
HAL Id: hal-01590744
https://hal.science/hal-01590744

Submitted on 20 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mediator-Based Immediate Attribute Revocation
Mechanism for CP-ABE in Multicast Group

Communications
Lyes Touati, Yacine Challal

To cite this version:
Lyes Touati, Yacine Challal. Mediator-Based Immediate Attribute Revocation Mechanism for CP-
ABE in Multicast Group Communications. 16th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications (TrustCom 2017), 2017, Sydney, Australia. pp.309-
314, �10.1109/Trustcom/BigDataSE/ICESS.2017.252�. �hal-01590744�

https://hal.science/hal-01590744
https://hal.archives-ouvertes.fr

Mediator-Based Immediate Attribute Revocation
Mechanism for CP-ABE in Multicast Group

Communications
Lyes Touati

Sorbonne universités, Université de Technologie de Compiègne,
CNRS, Heudiasyc UMR 7253, CS 60 319,

60 203 Compiègne cedex.
Email: lyes.touati@hds.utc.fr

Yacine Challal
Centre de Recherche sur l’Information

Scientifique et Technique CERIST,
05 Rue des Frères Aissou, Ben Aknoun

Algiers, Algeria
Email: ychallal@cerist.dz

Abstract—Attribute Based Encryption (ABE) scheme is a
mechanism that allows implementing cryptographic fine grained
access control to shared information. It achieves information
sharing of type one-to-many users, without considering the
number of users and their identities. However, original ABE
systems presents some drawbacks, especially the non-efficiency
of their attribute/key revocation mechanisms.

Based on Ciphertext-Policy ABE (CP-ABE) scheme, we pro-
pose an efficient proxy-based immediate private key update
for multicast group communications. Our solution does require
neither re-encrypting cipher-texts, nor affecting other users
(Updating secret keys).

The proxy that has been introduced plays the role of a
necessary semi-trusted assistant during the decryption process
without taking decisions about who is eligible or not to decrypt
data.

Finally, we demonstrate that our scheme guarantees security
requirements that we target and we also show through analysis
that our scheme achieves effectively its goals.

Index Terms—CP-ABE; Access Control; Pairing Cryptogra-
phy; Attribute revocation; Multicast group communications

I. INTRODUCTION

Ciphertext-Policy Attribute Based Encryption [1] is a con-
cept that allows to implement a fine grained cryptographic
access control to shared data. The main idea is to associate
a list of attributes to each user relative to her/his role in
the application. A secret key is constructed by an Attribute
Authority (AA) based on the user’s attributes set. In ABE
systems, data are encrypted upon a policy in a form of
a logical expression using AND, OR, and threshold gates,
and implying attributes from the universe of attributes. Users
whose attributes set satisfies the access policy of a cipher-text
are allowed to decrypt it using their secret keys.

The advantage of ABE schemes is the possibility to apply
fine grained access control on data without relying a third
party (server, cloud service provider, etc.). The access control
is cryptographically ensured.

Y. Challal is associate professor at Ecole Nationale Supérieure
d’Informatique (ESI, Algiers, Algeria). He is member of Systems Design
Methods lab. (LMCS)

However, ABE schemes are criticized for some drawbacks
bound to the complexity of their construction. The first
drawback is the overhead in term of execution time and
energy consumption, especially for encryption and decryption
primitives. The second one, which is more challenging, is the
key/attribute revocation problem. The latter is a very tricky
problem as many users can share the same attribute, and when
we want to remove an attribute from one user’s secret key,
it is very difficult to not affect other users sharing the same
attribute. The objective of attribute/key revocation mechanism
is to be able to efficiently update users’ secret keys (adding
and/or removing attributes) easily without affecting (or with a
minimum effect) non-concerned users.

The rest of the paper is organized as follows. Section II
discusses previous works on attribute/key revocation mecha-
nism of ABE schemes. We review some necessary background
notions in Section III. We introduce our solution in Section IV.
Security and performance analysis are discussed in Section V
and Section VI respectively. Finally, we conclude the paper in
Section VII.

