
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/Trustcom/BigDataSE/ICESS.2017.232

TransCrypt: Transparent Main Memory Encryption
Using a Minimal ARM Hypervisor

Julian Horsch
Fraunhofer AISEC

Garching near Munich, Germany
julian.horsch@aisec.fraunhofer.de

Manuel Huber
Fraunhofer AISEC

Garching near Munich, Germany
manuel.huber@aisec.fraunhofer.de

Sascha Wessel
Fraunhofer AISEC

Garching near Munich, Germany
sascha.wessel@aisec.fraunhofer.de

Abstract—Attacks on memory, revealing secrets, for example,
via DMA or cold boot, are a long known problem. In this paper,
we present TransCrypt, a concept for transparent and guest-
agnostic, dynamic kernel and user main memory encryption
using a custom minimal hypervisor. The concept utilizes the
address translation features provided by hardware-based vir-
tualization support of modern CPUs to restrict the guest to a
small working set of recently accessed physical pages. The rest
of the pages, which constitute the majority of memory, remain
securely encrypted. Furthermore, we present a transparent and
guest-agnostic mechanism for recognizing pages to be excluded
from encryption to still ensure correct system functionality, for
example, for pages shared with peripheral devices. The detailed
evaluation using our fully functional prototype on an ARM
Cortex-A15 development board running Android shows that
TransCrypt is able to effectively protect secrets in memory while
keeping the performance impact small. For example, the system
is able to keep the E-mail account password of a typical user in
the Android mail app’s memory encrypted 98.99% of the time,
while still reaching 81.7% and 99.8% of native performance in
different benchmarks.

Index Terms—RAM Encryption; Main Memory Encryption;
ARM Hypervisor; Cold Boot Attack; DMA; Android

I. INTRODUCTION

Highly mobile computing devices like smartphones are
becoming omnipresent in everybody’s life and are carrying
a lot of private and sensitive data. This makes them valuable
targets of sophisticated attacks. While protection of persistent
data by means of Full Disk Encryption (FDE) is already
very common, sensitive and private data in the volatile main
memory, i.e. the Random Access Memory (RAM), remains
unprotected. This includes, for example, classic secrets like
cryptographic keys and passwords but also private data like
documents, pictures and others. There are different memory
attacks which extract main memory data from a system, such
as cold boot [1]–[3] or Direct Memory Access (DMA) attacks
[4]–[6]. Some of them might even be executed remotely, e.g.
through a baseband processor with memory access [7].

Several existing approaches try to protect keys normally
stored in RAM, e.g. by moving them from the memory into
special processor registers [8]–[10] or into higher privilege
levels [11]. While those approaches protect keys, they do
not protect other sensitive data in RAM. There are several
approaches for main memory encryption. Most of them rely
on custom hardware [12]–[14] and are therefore expensive

and hard to realize. Other software-based RAM encryption
approaches have real-world usability issues [15], only encrypt
selected processes [16], [17] or parts of selected processes
[18]. Existing hypervisor-based approaches [19], [20] focus
on a different attacker model and do not prevent cold boot,
DMA or similar attacks from the outside.

To overcome downsides of existing approaches, we propose
TransCrypt, a concept for transparent main memory encryp-
tion using a minimal hypervisor. We use hardware-supported
virtualization mechanisms to transparently restrict the guest’s
memory access to a small and dynamically changing subset of
physical RAM pages while encrypting and decrypting pages
entering or leaving the set on-the-fly. This ensures that only a
small part of memory containing the most recently accessed
pages is unencrypted, while the major part remains securely
encrypted. There are special pages, such as the ones shared
with peripheral devices via DMA, for which an encryption
might lead to malfunction. Hence, we introduce a mechanism
to transparently detect those pages to temporarily exclude them
from encryption. Being located in the hypervisor, TransCrypt
has several advantages. It does not require any changes to the
guest, i.e. the kernel and user space software. It is almost
completely agnostic to the guest Operating System (OS)
and encrypts not only user space process memory but also
kernel code and data. Using a custom and minimal hypervisor
TransCrypt provides a small, less error-prone code base.

Our implementation focuses on the ARM architecture [21]
and the ARM Virtualization Extensions [22]. The ARM ar-
chitecture is prevalent in the mobile sector and hardware
virtualization is very lightweight on ARM allowing for fast and
frequent switches into the hypervisor [23]. Our contributions
in this paper are:

• A concept for secure hypervisor-based guest-transparent
main memory encryption.

• A concept for transparent detection of special pages for
which an encryption might lead to system malfunctions,
such as pages used for DMA.

• A fully functional prototype implemented on an ARM
Cortex-A15 multi-core development board running a full-
fledged Android.

• A detailed security and performance evaluation.

The paper is organized as follows. Section II summarizes
related work. We introduce our attacker model in Section III.
Section IV gives a short overview regarding necessary hard-
ware virtualization features. Section V describes the encryp-
tion mechanism and Section VI details how to detect special
pages. Section VII explains the prototype implementation be-
fore TransCrypt is evaluated in Section VIII regarding security
and performance. We conclude in Section IX.

II. RELATED WORK

CPU-bound encryption concepts focus on removing en-
cryption keys from RAM. Most approaches [8], [9], [11] use
special CPU registers to store a key so that it is never stored in
RAM. While these concepts protect keys, e.g. for FDE, they
leave the rest of the RAM contents unprotected.

Hardware-based RAM encryption concepts, such as XOM
[13], Aegis [14] and CryptoPage [12], focus on different
aspects of designing secure processors with encrypted memory
and encrypted memory buses. As they require changes to
the hardware, they are much more expensive and harder to
realize than our software-based approach. ARM TrustZone
[21], [24], [25], Intel SGX [26] and AMD SME/SEV [27]
are hardware security extensions of current CPUs. TrustZone
and SGX are designed to allow certain small and specially
designed applications to run in a secure CPU mode, a secure
enclave, possibly from small portions of encrypted memory.
As such, they do not provide a solution to the encryption of
large parts of memory for normal applications and the kernel.
At least TrustZone can be seen complementary to TransCrypt
as it provides a means to secure the key for its memory
encryption. The AMD extensions enable encryption of large
parts of RAM or of specific VMs to remove trust from the
hypervisor. While this achieves a similar goal as TransCrypt,
the solution is AMD-only. Furthermore, AMD SEV requires
changes to the hypervisor and the guest. Finally, all three CPU
extensions might additionally bear the danger of losing key
and feature control to the CPU manufacturer.

