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Abstract—Survival analysis studies the statistical properties
of the time until an event of interest occurs. It has been
commonly used to study the effectiveness of medical treatments
or the lifespan of a population. However, survival analysis can
potentially leak confidential information of individuals in the
dataset. The state-of-the-art techniques apply ad-hoc privacy-
preserving mechanisms on publishing results to protect the pri-
vacy. These techniques usually publish sanitized and randomized
answers which promise to protect the privacy of individuals in
the dataset but without providing any formal mechanism on
privacy protection. In this paper, we propose private mechanisms
for parametric survival analysis with Weibull distribution. We
prove that our proposed mechanisms achieve differential privacy,
a robust and rigorous definition of privacy-preservation. Our
mechanisms exploit the property of local sensitivity to carefully
design a utility function which enables us to publish parameters
of Weibull distribution with high precision. Our experimental
studies show that our mechanisms can publish useful answers
and outperform other differentially private techniques on real
datasets.

Keywords—differential privacy, parametric survival analysis,
Weibull distribution, local sensitivity.

I. INTRODUCTION

Survival analysis [1], [2] focuses on modeling the time to an
event of interest. It is used in clinical trials to study the efficacy
of a treatment [3]–[5]. It is also used to study the lifespan of a
population, the time until a machine fails, etc. However, there
are concerns about the privacy risk in survival analysis as it
may potentially leak confidential information to the public. For
example, it is possible that the results from a study about the
survival of HIV patients may leak the identity of individuals
participated in the study. Moreover, many countries publish
survival analysis results of the population to the public. But,
any breach of privacy from these results can be a disaster on
a massive scale.

The survival function and hazard function are the two most
important focuses in survival analysis. The survival function
S(t) is the probability of survival at least to time t, while
the hazard function h(t) is the risk of death at time t. There
are three kinds of models used in survival analysis: (1) non-
parametric models are used to estimate S(t) and h(t) directly
from data without any assumption on data distribution, e.g.,
the Kaplan-Meier estimator; (2) parametric models are used
to estimate S(t) and h(t) under the assumption that the data
follow a parametrized distribution such as Weibull distribution;

and (3) semi-parametric models are used to estimate the effect
of variables on survival, e.g., Cox regression. Different models
will need different privacy-preserving techniques. In this paper,
we focus on privacy protection for parametric models only.
In particular, we focus only on the parametric model with
Weibull distribution, which is the most common model used
in parametric survival analysis. In this model, S(t) and h(t)
are parametrized by two parameters of Weibull distribution,
namely the shape parameter p and the scale parameter λ. The
state-of-the-art technique to protect privacy in parametric sur-
vival analysis is the work from O’Keefe et al. [6] which pro-
posed to randomly sample 95% of the datasets for estimation.
The estimated parameters of the Weibull distribution are then
rounded to protect the privacy of individuals in the datasets.
However, the proposed technique has no rigorous control on
how much confidential information may be leaking to the
public. As far as we know, this is the only work focusing on
privacy-preserving techniques for parametric survival analysis.

Our work aims to propose mechanisms for estimating
parametric models under the formal protection of differen-
tial privacy, which is the state-of-the-art privacy-preserving
technique. Differential privacy is a mathematical definition of
privacy which guarantees that the addition or removal of any
individual in the dataset cannot gradually change the proba-
bility distribution of the output. Therefore, it prevents anyone
including the adversary from learning about the individuals in
the dataset. Let D be a dataset, and each row in the dataset D is
a record of an individual. The distance between two datasets
D and D′, denoted as d(D,D′), is the number of different
rows between D and D′. And two datasets are adjacent to
each other if the distance between them is equal to 1. The
mathematical definition of differential privacy is as follows.

Definition 1 (Differential privacy [7]). A mechanism (or
function) M is ε−differentially private if for any pair of
adjacent datasets D and D′, and for any value x:

Pr [M(D) = x] ≤ eε · Pr [M(D′) = x] , (1)

where ε is the privacy budget of M.