II. RELATED WORKS

The attribute revocation problem is a very tricky issue as
attributes could be shared by many users, hence, revoking
or adding one attribute from/to a user naively requires to
renames that attribute and update all secret keys containing
that attribute [1]. Therefore, scalability represents an important
property to consider when designing such solutions.

There are mainly three approaches in the literature to resolve
the attribute revocation issue for CP-ABE scheme.

The first category of solutions is the naive one, it is based on
renaming attributes by adding the next expiration date at the
end of the attribute [1]. This solution induces a huge overhead
due to the attributes update and re-keying.

Always in the same category, L. Touati et al. proposed
two efficient solutions [2] [3] for the attribute revocation
issue of CP-ABE. Indeed, instead of renaming the attributes,
they proposed to split the time axis into time slots, and they
introduced a new hash function that takes two parameters: an

attribute and a time slot identifier. In the first solution [2], time
slots are all with the same duration, this may generates a delay
(lag) in the key delivery and revocation. The second one [3]
is more flexible and eliminates the undesirable lag. Time slots
are with variable durations and are constructed considering
users’ attribute validity periods. However, in this solution, the
Attribute Authority must know beforehand all users’ attribute
validity periods to determine time slots durations. This seems
to be more or less a hard assumption depending on the
application we used it for.

The second category aims to integrate the revocation mecha-
nism into the access policy [1]. This would come out with huge
access trees as the key revocation condition is transformed into
integer comparisons. This kind of approach supports only key
revocation but no attribute revocation.

The third category of solutions based on the use of the Proxy
Re-Encryption technique (PRE) [4]. [5], [6] are example of
solutions of this category. As their name indicates it, these
solutions introduce a proxy or powerful cloud server in order
to absorb the overhead due to re-encryption of ciphertexts. In
other words, for each decryption, a end user must request the
ciphertext from a proxy, the later will re-encrypt it so as the
user could decrypt it if and only if he is authorized.

In [7], Touati et al. proposed a mediator based attribute
revocation solution for CP-ABE. The role of the mediator is
to assist users during decryption processes. However, targeted
security requirements are not adequate for group/multicast
communication applications. In this paper, we propose an
variant of [7] in order to implement a CP-ABE immediate key
update mechanism (immediate attribute/key revocation mech-
anism) guaranteeing multicast group communication security
requirements. In such applications, users still can access to
old encrypted data when their secret keys are updated, and
of course, their previous secret keys are not usable for future
cipher-texts.

III. BACKGROUND

In this section, we present some necessary notions to the
well understanding of the rest of the paper. First, we recall
the principle of ABE systems and list the primitives of CP-
ABE scheme. After that, we present the notions of access tree
and bilinear maps.

A. Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of prime
order p. Let g be a generator of G0 and e be a bilinear map,
e : G0 × G0 → G1. the bilinear map e has the following
properties:

1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have
e
(
ua, vb

)
= e (u, v)

ab.
2) Non-degeneracy: e (g, g) 6= 1.
We say that G0 is a bilinear group if the group operation in

G0 and the bilinear map e are both efficiently computable. No-
tice that the map e is symmetric since e

(
ga, gb

)
= e (g, g)

ab
=

e
(
gb, ga

)
.

B. CP-ABE scheme

Ciphertext-Policy Attribute-Based Encryption [1] is a pow-
erful asymmetric encryption mechanism that allows imple-
menting a fine-grained access control in cyber-physical sys-
tems. CP-ABE proposes to construct private keys based on a
list of attribute that are assigned beforehand to an entity. Data
are encrypted with an access policy in the form of an access
tree. only those whose private key satisfies this access policy
can decrypt the cipher-text.

It consists mainly of four primitives:
• Setup. The setup primitive is run by the Attribute Au-

thority at the bootstrap phase. It takes no input other
than the implicit security parameter. It outputs the public
parameters PK which is shared with all the entities of
the system, and a master key MK which is kept secret.