Henson et al. [15] realize RAM encryption in software on an
ARM Cortex-A8 platform using a microkernel in the special
and very small On-Chip RAM (OCRAM), also called iRAM,
which is often provided by ARM TrustZone platforms. As it
is not part of the RAM, this OCRAM is invulnerable to classic
memory attacks. They dynamically swap and en-/decrypt
processes between RAM and OCRAM. As the OCRAM is
very small and basic features such as Memory Management
Unit (MMU) support are not provided, the concept suffers
from performance issues and is very hard to combine with
real applications such as a normal Android OS environment.

The approaches by Chen et al. [16] and Sentry by Colp et al.
[17] both encrypt memory of selected, “sensitive” processes.
These processes are decrypted into on-SoC memory, either
into locked cache (Cache as RAM) or into OCRAM. In
case of Sentry, processes are encrypted when the device is
suspended and decryption into cache or OCRAM is only done
for processes that have to run in background. Sentry proposes
an AES implementation to be run completely out of OCRAM.

Both approaches suffer from the fact that cache locking is
an optional legacy feature in newer ARM architectures [21],
[25]. In contrast to TransCrypt, both approaches only encrypt
selected processes and do not cover kernel space with their
encryption. They require changes to the kernel or user space
while TransCrypt is completely transparent. Furthermore, Sen-
try only encrypts memory when the system is suspended.

CryptKeeper by Peterson [28] introduces the concept of
extending the memory hierarchy by dividing the RAM into
a smaller unencrypted and a bigger encrypted part. This is
somewhat similar to TransCrypt in that only a small part of
recently accessed data in RAM is left unencrypted. In contrast
to TransCrypt, CryptKeeper is realized in the Linux kernel
and can therefore not protect kernel memory itself, is not
transparent or agnostic to the OS and does not provide a
concept for securing the encryption key.

RamCrypt [18] modifies Linux memory management to
realize encryption of least-recently accessed pages. In contrast
to our approach, they realize this in kernel space and activate
it for special processes only. They are therefore not able to
encrypt the kernel itself. Furthermore, they do not encrypt
file-backed data in memory, including code and possibly
confidential memory-mapped files.

Overshadow by Chen et al. [20] and the approach by
Yang et al. [19] both, like TransCrypt, use encryption from a
privileged hypervisor to protect memory contents. But instead
of protecting the system from attacks from the outside, such
as cold boot, their goal is to protect user space data from an
attack from a malicious guest OS. Hence, both systems rely
on storing keys or even unencrypted versions of encrypted
pages [19] in RAM. This makes them highly susceptible
to the outside attacks discussed in this paper and prevented
by TransCrypt. Furthermore, both approaches are x86 based,
specific to Linux guests, do not encrypt guest kernel data
and require intercepts from the hypervisor on every context
switch in the guest, e.g. on interrupts and syscalls. The latter is
much easier to realize and causes much less relative overhead
on the software-based hypervisors Overshadow and Yang et
al. use for their prototypes. In a modern, hardware-assisted
virtualization scenario, such as the one TransCrypt uses, those
intercepts would cause a huge relative overhead.

HyperCrypt [29] is a hypervisor-based approach for RAM
encryption developed at the same time as TransCrypt. In
contrast to TransCrypt, the approach targets x86 and selec-
tively focuses on server applications avoiding challenges, such
as GPU support, posed by targeting a full-fledged end user
device like an Android smartphone. Furthermore, HyperCrypt
does not provide a dynamic, guest-transparent way to detect
DMA pages. Instead it relies on paravirtualization for DMA
page identification. Therefore, it requires changes to the guest
as well as driver support in the hypervisor increasing its
complexity and code size. Additionally, HyperCrypt does not
offer a solution for efficient multi-core design and dynamic
adaption of the unencrypted memory window size.

Other approaches encrypt the RAM of devices [30], [31]
or groups of processes during their suspension [32] (suspend

to RAM). While those concepts protect suspended devices
and processes, they cannot protect secrets in RAM owned by
running processes.

III. ATTACKER MODEL

The primary characterization of our attacker is his ability
to read parts or all of the physical main memory without
involving the kernel running on the CPU. In the following,
we refer to such attacks as memory attacks. A memory attack
can be achieved using different techniques.

First, an attacker with physical access to the target device
can execute a cold boot attack [1]–[3]. In a typical cold boot
attack the attacker cools down the memory and physically
moves it to another device or reboots the original device
into a minimal privileged memory dump tool. Because of the
remanence effect, most of the RAM contents are still intact
and can be read by the attacker.

Second, an attacker can execute a DMA attack [4]–[6]. Such
an attack can be characterized by the attacker controlling a
peripheral device in the target to directly access the main
memory via DMA without involving the CPU. Our attacker is
capable of executing different DMA attacks including attacks
via physical peripheral connection and via remote control of a
DMA device. Examples for possible target peripherals include
common devices like Graphics Processing Units (GPUs) and
Network Interface Controllers (NICs) but also mobile specific
targets like the baseband processor in a smartphone [7]. We
assume an attacker to be able to successfully execute these
attacks despite the possible presence of IOMMUs controlling
the access of peripheral devices to memory, for example,
because of a misconfiguration or hardware limitations.

None of the attackers is able to break cryptographic prim-
itives. All attackers access the system from outside the CPU
and are therefore not able to influence workload on the CPU.
We evaluate in Section VIII-A how TransCrypt improves
security against these attackers.

IV. HARDWARE VIRTUALIZATION

Many modern CPUs provide hardware support for system
virtualization. Normally, this includes a number of additions
to the CPU architecture, for example, for managing guest
memory, trapping privileged instructions and virtualizing de-
vices. In the following, we shortly discuss the features that are
important for TransCrypt. We focus on the ARM Virtualization
Extensions [22] as our implementation is based on ARM.

The most important feature we use is the Second Level
Address Translation (SLAT) which introduces an additional
level of address translation for all addresses accessed by the
guest. When the guest accesses a Virtual Address (VA), the
guest-controlled first level translation translates the address
to a guest-physical address, or Intermediate Physical Address
(IPA) as ARM calls them. The IPA is then translated to an
actual Physical Address (PA) using the SLAT controlled by the
hypervisor. The SLAT is completely transparent to the guest
for which it seems as if it translates VAs directly into PAs.