The privacy budget ε is a quantitative measurement on how
much privacy of the individuals in the dataset is consumed by
M when M(D) is published and available to everyone.
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In this paper, we propose a two-step approach to estimate
the parameters p and λ of Weibull distribution privately.
First, we propose Local-Sensitivity-mechanism-for-p (LSP), a
mechanism to estimate the value of p under the protection
of differential privacy. LSP exploits the properties of local
sensitivity, which is basically the sensitivity of p on adjacent
datasets of the actual dataset D, to estimate p with high
precision. Then, we propose Two-Laplace-mechanism-for-λ
(TLL), a mechanism to estimate the value of λ under the
protection of differential privacy. TLL uses the estimated
value of p from LSP and applies two Laplace mechanisms
independently to estimate λ with high precision.

The contributions of our work can be summarized as
follows:
• We propose two private mechanisms, LSP and TLL, for

publishing the parameters p and λ of Weibull distribution
for parametric survival analysis. We prove that the two
mechanisms satisfy the definition of differential privacy.

• We show that the proposed mechanisms outperform other
differentially private techniques in terms of median ab-
solute error (MdAE) on four real datasets. In addition,
our proposed mechanisms can produce meaningful output
even at very low privacy budgets.

Table I lists the notations along with their descriptions used
in this paper. The rest of the paper is organized as follows. In
Section II, we review the related work on differential privacy
and privacy-preserving survival analysis. In Section III, we for-
mally introduce the parametric model with Weibull distribution
and derive the system of equations used to estimate Weibull’s
parameters. In Section IV, we present our proposed solution.
In Section V, we present the proof of privacy protection. We
discuss the experimental results in Section VI. We conclude
the paper in Section VII.

II. RELATED WORK

Differential privacy [8] is a cryptography-based privacy
framework which has been extensively studied in recent years.
Dwork et al. [7] proposed the Laplace mechanism which
calibrates noise to the global sensitivity of the output. Mc-
Sherry and Talwar [9] proposed the exponential mechanism,
which is commonly used as a general framework for many
differentially private mechanisms [10]–[12]. Nissim et al. [13]
proposed smooth sensitivity which calibrates the noise to an
upper bound of the local sensitivity of the dataset. Zhang et
al. [12] proposed to apply local sensitivity to the exponential
mechanism for graph counting problems.

For survival analysis, O’Keefe et al. [6] showed the possibil-
ity in leaking personal information from the outputs of survival
analysis queries to database system, and then proposed many
techniques in order to protect the privacy. For non-parametric
models, they proposed to smooth the survival plot and add a
small amount of noise to the result. For parametric models
and semi-parametric models, they proposed to sample 95%
of the dataset with robust estimators, and then round the
estimated results. In fact, these privacy-preserving techniques

TABLE I: Notation.

d(D,D′) Distance between two datasets
ti Time until the event of interest occurs
di Censoring indicator
S(t) The survival function
h(t) The hazard function

Pr[X] The probability of X
M Differentially private mechanism
ε Privacy budget

S(k)(D) Boundary at distance k computed on dataset D
∆f The sensitivity of f
U(p,D) The utility function on dataset D

Laplace(s) A zero-mean random variable with pdf(x; s) =
1
2s

exp (−|x|/s)
K Number of rungs in the ladder

X ∝ Y X equals Y times a constant

are based on the previous work from the field of statistical
disclosure control [14]–[17]. Besides, there are also other
privacy-preservation techniques for specific models in survival
analysis. Fung et al. [18], [19] proposed to use a random linear
kernel in Cox regression which is then applied to lung cancer
survival analysis. Chen and Zhong [20] proposed a privacy-
preserving model for comparing survival curves using the log-
rank test.

III. PARAMETRIC MODEL

Let T be a random variable representing the time until an
event of interest occurs. Two characteristic functions of T are
the survival function and the hazard function.

Definition 2 (Survival function [21]). S(t) is the probability
of survival during the time interval [0, t].

