Performance comparison of the processing time: Fig. 8
shows how the average processing time per SFC request varies
under the different average revenue-to-cost ratio. It illustrates
that the processing time of our proposed PACT is nearly five
times faster than the PACT without the assistance of PN when
the average revenue-to-cost is 0.813. It demonstrates that the
offline training phase could greatly accelerate the processing
time for online decision-making.

VI. CONCLUSION

In this paper, we have proposed an intelligent approach
based on reinforcement learning, named PACT for online SFC
deployment, to deal with the challenge of trading off between
pursuing the objective of high revenue-to-cost ratio and mak-
ing decisions in an online manner. PACT can approximate
optimal decisions with a search tree using prioritized samples
learned by policy network in the decision space. Experimental
results have shown that our proposed PACT outperforms the
other existing algorithms in terms of the average revenue-
to-cost ratio and acceptance rate, and can make placement
decisions within acceptable time.
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