Main Memory

TrustZone

TransCrypt Hypervisor

Guest Kernel and User Space

Exception
Dispatching

Page EncryptionSLAT
Management

Debug

Page
faults

Hypervisor exceptions

Hypervisor
calls

map
unmap

Special Page
Detection

Cache
Maintenance

AESencrypt
decrypt

map
unmap

encrypt
decrypt

Fig. 1. Overview of the TransCrypt architecture.

This allows running multiple guests that use the same IPA
space while separating them in physical memory.

Both levels of translations can define their own memory
attributes and access permissions. These are then overlayed
and the more restrictive configuration takes precedence. While
the guest may have a valid translation for a VA, the hypervisor
can still prevent access to the underlying PAs in the SLAT.
This builds the basis for our memory encryption concept.

Another important feature is the ability to trap certain
privileged instructions, i.e. to automatically jump into the
hypervisor before executing them. As described in Section VI,
TransCrypt utilizes this feature to realize a technique for
recognizing memory pages used for DMA.

V. CONCEPT AND DESIGN

TransCrypt uses the SLAT to transparently restrict the guest
to a small set of unencrypted physical memory pages, the
Unencrypted Page Set (UPS), while keeping the rest encrypted
(with some exceptions as discussed in Section VI). TransCrypt
dynamically encrypts and decrypts pages based on guest
accesses and the resulting page faults.

A. Architecture

The system basically consists of the guest running in kernel
and user space and TransCrypt running in hypervisor mode and
partly in a secure enclave mode such as the ARM TrustZone
to secure the encryption key as described in Section V-D.
TransCrypt is designed as a minimal, custom hypervisor which
only supports SLAT management, runs only one guest and
does not virtualize any devices. This is not a conceptual
limitation but drastically reduces the hypervisor’s complexity
making it less error-prone. The architecture of TransCrypt is
depicted in Figure 1. Exceptions from the guest are initially
handled in the Exception Dispatching module. Hypervisor
Calls (HVCs) are only included for debugging purposes and
are forwarded to a Debug module which allows analyzing page
statistics and changing the size of the UPS. Traps of certain
cache maintenance operations are forwarded to the Special
Page Detection module where they are used to determine if a

page is used for DMA and must therefore be left unencrypted
as detailed in Section VI-B. Page faults are the most frequent
and important exceptions handled by TransCrypt. They are
forwarded to the Page Encryption module which uses the Spe-
cial Page Detection module to determine if a page should be
encrypted and uses the SLAT Management and AES modules
to map and encrypt pages transparently to the guest. The AES
module is located in the TrustZone or a comparable Trusted
Execution Environment (TEE) which allows for secure key
storage as discussed in Section V-D.

B. Definitions and Initialization

As in Section IV, the guest controls its own translation from
VAs to IPAs for accessing memory while TransCrypt controls
the SLAT from IPAs to PAs overlaying memory attributes
given by the guest. Before the guest runs, TransCrypt reserves
memory for its own operation and makes it inaccessible to the
guest. For the memory allocated to the guest in form of N
pages, we define two basic sets of pages:
Mapped Page Set (MPS). This set contains all pages which

are currently mapped in the SLAT and therefore un-
encrypted and available to the guest without further
intervention by TransCrypt.

Special Page Set (SPS). This is the set which contains
all pages that have been identified as special which
means that they are currently not encrypted or eligible
for encryption, such as, DMA pages. Details regarding
special pages are discussed in Section VI.

Together, the sets contain all unencrypted guest pages. Hence,
their union constitutes the Unencrypted Page Set (UPS):

MPS ∪ SPS = UPS

All pages which are not part of the UPS are encrypted. We
define a maximum size M for the MPS. M is the maximum
number of pages accessible to the guest at any time.

TransCrypt starts with all pages unmapped (|MPS| = 0) and
unencrypted (|UPS| = N). Therefore, by definition, all pages
are special (|SPS| = N) before being evaluated and mapped
for the first time.

C. Basic Mechanism

After initialization, TransCrypt gives control to the guest.
Since the MPS is initialized to contain no pages, this imme-
diately leads to an instruction page fault. The following steps
are repeatedly executed to realize the memory encryption:

1) The guest accesses a page pin /∈ MPS either by executing
it or by reading or writing data from or to it.

2) The access triggers a page fault into TransCrypt. If pin /∈
SPS, TransCrypt decrypts it.

3) TransCrypt determines if pin is special (see Section VI)
in which case it adds it to the SPS. Then it maps pin to
the guest, i.e. adds it to the MPS.

4) If the MPS does not exceed its maximum size, execution
is returned to the guest. Otherwise, i.e. if |MPS| > M , a

page pout ∈ MPS is selected for eviction using a specific
eviction mechanism discussed in the following.

5) If pout /∈ SPS TransCrypt encrypts it. Then pout is
unmapped, i.e. removed from the MPS, and execution
is returned to the guest.

There is no differentiation between executable pages and
data pages and both are equal candidates for encryption. All
steps are completely transparent to the guest and do not require
any explicit commands or support by the guest. The concept
is therefore completely agnostic to the guest OS.

As mentioned before, if the MPS exceeds its maximum
size M , a page must be evicted. Since the guest is able
to access pages in the MPS without further interaction with
TransCrypt, we do not have actual information about which
page was accessed least recently and would therefore be the
first candidate for eviction. The next best eviction candidate is
the page that we least recently mapped to the guest. We there-
fore introduce an eviction algorithm we call Least Recently
Mapped (LRM). Section VII discusses how we implement this
algorithm with constant complexity. Figure 2 illustrates the
basic encryption mechanism and its relation to the LRM page
eviction. The top part of the figure shows the guest-controlled
translation from VAs to IPAs and the active mappings in form
of arrows to pages in IPA space. On the bottom, the figure
shows the TransCrypt-controlled translation from IPAs to PAs.
The figure depicts the system just at the beginning of handling
a SLAT page fault in which the most recently accessed page
is decrypted and mapped while the page which least recently
entered the MPS is encrypted and unmapped, i.e. removed
from MPS. In the example, recent accesses by the guest added
three pages to the MPS which are therefore also unencrypted
(|MPS| = M = 3). Furthermore, three pages are mapped in
the guest but not part of the MPS, the normal state for most of
the pages in the system. One of these pages is part of the SPS
(|SPS| = 1; |UPS| = 4) and therefore unencrypted despite the
fact that it is not part of the MPS and that it can currently not
even be accessed by the guest. Such a state is important, for
example, for DMA pages as discussed in Section VI. As soon
as the page is accessed again by the guest, its special status
is reevaluated. This is important since the page could be re-
purposed by the guest kernel as normal, non-DMA memory.