S(t) = Pr [T > t] . (2)

Definition 3 (Hazard function [21]). The hazard function h(t)
is the risk of death at time t.

h(t) = lim
∆t→0

Pr [t ≤ T < t+ ∆t | T ≥ t]
∆t

. (3)

This work focuses on a parametric model which assumes
that T follows the Weibull distribution with the following
cumulative distribution function:

cdf(t;λ, p) = 1− exp (− (t/λ)
p
) (t ≥ 0),

where p > 0 is the shape parameter and λ > 0 is the scale
parameter of the distribution. The Weibull distribution is used
as the underlying distribution of T due to its effectiveness
in representing survival processes. In fact, it is currently the
most common model used for parametric survival analysis. We
have S(t;λ, p) = exp (− (t/λ)

p
) and h(t;λ, p) = ptp−1/λp.

We apply this model to a dataset of n individuals, D =
{(ti, di) | i = 1 . . . n}, where ti is the survival time of ith

person and di is the death indicator. di = 1 indicates that
ith person is dead at time ti and di = 0 indicates that
ith person is alive at time ti, and the exact survival time
is censored (also known as right censoring). Here, we also



assume that for any i = 1 . . . n, ti is normalized to guarantee
ti ∈ [exp(−ω), 1], where ω > 0 is a hyper-parameter of our
problem. We will revisit ω later as it is needed for our solution.
To estimate the values of p and λ, the traditional method is the
maximum likelihood estimator (MLE) [22] which maximizes
the following log-likelihood function:

`(λ, p) = ln

n∏
i=1

h(ti;λ, p)
di · S(ti;λ, p)

=

n∑
i=1

{di · (ln p+ (p− 1) · ln ti − p lnλ)− tpi /λ
p} .

We can maximize `(λ, p) by setting the derivatives with
respect to λ and p equal to zero. We derive the following
system of equations:

∑
i t
p
i ln ti∑
i t
p
i

=
1

p
+

∑
i di ln ti∑
i di

, (4a)

λp =

∑
i t
p
i∑

i di
. (4b)

For methods without privacy protection, we could use the
Newton-Raphson method [23] to compute p as the root of
Equation (4a) and substitute that value into Equation (4b)
to get λ. However, as the values of p and λ are published
and available to the public, we implicitly leak the information
about the individuals in the dataset D as the values of p and
λ are derived from the values of ti’s and di’s. Moreover, the
MLE does not have a mechanism for controlling the amount
of leaked information when λ and p are published. Our work
aims to propose private mechanisms for estimating p and λ
with high accuracy, which also allow us to control the amount
of information to be leaked to the public.

IV. OUR SOLUTION

In this section, we present our approach which consists
of two steps. In the first step, we propose Local-Sensitivity-
mechanism-for-p (LSP), a private mechanism which allows
us to estimate the value of p as the root of Equation (4a).
In the second step, we propose Two-Laplace-mechanism-for-λ
(TLL), a private mechanism which uses the value of p from
LSP to estimate λ from Equation (4b). For each step, we will
spend ε/2 privacy budget. By the composability property of
differential privacy [24], it is guaranteed that the pair (λ, p) to
be published is ε−differentially private.

A. Local-Sensitivity Mechanism for Estimating p (LSP)

The proposed mechanism for estimating the shape parame-
ter p, LSP, is based on our experimental observation: for small
sized datasets, the estimated value of p from Equation (4a) can
fluctuate a lot when we switch from one dataset to its adjacent
datasets. However, for large sized and medium sized datasets,
the fluctuation is very little. This observation suggests that
techniques which are based on additive noise calibrated with
global sensitivity, i.e., Laplace mechanism, are not applicable.
Instead, our proposed LSP mechanism calibrates the noise
with local sensitivity of p. Local sensitivity can be understood

0 2 4 6
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p(D)

p

U
(p
,D

)

Fig. 1: An example of the utility function U(p,D). The utility
function has 6 rungs. The root of Equation (4a) on dataset D
is p(D), which is located at rung 0.

as the fluctuation of the output when we switch from the actual
dataset D to its adjacent datasets. It is different from the global
sensitivity which considers any pair of adjacent datasets. Local
sensitivity is first proposed by Kobbi et al. [13] and later
used by Jun et al. [12] on privately counting sub-graphs. Our
proposed LSP mechanism is an extension of Jun et al.’s idea
from the discrete domain into the real domain.