• KeyGen(MK, S). It is run by The Attribute Authority
to generate secret keys to system’s users. It takes the
master key MK and list of attributes S. The keyGen
primitive outputs a secret key SK corresponding to the
list of attribute S.

• Encrypt(PK, M, γ). The encryption algorithm takes as
input the public parameters PK, a message M , and an
access structure γ over the universe of attributes. The
primitive encrypt M and produce a cipher-text CT which
could be decrypted only by a user that possesses a set of
attribute satisfying the access structure γ.

• Decrypt(PK, CT, SK). It takes as parameters the public
parameters PK, a cipher-text CT and a secret key SK
which is a secret key for a set S of attributes. If the list of
attributes S verifies the access policy defined in CT , the
primitive decrypt the ciphertext and outputs the original
message M .

C. Access tree

The access trees (Figure 1) are used in CP-ABE to describe
the access policy with which a message is encrypted. Only
user with an attributes sets satisfying the access tree could
decrypt the cipher-text.

Each non-leaf node of the tree represents a threshold gate,
described by its children and a threshold value. If numx is
the number of children of a node x and kx is its threshold
value, then 0 < kx ≤ numx. Each leaf node x of the tree is
described by an attribute and a threshold value kx = 1.

Some functions are defined to facilitate working with access
trees:
• parent(x): denotes the parent of the node x in the tree.
• att(x): is defined only if x is a leaf node, and denotes the

attribute associated with the leaf node x in the tree.
• index(x): denotes the order of the node x between its

brothers. The nodes are numbered from 1 to num.
Satisfying an access tree. Let T be an access tree with

root r. Denote by Tx the sub-tree of T rooted at the node x.
Hence T is the same as Tr. If a set of attributes γ satisfies
the access tree Tx, we denote it as Tx (γ) = 1. We compute
Tx (γ) recursively as follows. If x is a non-leaf node, evaluate

AND

OR OR

Physics BiologyStudent Ph.d Student Researcher

Figure 1: Example of an access tree

Tx′ (γ) for all children x′ of node x. Tx (γ) returns 1 if and
only if at least kx children return 1. If x is a leaf node, then
Tx (γ) returns 1 if and only if att (x) ∈ γ.

IV. OUR SOLUTION

In this section, we present our solution. First, we motivate
our work and give some application examples for our solution.
After that, we itemize the security requirements and present
the network model. Then, we detail our solution implementing
an attribute revocation mechanism for CP-ABE scheme.

A. Motivations and Application Cases

In this paper, we tackle the attribute/user revocation issue
of CP-ABE in application cases having specific properties and
security requirements. In these applications, users gaining new
attributes, hence new secret key, must be prevented from using
the new secret key to access old encrypted data, his new secret
key is valid only for future encrypted data. Likewise, a user
losing some attributes, hence getting new secret key, could
not use old secret keys to decrypt future cipher-texts requiring
some of the lost attributes.

In other words, the validity period of a user’s key is bounded
by its delivery (beginning of the validity) and its revocation
(end of the validity). A user’s key can only decrypt cipher-texts
which are encrypted during its validity periods.

We can cite "MultiCast Group Communication" as a kind
of applications that require these security properties. Many
applications are part of MultiCast Group Communications.
For example: Online Network Games, Video on Demand, Chat
rooms, TVoD (Encrypted TV), etc.

- Chat rooms: Chat rooms applications require a confi-
dentiality of communications. Users joining chat rooms gain
attributes that allow them to decrypt exchanged messages. The
chat room managing system must prevent new users from
accessing old messages sent before their membership. Further,
users quitting a chat room lose all access rights to future
communications between the members.

- TVoD (Encrypted TV): One of the applications that
we target is Encrypted TV. Users subscribe to channels and
programs. Users gain the access to the channels and programs
only from the moment they subscribe (Backward secrecy).
Likewise, when the validity of the subscription expires or the
service provider decides to stop the subscription, the users lose
the access to future programs (Forward secrecy).