D. Page Encryption Parameters

For the actual encryption of a page, several aspects are to
be considered. This includes key management, algorithm and
mode choice as well as Initialization Vector (IV) generation.

1) Key Management: The key used for the actual page
encryption cannot be located in memory itself, because we
assume an attacker to be able to access all physical memory
(see Section III). To solve this problem, our concept relies
on a secure enclave such as the ARM TrustZone [21], [24],
[25] where we can securely execute cryptographic operations
and store the key during runtime, either in secure OCRAM
or in a cryptographic coprocessor. This is not a real concep-
tual constraint since TrustZone is almost always present in
current ARM application processors and OCRAM is a crucial

VA space

IPA space

PA space

Controlled
by guest

Controlled by
hypervisor

TransCrypt Hypervisor

Page Fault Decrypt + Map Encrypted Page

Unencrypted Page

Most recent
access

Recent
access

Recent
access

No recent
access

Encrypt + Unmap

Guest Kernel and User Space

Least recent
mapping

New mapping No mapping

Fig. 2. Page encryption mechanism and its relation to address space translations.

component to all TrustZone platforms. For systems where no
crypto coprocessor is available, Colp et al. describe how to
securely implement AES [17] in software only using OCRAM.
Since RAM data is not persistent, the key can be randomly
generated at each system reset. Hence, a concept for persistent
key storage is not necessary. If, despite being unlikely, a
TrustZone-based solution is not possible on a target platform,
we can store the TransCrypt key using CPU-bound encryption
schemes [8]–[11], [18] as introduced in Section II.

2) Encryption Algorithm: The pages are encrypted sym-
metrically with AES. To prevent leaking information about
the encrypted data, same content blocks must not result in
the same ciphertext blocks. Hence, an encryption mode with
IV such as Cipher Block Chaining (CBC) must be used. Page
encryption runs exclusively and uninterruptible on the core that
accessed the page (see Section V-F), so not much performance
can be gained by choosing a highly parallelizable mode.

3) IV Generation: Each page must be encrypted using
a different IV to ensure that same content pages result in
different encrypted pages. An obvious choice for the IV is
the physical page base address.

E. Unencrypted Page Set Size

The maximum size M of the MPS is the main configurable
value in the TransCrypt concept. Increasing M increases the
number of pages the guest may access at the same time and
therefore also increases the size of the UPS. This, in turn,
decreases security of the system as more physical pages are
unencrypted anytime. Hence, M acts as a configurable trade-
off between performance and security and allows fine tuning
the system to the needs of the specific application. The actual
impact of varying values of M is evaluated in Section VIII on
the basis of our prototype implementation. Note that the size of
the SPS is not configurable since the number of special pages
is a system property and depends on the platform’s hardware
and OS, e.g. on how many pages are used for DMA with the
GPU. We propose two ways for configuring M :

1) Static MPS Size: For this approach, M is predetermined
and fixed to a certain value which fits the system’s needs,
especially regarding the acceptable performance overhead.

2) Dynamic MPS Size: As discussed in Section III,
TransCrypt is a defense against attackers who are not or
only partly able to influence the workload of the system.
Furthermore, most systems spend most time in idle states.
Hence, we propose a mechanism for dynamically adapting M
during runtime to balance the performance loss during higher
workloads by reducing the encrypted part of the memory.
For that, TransCrypt can observe the time offset between
SLAT page faults and adapt M to reach a specific page
fault frequency. Additionally, the system should still provide
a configurable hard upper bound for M to make sure that a
certain amount of memory is always encrypted independent
from the workload. In page fault i occurring at time ti the
new MPS size Mi+1 can be dynamically calculated from the
current size Mi using the following formula:

Mi+1 := Mi + C

(
1

f
− ti − ti−m

m

)
In the formula, f [1/s] denotes the desired page fault frequency
and C [1/s] configures the number of pages by which M
is increased or decreased for each second the difference
between two consecutive page faults deviates from the desired
frequency. The configurable constant value m determines how
sensitive the system reacts to quick changes in the workload.

F. Multi-Core Systems

On a multi-core system, all cores must have the same view
on physical memory. It must be ensured that cores only have
access to unencrypted pages to not corrupt the guest. This
means that all cores must share one SLAT table. Therefore, the
MPS, SPS and UPS are all shared between the cores and when,
for example, a core adds a page to the MPS it can be accessed
by all other cores. As a result, synchronization mechanisms
between the cores are necessary. As these can significantly
impact performance, they must be designed carefully.

On the one hand, synchronization is required for changing
state or content of pages, for example, when encrypting a page.
On the other hand, synchronization is required for keeping
track of the MPS in order to realize page eviction. To almost

1: State:
MPSc: Set of pages globally mapped by core c
SPS: Set of special pages

2: Input:
pin: The page the fault was triggered on
c: The ID of the core the fault was triggered on

3: procedure HANDLE PAGE FAULT(pin, c)
4: Acquire lock for pin
5: if pin /∈ SPS then
6: Decrypt pin
7: else
8: Remove pin from SPS
9: end if

10: if pin is special (see Section VI) then
11: Add pin to SPS
12: end if
13: Add pin to MPSc

14: Release lock for pin
15: if |MPSc| ≤ M/Total cores then return end if
16: Get LRM page pout from MPSc

17: Acquire lock for pout
18: if pout /∈ SPS then Encrypt pout end if
19: Release lock for pout
20: end procedure

Fig. 3. Memory encryption page fault handler.

eliminate all lock contesting between cores, we propse the
following scheme. We introduce fine granular locks, one for
each physical page, which a core must acquire to change the
page’s content or state. Furthermore, we split the responsibility
for the MPS between the cores, which allows us to avoid one
global and therefore contested lock. Then, each core can fill a
maximum of M/Number of cores page slots into the MPS. For core
i, we call the resulting subset MPSi. A core can still access
all pages in the MPS, also the ones mapped by other cores. A
page in any MPSi will not trigger another page fault on any
core until evicted. As a result, the different MPSi are always
disjoint. As soon as the core filled its MPSi slots, it starts
evicting pages even if other cores still have space in their MPS
part. For the eviction, the core only chooses from its own MPSi

for which it does not need a lock. Figure 3 summarizes the
encryption concept including multi-core handling as a pseudo
code SLAT page fault handler implementation.