The LSP mechanism is constructed based on the exponen-
tial mechanism. We define a utility function U(p,D), which
is referred to as the usefulness of publishing the value p with
respect to the dataset D. Let ∆U be the sensitivity of the
function U(p,D), and for any pair of adjacent datasets D and
D′, we have:

∆U = max
p,D,D′:d(D,D′)=1

|U(p,D)− U(p,D′)|. (5)

The output of the exponential mechanism is sampled from the
following probability distribution:

Pr [M(D) = p] ∝ exp

(
ε · U(p,D)

2∆U

)
. (6)

It was proved that the output sampled from the above dis-
tribution is ε−differentially private (see [9] for the detailed
proof).

In fact, LSP defines a utility function U(p,D) with the
shape of a ladder as illustrated in Figure 1. Each rung of
the ladder is defined as the set of points where the root of
Equation (4a) is placed when we replace the actual dataset D
by a hypothetical dataset D(k) such that d(D,D(k)) ≤ −k,
where k is the rung’s level. For example, at rung level 0 we get
the exact value of p from Equation (4a) on dataset D; while
at rung level −1, the root of Equation (4a) on any adjacent
dataset of the dataset D is placed in the segment bounded by
two extremal points of p at which the values of the utility
function U(p,D) are equal to −1. However, it is very hard to
compute exactly the extremal points at each rung of the utility
function. Instead, we propose approximated intervals such that
the interval at each rung will contain extremal points. The
mathematical definition of these intervals are as follows.



Definition 4 (Local-Sensitivity Interval (LSI) at distance k).
The interval S(k)(D) = [l(k)(D), u(k)(D)] is the local-
sensitivity interval at distance k of parameter p if and only
if for any dataset D(k) such that d(D,D(k)) ≤ k, then
p(D(k)) ∈ S(k)(D), where p(D(k)) denotes the root of
Equation (4a) on dataset D(k).

By constructing the utility function U(p,D) as a ladder of
rungs created by intervals [l(k)(D), u(k)(D)], we will prove in
Section V that the sensitivity of U(p,D) is equal to 1. This
will consequently prove that our mechanism is differentially
private. However, we need a method to compute LSI first.

1) Computing the LSI at distance k: For computing LSI,
we introduce the boundary functions which are the upper
bounds (resp., lower bounds) of the left hand side, LHS,
(resp., right hand side, RHS) of Equation (4a). We pick these
boundary functions to guarantee that the LHS and the RHS of
Equation (4a) are always bounded by the boundary functions
when we apply Equation (4a) to any hypothetical dataset
D(k) at distance k to the actual dataset D. Consequently,
this property will guarantee that the root of Equation (4a) on
D(k) is also bounded by the intersections of these boundary
functions. Let f(p,D(k)) and g(p,D(k)) be the LHS and the
RHS of Equation (4a) on dataset D(k), e be the base of the
natural logarithm, and t∗i be the ith smallest survival time in
the dataset. We can bound f(p,D(k)) and g(p,D(k)) by four
families of functions:

fkL(p,D) =

∑
i t
p
i ln ti − k

ep∑n−k
i=1 (t∗i )

p
,

fkU (p,D) =

∑
i t
p
i ln ti + k

ep∑n
i=1 t

p
i + k

,

gkL(p,D) =
1

p
+

∑
i di ln ti − kω∑

i di − k
,

gkU (p,D) =
1

p
+

∑
i di ln ti + kω∑

i di + k
.