B. Security Requirements

In this section, we present the security requirements that
our mechanism must verify in order to be validated. The
applications we target in this paper require specific security
properties which are summarized below.
• Backward Secrecy. A user receiving new secret key

with new attributes is not able to use it to decrypt old
messages.

• Forward Secrecy. A user receiving a new secret key after
losing some attributes has no access to futures cipher-
text requiring the lost attributes even if these cipher-texts’
policies are satisfied by a previous secret key.

• Collusion resistant. This is a very important property of
Attribute Based Encryption. It means that the conspiracy
of many non-authorized users for decrypting a cipher-
text is useless, even if the union of their attributes sets
satisfies the encryption policy defined for the cipher-text.

• Immediate Key Update. When a user’s attributes set is
updated (adding and/or removing attributes), a new secret
key must be constructed based on the new user’s attributes
set and must be delivered for that user immediately.

• User Privacy. The attribute management mechanism
must preserve user privacy. Information concerning a user
like its attributes list must be kept secret from a third
party. The data accessed by a user also must be hidden
from other users.

Notation Description
PK Public Key generated by the Attribute Authority
MK Master Key generated by the Attribute Authority
SK User’s Secret Key generated by the Attribute Authority based

on user’s set of attributes
SK(1) Part of SK sent to the corresponding user
SK(2) Part of SK sent to the proxy
PrSK Proxy Secret key
PrPK Proxy Public Key
Tenc date of encryption
DDi Delivery Date (timestamp) of a secret key part Di

{.}_k The content between accolades is encrypted with the key k
M Message to be encrypted
γ access structure defining the access policy to the message M
CT The cipher-text got after encryption of M with the policy γ
Kp,i Symmetric key shared between the proxy and an entity or a

user i

Table I: Notation Table

C. Network model

We assume the existence of a semi-trusted powerful proxy
that assists entities in the decryption process. We mean by
semi-trusted that the proxy is curious but honest: it honestly
executes the tasks assigned to it, however, it could try to
learn any possible information about encrypted data using the
elements given to it. The proxy receives parts of entities’ secret
keys during the key generation phase. A special entity called
Attribute Authority manages users’ attributes and creates users’
secret keys. This entity has also the role of holding the public
parameters and it is responsible for the revocation mechanism.
All other entities are considered as users of the system.

We assume that after the initialization phase, each user Ui
in the system shares a symmetric key Kp,i with the proxy.
We assume also that the proxy has received a couple of keys
(secret key PrSK and public key PrPK) constructed using
a public-key cryptosystem like RSA [8]. The proxy public key
is shared with all users in the system.

The Proxy must keep information about users. The data
structure in Table II shows which information the proxy keeps
about a given user Ui.

Secret key part Delivery date

D(1) DD1

...
...

D(i) DDi

D(i+1) DDi+1

...
...

D(n) DDn

Table II: Proxy data structure

In the first column we have the secret key part Di and the
corresponding delivery date DDi is in the second column.

Figure 2 shows the global architecture of our solution
illustrating the different involved parties. It shows also the
exchanges between these entities. The Attribute Authority is
responsible for generating the Public Key (PK) and sharing
it with the Data Owners (DO) (Step 1). It also generates to
each user a Secret Key (SK) based on the user’s attributes set
(Step 2). The secret key SK is divided into two parts SK(1)

and SK(2). The first part (SK(1)) is sent to the concerned user,
and the other part (SK(2)) to the proxy. The latter insert SK(2)

in its data structure (See Table II) along with the timestamp
of receipt.

Meanwhile, the data owner is able to encrypt his sensitive
data and stores them in a remote server (Step 3). We recall
that, the storage server is not charged of ensuring access
control to data; but rather, it is cryptographically implemented
by CP-ABE.

The user gets the cipher-text from the storage server
(Step 4), he solicits the assistance of the proxy to decrypt
it (Step 5).

The key update process is similar to the key generation
(Step 6). For more information (see Section IV-G).