VI. SPECIAL PAGES

We define special pages as pages in the physical address
map of a system for which an encryption might lead to mal-
function of the system. We basically identified two physical
memory types that fall into this category: Memory-mapped
devices, i.e. device memory, and memory shared with devices,
i.e. DMA memory. Recognizing these and adding them to
the SPS (see Section V-B) to temporarily exclude them from
encryption is crucial to ensure system functionality.

A. Device Memory

Not all addresses in the physical address space of a typical
system refer to main memory. Some parts of the address space
are not mapped at all and other parts are used for mapping
device registers for communicating with peripheral devices via
memory-mapped I/O. For these memory regions, an encryption

is not only useless but would also lead to system malfunctions.
We identified two methods for handling device memory. First,
we can analyze the guest-controlled address translation to
recognize these pages. A page is special when the guest
maps it as device memory type, making it, for example, non-
cacheable. An advantage of this dynamic approach is that it
does not require any prior knowledge about the location of
device memory in the physical address map of the system.

The other approach is to statically analyze the physical
address map of the system before runtime and simply generate
fixed and always active mappings for all memory regions that
do not refer to main memory. This solution has performance
advantages compared to the dynamic approach. It also has
the advantage that non-memory pages are completely removed
from all operations and the page sets described in the pre-
vious section and do not clutter the SPS. We combine both
approaches in our prototype as described in Section VII-C.

B. Memory Shared with Devices

Normal memory might be shared with peripheral devices
that have access to the RAM via DMA. A prime example
is the system’s GPU that receives large amounts of data for
rendering content on the screen from the CPU via shared
memory regions and DMA. When TransCrypt unmaps and
encrypts DMA pages they might still be accessed by devices
using DMA. As these devices are not aware of the encryption,
accessing the pages will usually lead to malfunctions. Hence,
it is crucial for correct system functionality that TransCrypt is
able to recognize DMA pages to add them to the SPS.

While devices might be able to access main memory,
they are usually unable to access the cache hierarchy of the
system’s CPU. Therefore, cache coherency must be handled
when communicating with devices via DMA. This behavior
is leveraged by the TransCrypt hypervisor to recognize DMA
pages. In the following we discuss three basic types of DMA
and how TransCrypt detects them from hypervisor mode:
Always Coherent. For this type of DMA, CPU and device are

always guaranteed to have the same view on their shared
memory. Coherent DMA uses buffers on pages which
have special attributes making them cache coherent. They
might be non-cacheable or use a special outer shareability
attribute, which allows some devices on ARM platforms
to, in fact, access CPU caches. TransCrypt is able to
detect when a guest maps a page in this way by analyz-
ing the guest-controlled translation during the respective
page fault. We call this static DMA detection and it is
illustrated in the left part of Figure 4.

CPU to Device. For this type, the CPU must make sure that
the data it sends to the device is flushed out of the
caches into main memory before triggering the device
to read. This can either be done by using a buffer on a
page with write-through cacheability or by using explicit
architectural cache maintenance operations. TransCrypt
detects the first with static DMA detection and the second
by trapping and emulating all cache flush operations to
the main memory. TransCrypt then determines the target

CPU

DMA
Device

Static DMA Detection Dynamic DMA Detection

Guest Kernel and User Space
Map and access
cache-coherent page

Map page without
encryption

Command

Interrupt
1. Map
normal page

2. Map page
encryptable

4. Trap cache maintenance
and disable page encryption

TransCrypt Hypervisor

Read/
write page

3. Clean/Invalidate
cache for page

Main
memory

Fig. 4. Detecting DMA pages based on caching attributes and maintenance.

of the cache flush and is able to exclude the page from
encryption before it is read by the device. We call this
trapping-based technique dynamic DMA detection and it
is depicted in the right part of Figure 4.

Device to CPU. For this type, the CPU must make sure
to invalidate the corresponding parts of the caches be-
fore reading from a buffer written by a device to not
accidentally read old cached data. For cases where the
invalidation happens before triggering the device, which
seems to be the normal case, it can be detected with the
dynamic DMA detection described. In other cases, one
has to analyze the devices and drivers in question and
statically exclude the DMA pages.

Our approach has the main advantage of being agnostic
and transparent to the guest software and the specific DMA
devices in use. All trapped instructions are privileged so it is
not possible for a guest process to “disable” encryption for
certain pages. Cache maintenance operations can be trapped
very selectively on ARM. This allows one to react only to
operations really affecting the main memory, i.e. the “point
of coherency”. Additionally, modern ARM platforms, such as
the one used for the prototype, allow configuring automatic
cache coherency between cores, so there are normally no cache
maintenance operations necessary for inter-core communica-
tion. This allows the DMA detection to specifically only target
pages that are really used for communication with devices.

VII. IMPLEMENTATION

We implemented TransCrypt as a minimal standalone hyper-
visor on an Arndale board [33], a dual-core ARM Cortex-A15
developer board supporting the ARMv7 Virtualization Exten-
sions [21], [22]. To keep the hypervisor as small as possible
and reduce error-proneness, our implementation only includes
functions absolutely necessary for TransCrypt. Therefore, the
hypervisor does not run multiple guests or virtualize devices.
Our prototype is fully functional, supports multi-core operation
and is able to run an unmodified Linux kernel and Android
userland including display output and touchscreen input with
enabled encryption. The full implementation consists of about
4000 Lines of Code (LoC) written in C and ARM assembler.

A. Initialization

After setting up exception handlers, the hypervisor initial-
izes its own VA to PA translation as a flat mapping over the full
RAM of the Arndale board. This makes it easy to access PAs
from the hypervisor. The hypervisor furthermore initializes a
flat mapping for the guest SLAT from IPAs to PAs but only for
the part of memory allocated to the guest. The hypervisor uses
4 KiB pages which is the smallest possible size on ARM. It
also enables trapping of cache maintenance operations to the
main memory (point of coherency) via the TPC bit in the Hyp
Configuration Register (HCR) for special page detection.