The function fkL(p,D) (resp., fkU (p,D)) is chosen to be
the lower bound (resp., upper bound) of f(p,D(k)). These
functions are derived from the fact that the minimum value of
the function h(t) = tp ln t for a fixed p and t ∈ [exp(−ω), 1]
is − 1

ep . The function gkL(p,D) (resp., gkU (p,D)) is the lower
bound (resp., upper bound) of g(p,D(k)). This is from the fact
that the minimum value of k(t) = ln t for t ∈ [exp(−ω), 1]
is −ω. Our observation is that the estimation of p on D(k),
referred as pC , is bounded by an interval [pA, pB ], where pA
is the root of equation fkU (p,D) = gkL(p,D) and pB is the
root of equation fkL(p,D) = gkU (p,D). This observation is
illustrated in Figure 2.

Algorithm 1 computes the lower bounds and upper bounds
of p. At Line 1, we compute the exact solution of Equation (4a)
on dataset D and use this value as the first lower bound and
upper bound. The for loop at Lines 2-5 gives the K rungs
defined by the pairs of lower bounds l(i) and upper bounds
u(i), where K is a hyper-parameter of the solution which
will be decided based on the trade-off between accuracy and

0.5 1 1.5 2 2.5
−4

−3

−2

−1

C
B

A

Node

gkL(p)

Node

gkU (p)

Node

fkL(p)

Node

fkU (p)

p

g(p,D(k))

f(p,D(k))

Fig. 2: The estimated value of p on dataset D(k) is determined
by the intersection C of two curves f(p,D(k)) and g(p,D(k)).
The p-coordinate of point C is bounded by the p-coordinate
of point A and the p-coordinate of point B where point A is
the intersection between fkU (p,D) and gkL(p,D); and point B
is the intersection between fkL(p,D) and gkU (p,D).

Algorithm 1 Compute LSIs

Input: Dataset D, number of rungs K
Output: lower bounds l, upper bounds u
Requirement: 0 ≤ p ≤ γ

1: l(0) = u(0) = root of Equation (4a)
2: for i = 1 . . .K do
3: l(i) = root of equation fkU (p) = gkL(p)
4: u(i) = root of equation fkL(p) = gkU (p)
5: end for
6: l(K+1) = 0, u(K+1) = γ
7: return l, u

runtime. In detail, we use the Newton-Raphson method to
compute the roots of equations at Lines 3-4. The floor rung is
given at Line 6 to guarantee that all values of p are contained in
the interval [0, γ], where the hyper-parameter γ will be decided
based on the nature of the survival analysis problem. Line 7
returns all the lower bounds and upper bounds of LSIs in two
lists l and u.

2) Publishing the value of p by exponential mechanism:
LSP uses the exponential mechanism as the framework to
estimate the value of p. We define the following utility function
which is based on LSI S(k)(D) computed from the previous
step.

Definition 5 (Ladder-shaped utility function). The ladder-
shaped utility function U(p,D) is defined as:

U(p,D) = −k iff p ∈
[
l(k)(D), l(k−1)(D)

)
∪(

u(k−1)(D), u(k)(D)
]
, (7)

where k = 1 . . . (K + 1).

From the definition of the utility function, we propose the
LSP mechanism (Algorithm 2) for estimating the value of p.



Algorithm 2 Local-Sensitivity Mechanism for p (LSP)

Input: Dataset D, number of rungs K, privacy budget ε/2,
lower bounds l, upper bounds u
Output: p

1: for i = 1 . . .K + 1 do
2: level(i) =

[
l(i), l(i−1)

)
∪
(
u(i−1), u(i)

]
3: length(i) = u(i) − u(i−1) + l(i−1) − l(i)
4: weight(i) = length(i) · exp

(
−i ε4

)
5: end for
6: Sampling a level from distribution: Pr[level(i)] =

weight(i)

sum(weight)
7: return a value of p sampling from uniform distribution

over the chosen level at Line 6

Algorithm 2 draws a randomized value of p from a proba-
bility density function which is constructed from the ladder-
shaped utility function. Line 2 in Algorithm 2 specifies level(i)

as the union of two intervals in the ith rung of the utility
function. The values of p in level(i) share the same probability
density exp(−iε/4). The probability at level i is accumulated
in weight(i) at Line 4. Line 6 draws a random rung from its
weights and Line 7 draws a randomly uniform value of p from
the chosen rung at Line 6. In Section V, we will prove that
the LSP mechanism is ε/2−differentially private.