D. Assumptions

Let e be a non-degenerate bilinear pairing. Two assumptions
related to bilinear maps are listed below and used to construct
our solution.
• The Fixed Argument Pairing Inversion 1 (FAPI-1) [9]:

Given D1 ∈ G1 and z ∈ GT , compute D2 ∈ G2 such
that e(D1, D2) = z.

• The Fixed Argument Pairing Inversion 2 (FAPI-2) [9]:
Given D2 ∈ G2 and z ∈ GT , compute D1 ∈ G1 such
that e(D1, D2) = z.

We have also set up some assumptions related to the
network model:

Attribute Authority

Proxy User

Data Owner (DO)

Storage Server

(5) Assistance

𝑆𝐾(2) 𝑆𝐾(1)

Figure 2: Architecture of the solution

1) Each entity of the system shares a symmetric key with
the proxy.

2) The proxy possesses a unique Proxy Secret Key PrSK
and its corresponding Proxy Public Key PrPK is
published and is known by all system entities.

3) The proxy is semi-trusted (honest but curious): It exe-
cutes its function honestly without disclose information
to other parties. However, it could be curious to get as
much as possible of information about data.

E. Basic idea

We split the secret key into two parts, the first one, SK(1)

which contains all elements related to the attributes is sent to
the user. The second part SK(2) which represents the element
D, is sent to the proxy along with the time of key update
(Delivery date) DD. The proxy maintains all the history of
users’ keys.

We bind the hs with the time of encryption Tenc in the
ciphertext CT by encrypting them with the proxy public key
PrPK. We finally get C = {hs, Tenc}_PrPK .

During the decryption, the user has to solicit the proxy to
completely recover the plain-text. She/he sends C to the proxy.
The latter decrypt is using PrSK and then, extract the Tenc.
Using Tenc the proxy finds the element Di to use. Then, it
computes e(hs, Di) and sends it back to the user. To find the
Di, the proxy can do it by dichotomy. The i of Di must satisfy
this property:

DDi ≤ Tenc < DDi+1 (1)

F. Scheme

In this section, we describe in detail the different primitives
and how our solution achieves attribute revocation.

- Setup. The setup primitive generates the public key PK
and the master key MK of the system. It is run by the
Attribute Authority during the bootstrap phase. The primitive
chooses a bilinear group G0 of prime order p with generator g.

Then it chooses two random exponents α, β ∈ Zp. The public
key is published as:

PK = G0, g, h = gβ , f = g1/β , e (g, g)
α
. (2)

and the master key is:

MK = (β, gα). (3)

- KeyGen(MK,S).
This primitive is run by the Attribute Authority to generate

users’ secret keys. It takes as input the master key MK and
user’s attributes set S. It outputs two parts SK(1) and SK(2).
The first one is given to the corresponding user, and the other
one is sent to the proxy.

The algorithm first chooses a random r ∈ Zp, and then
random rj ∈ Zp for each attribute j ∈ S. It computes two
parts as:

SK(1) =
(
∀j ∈ S : Dj = gr ·H (j)

rj , D′j = grj
)

(4)

and

SK(2) = D = g(α+r)/β (5)

- Encrypt(PK,γ,M).
The encryption primitive encrypts a message M under the

tree access γ. The algorithm first chooses a polynomial qx for
each node x (including the leaves) in the access tree γ. These
polynomials are chosen in the following way in a top-down
manner, starting from the root R. For each node x in the tree,
set the degree dx of the polynomial qx to be one less than the
threshold value kx of that node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses a
random s ∈ Zp and sets qR (0) = s. Then, it chooses dR other
points of the polynomial qR randomly to define it completely.
For any other node x, it sets qx (0) = qparent(x) (index (x))
and chooses dx other points randomly to completely define
qx.