B. Basic Mechanism

The core of the TransCrypt prototype is the implementation
of the page fault handler as described in Section V. The
handler manages an array of page meta data structures, one for
each physical page allocated to the guest. Our prototype sup-
ports multi-core operation. Each core keeps track of its MPSi

(see Section V-F) and the LRM eviction with a list pointing to
elements of the page data structure array. We implemented the
fine granular locking as described in Section V-F using a spin
lock in the data structure of each page. When mapping a page,
the core appends it to its MPS list. For eviction, the core just
pops the first item of its list. Both operations have constant
complexity, making the implementation very efficient.

When mapping a page, it must be ensured that a possible
decryption is completely finished and visible before letting the
guest access the page. The ARM Cortex-A15 CPU provides
a Harvard style first level cache, i.e. instructions and data are
cached separately. Therefore, our hypervisor must ensure that
decrypted code is flushed from the first level data cache and
the respective instruction cache parts are invalidated to prevent
the guest from executing encrypted instructions.

When unmapping a page, it must be ensured that none of
the cores still accesses the page because of a stale entry in
the Translation Lookaside Buffer (TLB). The hypervisor must
hence invalidate all entries associated with the unmapped IPA
on all cores. Our hypervisor ensures that all cores are in the
inner shareable domain and uses TLB maintenance operations

to broadcast an invalidation executed on one core to all cores.
Unfortunately, the ARMv7 virtualization extensions do not
provide invalidation operations based on IPAs. We therefore
invalidate all guest translations on every page unmapping.
Fortunately, the ARMv8 architecture [25] provides such an
operation, so that this is no issue for future implementations.

The actual encryption is done with an ARM optimized
software AES implementation. As our Proof of Concept (PoC)
focuses on the feasibility of the hypervisor-based concept
it currently does not use encryption from the TrustZone.
Running on the same CPU, the only overhead imposed by
such an implementation is the TrustZone context switch.
As the switch itself is very lightweight [34], especially in
relation to the encryption itself, such an implementation should
only add negligible overhead to our evaluated prototype. As
most of the overhead comes from the actual encryption (see
Section VIII-B), the crypto extensions in ARMv8 [25] promise
to provide significant performance gains for the future.

The prototype does not implement the dynamic MPS size
adaption as described in Section V-E2 but implements func-
tionality for changing M at runtime for evaluation purposes.

C. Special Page Detection

The PoC implementation on the Arndale board uses several
different techniques to be able to exclude all special pages
from encryption as described in Section VI.

First, the hypervisor generates a fixed mapping for all phys-
ical address space regions that do not refer to main memory, as
discussed in Section VI-A, making them always available to
the guest and excluding them from encryption. On the Arndale
board, 2 GiB from 0x40000000 to 0xbfffffff referring
to main memory remain, minus the space allocated to the
hypervisor for the main encryption operation.

Second, the PoC queries the guest translation for the page in
question using the architectural translation registers ATS1CP*
[21]. The hypervisor analyzes the obtained guest’s memory
attributes and marks a page as special if it is not normal
memory with inner and outer write-back cacheability or if it
is outer shareable. This realizes both, the dynamic approach
for device memory discussed in Section VI-A as well as the
static DMA detection (see Section VI-B) in one step.

Third, the prototype realizes dynamic DMA detection (see
also Section VI-B) by trapping and emulating all cache main-
tenance operations that use VAs and target the main memory.
For all data cache operations in this group, namely DCIMVAC,
DCCMVAC and DCCIMVAC, the hypervisor finds the affected
page, decrypts it if necessary and marks it as special.

While the described techniques catch most of the special
pages, there is one platform specific exception originating
in the Mali GPU driver of the guest kernel. An analysis of
this driver revealed that it employs a “physical allocator” that
allocates highmem pages, i.e. pages from memory normally
used for user space data, and maps it into the kernel space
using kmap(). These pages end up in the pkmap (persistent
kernel map) VA region in the kernel VA address space. Hence,

TABLE I
PAGE STATISTICS AFTER FINISHING ANDROID BOOT WITH M = 6000.

SPS MPS Total

Dyn. Stat. ∩ SPS \ SPS UPS Enc.

All 15072 1890 85 5915 22877 69352
Kernel 791 1810 22 1572 4173 10706

we exclude this virtual address range (2 MiB on the Arndale)
from encryption. Note that the guest still runs unmodified.

With the described mechanisms, our memory encryption
prototype is able to host a full, unmodified Android OS,
without impairing the system’s functionality.

VIII. EVALUATION

To evaluate the security and performance of TransCrypt,
we ran several experiments and benchmarks on our prototype
implementation. For all experiments, we ran a multi-core
Linux 3.0.31 kernel and Android 4.1.1 on the Arndale board.
In most experiments, we tested with different fixed values for
the maximum MPS size M . As discussed in Section V-E, M
can be used to adapt the security margin as a trade-off versus
the performance of the system. The smaller M , the less data
is unencrypted in memory and the more recently the data must
have been accessed to be still unencrypted.

A. Security

To get an impression on how the memory encryption and
the special page detection behave, we collected page statis-
tics from our prototype immediately after the guest finished
booting up Android. We chose a fixed M of 6000 for the
experiment. Since the Arndale board has two cores, this results
in each core managing a maximum of 3000 mapped pages,
as described in Section V-F. The results are summarized in
Table I. The statistics include the SPS size and the number
of special pages detected dynamically and statically (see
Section VI). Furthermore, the statistics show how many of the
MPS pages are in the SPS as well as a total of encrypted and
unencrypted pages, i.e. the UPS. Additionally to the statistics
over all pages ever mapped by the hypervisor, we generated
data for the Linux kernel lowmem region to determine how
actively the kernel space is encrypted. The lowmem is the
memory region which is contiguously mapped into the kernel
and stores kernel code and most of the kernel data structures.

There are several interesting results to be read from the
statistics. The SPS dynamic detection is mostly active for user
space pages, while the static detection is almost exclusively
active for kernel pages. The high amount of special pages can
be explained by the fact that the system just finished booting,
which involves a higher kernel activity than during normal
runtime. The MPS is almost completely filled with non-special
pages, which shows that the special page detection is very
specific, so that most of the current working set is considered
for encryption. The summary of encrypted and unencrypted
pages shows that about 75% of all pages and 72% of the kernel

TABLE II
PERCENTAGE OF TIME THE E-MAIL APP’S MEMORY CONTAINS THE PLAIN

ACCOUNT PASSWORD FOR DIFFERENT M IN THE SAMPLE USE CASE (1
MIN E-MAIL APP → 1 MIN HOME SCREEN → 1 MIN BROWSER) AND FOR

THE typical user CALCULATED BASED ON THE AVERAGE SAMPLES.

M = 4000 8000 10000 14000 18000 36000

Worst 0.66 4.35 12.49 33.04 38.74 73.03
Best 0.11 0.28 0.35 8.77 30.16 68.70
Avg. 0.34 1.14 3.37 16.98 34.07 70.43

Typ. 0.1 0.34 1.01 5.09 10.22 23.5

lowmem pages used during the Android boot are currently
encrypted. The amount of encrypted memory can be increased
further by choosing a smaller M .

To confirm that the kernel space encryption is very active,
we attached a JTAG debugger to the system to simulate a
memory attack. Without memory encryption, the debugger
is able to read and interpret kernel data structures, such as
page tables and task lists, for example, to show the processes
running on the system. With memory encryption, most of this
functionality stops working. While this does not yet necessar-
ily mean that secrets are protected in memory, memory dumps
are immediately much harder to analyze forensically without
being able to reliably access kernel data structures.

To find out how well the system protects user space secrets,
we analyzed the process memory of the Android Mail app.
After initializing the app with a test E-Mail account, during
normal operation the app’s memory showed four occurrences
of the address/password combination on three different pages.
We marked the physical pages in our hypervisor tracking their
encryption and decryption. While one of the pages remains
encrypted all the time, the two others are decrypted when the
app is brought to foreground (and checks for new mail). To
quantify the time the password is unencrypted in memory, we
devised the following sample use case:

1) Open the E-Mail app and wait for one minute.
2) Close the E-Mail app and wait for one minute.
3) Open the Browser app and wait for one minute.

Furthermore, we define a typical user who uses the E-Mail app
for 3 minutes every 30 minutes (including automatic fetches)
for 24 hours of the day. In 85% of the mail app uses, he opens
another app such as the browser afterwards. Table II shows the
percentage of time the E-Mail password is unencrypted in the
app’s memory for our sample test case and the typical user
for which we calculated the percentage based on the average
sample case. The password is counted as unencrypted as soon
as one of the three pages containing it is unencrypted.

The results for the sample use case can be interpreted as
follows. If the percentage is below or around 33% it means that
the password is encrypted at the latest when the E-Mail app is
closed. This is the case for all M except for M = 36000. For
this case, the password is encrypted as soon as the browser
is opened. Based on these observations, we can calculate the
percentage for our typical user based on the average case test

TABLE III
PERFORMANCE OF THE MEMORY ENCRYPTION PROTOTYPE AS

PERCENTAGE OF NATIVE PERFORMANCE FOR DIFFERENT BENCHMARKS.

M = 4000 8000 10000 18000 36000

CoreMark 99.0 99.8 99.8 99.9 99.9
Antutu 60.9 77.9 81.7 82.6 87.4

results. For example, for this user using M = 10000, the
E-Mail password is unencrypted in memory for less than 15
minutes over the whole day. Considering that we get very
good benchmark results already for M ≤ 10000 as shown in
the next Section, the results confirm that TransCrypt is able
to efficiently protect real secrets in memory.

B. Performance

We evaluated the performance of the prototype using two
benchmarks. The CoreMark [35] benchmark measuring integer
performance without GUI and the Antutu [36] Android app
measuring overall performance including CPU, RAM, GPU
and I/O speed. The averaged results are summed up in
Table III, showing the TransCrypt prototype’s performance as
percentage of native performance without encryption.

For CoreMark, the TransCrypt performance is almost indis-
tinguishable from the native performance. The Antutu bench-
mark has a much larger working data set including assets for
3D graphic and user interface and should give an impression
on how TransCrypt performs running a demanding app such
as a game. Despite being a challenging real-world test, the
Antutu benchmark already reaches more than 80% of native
performance for M = 10000.

Most of the performance impact is caused by the encryption
itself. Our prototype uses a software AES implementation,
so switching to a hardware implementation such as the AES
extensions in ARMv8, promises to significantly improve per-
formance. As described in Section VII, ARMv8 also offers a
much more efficient way for SLAT TLB invalidation, which
can further improve performance.

C. Discussion

Our attacker is able to execute a cold boot attack. On
a normal system, this leads to a leak of all RAM data
including keys, e.g. E-mails, passwords and documents. With
TransCrypt, as shown for the E-mail account password, sensi-
tive data is encrypted with high probability using a key which
is stored in a location not vulnerable to cold boot.

Our attacker is able to execute different reading DMA
attacks, as discussed before in our attacker model. In all
those attacks, the attacking DMA device “acts on its own”,
meaning that the guest kernel on the CPU does not initiate
the DMA access, at least not for the addresses the device is
maliciously accessing. Therefore, our DMA detection mecha-
nism described in the Section VI, does not exclude the attacked
pages from encryption, providing security for these cases. On
a normal system, a DMA memory attack leads to leakage of

all memory data. With our memory encryption, a DMA attack
reads encrypted memory instead of sensitive data with a high
probability as shown for the E-Mail password.

We based our evaluation on experiments with different fixed
values of M to analyze its influence on the encryption proba-
bility and the performance. As shown, choosing M = 10000
already provides a very good trade-off between security and
performance. By using a dynamic M adaption, as described
in Section V-E, this trade-off can even be improved further.

IX. CONCLUSION

In this paper, we presented TransCrypt, a concept and
implementation for guest-transparent encryption of kernel and
user memory from a custom minimal hypervisor to protect
against memory attacks, for example, via DMA or cold boot.
We furthermore introduced a concept and implementation for
detecting special pages to be excluded from the encryption,
e.g. for DMA, in a transparent and guest-agnostic way on
ARM architectures. We developed a fully functional prototype
on the Arndale ARM Cortex-A15 development board. Our
evaluation shows that the system can effectively protect secrets
in memory while keeping the performance impact small.
For example, the system is able to keep the E-mail account
password of a typical user in the Android mail app’s memory
encrypted 98.99% of the time, while still reaching 81.7% and
99.8% of native performance in different benchmarks.