Let Y be the set of leaf nodes in γ. The cipher-text is then
constructed by giving the tree access tree γ and computing:

CT =
(
γ, C̃ =Me(g, g)αs, C = {hs, Tenc} _PrPK ,

∀y ∈ Y : Cy = gqy(0), C ′y = H (att (y))
qy(0)

)
(6)

- Decrypt(CT,SK).
During the decryption process, an decryptor uses the

DecryptNode function defined in [1] to compute A =
DecryptNode(CT, SK, r) = e (g, g)

rqR(0)
= e (g, g)

rs.
Where r represents the root node of the access tree γ defined
for CT .

The decryptor requires e (hs, D) value to proceed the de-
cryption, he sends C = {hs, Tenc} _PrPK to the assisting
proxy. The latter uses proxy secret key PrSK for decryption
et gets hs and Tenc. Then it choose the adequate D to
use according to Tenc (Formula 1). The proxy computes
R = e (hs, D) and sends it back to the decryptor after
encryption using the shared key between them.

Now, the decryptor can retrieve the original message this
way:

C̃/ (e (R,D) /A) = C̃/ (e (hs, D) /A)

= C̃/
(
e
(
hs, g(α+r)/β

)
/e (g, g)

rs
)

=M (7)

The decryption primitive succeeds if and only if the set
of attributes associated with SK satisfies the access policy
γ defined for CT . Otherwise, the primitive fails and returns
nothing.

G. Revocation Operation

In order to revoke a user or some attributes to a user, the
Attribute Authority has only to geenrate a new secret key
corresponding to the new attributes set of the use. Then, it
sends SK(1) to the user and SK(2) to the proxy. The later
will add an entry to the table associated to that user in a form
of (D(n+1) = SK(2) , DDn+1).

From this moment, the user could not use an old secret
key to decrypt future ciphertexts. Indeed, future ciphertexts
include a time of encryption greater than the last delivery
date DDn+1 ≤ Tenc, so the proxy will use the corresponding
D(n+1) which is compatible only with the new secret key
SK(1) recently generated.

V. SECURITY ANALYSIS

In this section, we give proofs that our revocation mecha-
nism meets the security requirements defined in Section IV-B

Proposition 1. Our scheme guarantees Backward secrecy.
Proof:
Once the Attributes Authority updates the user’s secret

key, the new secret key is usable only for ciphertexts with
a timestamps greater than its delivery date.

We may believe that the user could cheat the proxy by
constructing a fake C element. He could choose a timestamps
in the interval of an old key, but the value of hs is hidden to
user. Hence, he cannot forge a fake C element of the cipher-
text.

Proposition 2. Our scheme guarantees Forward secrecy.
Proof:
Once the user’s secret key is updated: the user receives

elements related to the new attributes set, and the proxy
receives from the Attribute Authority the Di+1 element at
DDi+1. The previous user’s key cannot be used to decrypt
messages encrypted after DDi+1.

Th user cannot forge a fake C element with an old time
of encryption, as the latter is composed of hs and the time
of encryption Tenc, all encrypted with the proxy public key
PrPK. Indeed, the user is not aware of the hs as it is hidden
by encryption.

Proposition 3. Our scheme prevents users from collusion.
Proof:
The collusion resistance is a property ensured the ABE

scheme construction. Thanks to the random elements r, rj ,

secret keys cannot be used together as they are randomized.
For more information about collusion ressistance property, we
invite the reader to take a look at the original paper [1].

As our solution is based on CP-ABE scheme, this property
is also verified.

Proposition 4. Our scheme ensures immediate users’ keys
update.

Proof:
Once the Attribute Authority decides to update a user’s

secret key, it just had to generate a new CP-ABE secret key and
as detailed in Section IV-F and securely send the two parts to
the concerned user and the proxy. Since then, the user’s secret
key is effectively updated and his previous secret key is no
longer usable for future cipher-texts.

Proposition 5. Our scheme ensures users’ privacy.
Proof:
The user’s privacy in question here is about his attributes set

and the cipher-texts he intend to decrypt. Indeed, the proxy has
no idea about the list of attributes of any user, as he possesses
only the element SK(2) = D related to the secret key which
gives no information about the attributes set.