REFERENCES

[1] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We
Remember: Cold Boot Attacks on Encryption Keys.” USENIX Security
Symposium, 2008.

[2] P. Gutmann, “Data Remanence in Semiconductor Devices,” in Proceed-
ings of the 10th conference on USENIX Security Symposium-Volume 10.
USENIX Association, 2001, p. 4.

[3] T. Müller and M. Spreitzenbarth, “FROST,” in Applied Cryptography
and Network Security. Springer Berlin Heidelberg, Jun. 2013.

[4] A. Boileau, “Hit by a bus: Physical access attacks with Firewire,”
Presentation, Ruxcon, 2006.

[5] M. Becher, M. Dornseif and C. N. Klein, “FireWire: All Your Memory
Are Belong To Us,” Proceedings of CanSecWest, 2005.

[6] P. Stewin and I. Bystrov, “Understanding dma malware,” in Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2012, pp. 21–41.

[7] R.-P. Weinmann, “Baseband attacks: remote exploitation of memory
corruptions in cellular protocol stacks,” in WOOT’12: Proceedings of
the 6th USENIX conference on Offensive Technologies, University of
Luxembourg. USENIX Association, Aug. 2012.

[8] T. Müller, F. C. Freiling, and A. Dewald, “TRESOR Runs Encryption
Securely Outside RAM.” in USENIX Security Symposium, 2011.

[9] J. Götzfried and T. Müller, “ARMORED: CPU-Bound Encryption for
Android-Driven ARM Devices,” in 2013 Eighth International Confer-
ence on Availability, Reliability and Security (ARES). IEEE, 2013.

[10] P. Simmons, “Security Through Amnesia: A Software-Based Solution to
the Cold Boot Attack on Disk Encryption,” in Proceedings of the 27th
Annual Computer Security Applications Conference. ACM, 2011.

[11] T. Müller, B. Taubmann, and F. C. Freiling, “TreVisor - OS-Independent
Software-Based Full Disk Encryption Secure against Main Memory
Attacks,” in Applied Cryptography and Network Security. Springer,
2012, pp. 66–83.

[12] G. Duc and R. Keryell, “CryptoPage: An Efficient Secure Architecture
with Memory Encryption, Integrity and Information Leakage Protec-
tion,” ACSAC, pp. 483–492, 2006.

[13] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[14] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Pro-
cessing,” in Proceedings of the 17th annual international conference on
Supercomputing. ACM, 2003, pp. 160–171.

[15] M. Henson and S. Taylor, “Beyond full disk encryption: protection on
security-enhanced commodity processors,” in ACNS’13: Proceedings of
the 11th international conference on Applied Cryptography and Network
Security. Springer Berlin Heidelberg, Jun. 2013.

[16] X. Chen, R. P. Dick and A. Choudhary, “Operating system controlled
processor-memory bus encryption,” in Design, Automation and Test in
Europe, 2008. DATE’08. IEEE, 2008, pp. 1154–1159.

[17] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu,
and A. Wolman, “Protecting Data on Smartphones and Tablets from
Memory Attacks,” in ASPLOS ’15: Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems. New York, USA: ACM, Mar. 2015.

[18] J. Götzfried, T. Müller, G. Drescher, S. Nürnberger, and M. Backes,
“Ramcrypt: Kernel-based address space encryption for user-mode pro-
cesses,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’16. New
York, NY, USA: ACM, 2016, pp. 919–924.

[19] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’08. New York, NY, USA: ACM, 2008.

[20] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A
virtualization-based approach to retrofitting protection in commodity
operating systems,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XIII. New York, NY, USA: ACM, 2008.

[21] ARM Limited, ARM Architecture Reference Manual – ARMv7-A and
ARMv7-R edition, July 2012.

[22] R. Mijat and A. Nightingale, “Virtualization is Coming to a Platform
Near You,” ARM Limited, Tech. Rep., Jan. 2011.

[23] J. Horsch and S. Wessel, “Transparent Page-Based Kernel and User
Space Execution Tracing from a Custom Minimal ARM Hypervisor,”
in Trustcom/BigDataSE/ISPA, 2015 IEEE, Aug 2015, pp. 408–417.

[24] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software
Security – Enabling Trusted Computing in Embedded Systems,” 2004.

[25] ARM Limited, ARM Architecture Reference Manual – ARMv8-A, for
ARMv8-A architecture profile, 2013.

[26] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd Int.
Workshop on Hardware and Architectural Support for Security and
Privacy. ACM, 2013.

[27] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,” AMD
Inc., Tech. Rep., Apr. 2016.

[28] P. A. H. Peterson, “Cryptkeeper: Improving security with encrypted
RAM,” in Technologies for Homeland Security (HST), 2010 IEEE
International Conference on. IEEE, 2010, pp. 120–126.

[29] J. Götzfried, N. Dörr, R. Palutke, and T. Müller, “HyperCrypt:
Hypervisor-Based Encryption of Kernel and User Space,” in 2016
11th International Conference on Availability, Reliability and Security
(ARES), Aug 2016, pp. 79–87.

[30] L. Zhao and M. Mannan, “Hypnoguard: Protecting Secrets Across Sleep-
wake Cycles,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 945–957.

[31] M. Huber, J. Horsch, and S. Wessel, “Protecting Suspended Devices
from Memory Attacks,” in Proceedings of the 10th European Workshop
on Systems Security, ser. EuroSec’17. New York, NY, USA: ACM,
2017, pp. 10:1–10:6.

[32] M. Huber, J. Horsch, J. Ali, and S. Wessel, “Freeze & Crypt: Linux
Kernel Support for Main Memory Encryption,” in 14th International
Conference on Security and Cryptography (SECRYPT 2017), INSTICC.
ScitePress, 2017.

[33] Insignal Limited, “Arndale Board,” http://www.arndaleboard.org.
[34] D. Zhang, “TrustFA: TrustZone-Assisted Facial Authentication on

Smartphone,” Tech. Rep., Dec. 2014.
[35] E. M. B. Consortium, “Coremark,” http://www.eembc.org/coremark/.
[36] AnTuTu Developers, “Antutu,” http://www.antutu.com/en/index.shtml.

http://www.arndaleboard.org
http://www.eembc.org/coremark/
http://www.antutu.com/en/index.shtml