Likewise, during the decryption process, the proxy receives
only the two elements {hs, Tenc} encrypted with his public
key PrPK. These two elements don’t say much about the
cipher-text itself except the time of encryption.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performances of our solution
in terms of computation and storage costs. Then, we give a
highlight on how we can speed up the search at the side of
the proxy.

A. Computation performance
Setup and Key Generation primitives: Our solution exe-

cutes the setup and keygen primitives exactly as the original
CP-ABE [1] except that it splits the secret key into two parts
and sends them to the user and the proxy. It does not require
more computation overhead.

Encrypt primitive: The encryption primitive of our so-
lution is pretty similar to the original one, it just adds a
timestamps Tenc to the cipher-text and replaces the element
C by the concatenation of hs and Tenc all encrypted with
the proxy public key PrPK. Our solution does not generate
much overhead for the data owner.

Decrypt primitive: The Decrypt primitive of our solution
requires an exchange between the user and the proxy. The
user sends the element C whose size equals |G1|+ |Tenc| and
receives and element from GT .

The proxy has to look for the adequate Di in the proxy
table (Formula 1), it can use the dichotomy method to speed
up the search. The user also has to find the adequate SK(1)

to use depending on Tenc.
It is important to notice that our scheme allows to distribute

the proxy overhead (both computation and storage) on several
proxies without loosing in security level. In this case, all the
proxies must possess PrSK, and each proxy is assigned to a
group of users to assist them.

B. Storage performance

The storage overhead is an inherent drawback of our so-
lution, as the proxy and the user have to store all old secret
key parts. For the user, he can keep only the most recent key
part SK(1) if he is sure that he does not need to access old
messages.

VII. CONCLUSION

In this paper we presented a new attribute revocation mech-
anism for ABE schemes that verifies security requirements
of some applications like multi-cast group communication.
Our solution introduces a proxy in the system that assists the
user during the decryption process, and hence, the attribute
revocation process does affect only concerned users.

In order to achieve backward and forward secrecy, we
impose to both users and proxy to store different versions of
the secret keys parts. Indeed, users may access to old encrypted
messages if they are illegible.

For our best of knowledge, our solution is the first solution
that tackles the attribute revocation with group communication
backward and forward secrecy assumptions.

VIII. ACKNOWLEDGMENT

This work was carried out and funded in the framework of
the Labex MS2T. It was supported by the French Government,
through the program "Investments for the future" managed by
the National Agency for Research (Reference ANR-11-IDEX-
0004-02).

REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2007, pp. 321–334.

[2] L. Touati and Y. Challal, “Batch-Based CP.-ABE with attribute revocation
mechanism for the internet of things,” in 2015 International Conference
on Computing, Networking and Communications, Wireless Networks
Symposium (ICNC’15 WN), Anaheim, USA, Feb. 2015.

[3] ——, “Efficient cp-abe attribute/key management for iot applications,” in
IEEE International Conference on Computer and Information Technology,
Liverpool, United Kingdom, Oct. 2015.

[4] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in In EUROCRYPT. Springer-Verlag, 1998, pp.
127–144.

[5] Z. Xu and K. Martin, “Dynamic user revocation and key refreshing
for attribute-based encryption in cloud storage,” in Trust, Security and
Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th
International Conference on, June 2012, pp. 844–849.

[6] S. Jahid and N. Borisov, “Piratte: Proxy-based immediate revocation of
attribute-based encryption,” arXiv preprint arXiv:1208.4877, 2012.

[7] L. Touati and Y. Challal, “Instantaneous Proxy-Based key update for CP-
ABE,” in 41st Annual IEEE Conference on Local Computer Networks
(LCN 2016), Dubai, United Arab Emirates (UAE), Nov. 2016.

[8] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[9] S. Galbraith, F. Hess, and F. Vercauteren, “Aspects of pairing inversion,”
Information Theory, IEEE Transactions on, vol. 54, no. 12, pp. 5719–
5728, 2008.