B. Two-Laplace Mechanism for Estimating λ (TLL)

In order to estimate the scale parameter λ, we propose Two-
laplace-mechanism-for-λ (TLL), which is based on the Laplace
mechanism proposed by Dwork et al. [7]. Laplace mechanism
is a simple mechanism for achieving differential privacy by
calibrating the additive noise to the global sensitivity of the
result. Let’s assume that we want to publish the value of a
function f(·) which takes the dataset as the input and returns
a real value. The global sensitivity of function f(·) is

∆f = max
D,D′:d(D,D′)=1

|f(D)− f(D′)|,

where (D,D′) is any pair of adjacent datasets. Laplace mecha-
nismM(D) returns a randomized version of f(D) by adding
Laplacian noise, M(D) = f(D) + Laplace (∆f/ε) , where
Laplace (∆f/ε) is a random Laplacian variable It was proved
that M is ε−differentially private (see [7] for the proof).

We observe that for small datasets, the value of λ = p

√∑
i t

p
i∑

i di
can vary a lot between adjacent datasets. Therefore, we cannot
apply the Laplace mechanism to λ directly because its global
sensitivity is too large. Since the global sensitivities of

∑
i di

and
∑
i t
p
i are equal to 1, instead of adding noise to λ directly,

our proposed TLL mechanism spends ε/4 privacy budget to
publish

∑
i di and another ε/4 privacy budget to publish∑

i t
p
i . By the composability property of differential privacy,

TLL is ε/2-differentially private. The formal proof is given in
Section V.

Algorithm 3 gives the proposed TLL mechanism. Lines 1-
2 in Algorithm 3 compute the two quantities δ and τ by
adding independent Laplacian noises to

∑
i di and

∑
i t
p
i .

Algorithm 3 Two-Laplace Mechanism for λ (TLL)

Input: Dataset D, privacy budget ε/2, p
Output: λ

1: Compute δ =
∑n
i=1 di + Laplace(4/ε)

2: Compute τ =
∑n
i=1 t

p
i + Laplace(4/ε)

3: Get λ = p
√
τ/δ

Line 3 in Algorithm 3 returns the value of λ as derived from
Equation (4b).

V. PROOF OF PRIVACY PROTECTION

A. Proof for the Proposed LSP Mechanism

In order to prove the differentially private protection of the
LSP mechanism, we need to introduce a constraint on the
LSI S(k)(D). We will use this constraint later to prove that
the sensitivity of the utility function is equal to 1.

Definition 6 (Ladder constraint). Local-sensitivity intervals
S(k)(D) are ladder local-sensitivity intervals if and only if
S(k−1)(D) ⊂ S(k)(D) and for any pair of adjacent datasets
D and D′, S(k)(D) ⊂ S(k+1)(D′).

We now prove that the output of the first step in our solution
satisfies the ladder constraint.

Lemma 1. For any pair of adjacent datasets D and D′, we
have:
(a) gk+1

L (p,D′) ≤ gkL(p,D) and gkU (p,D) ≤ gk+1
U (p,D′),

and
(b) fkL(p,D) ≥ fk+1

L (p,D′) and fkU (p,D) ≤ fk+1
U (p,D′).

Proof: (a) We have gkL(p,D) − gk+1
L (p,D′) ≥ 0 and

gkU (p,D) − gk+1
U (p,D′) ≤ 0. Therefore, gk+1

L (p,D′) ≤
gkL(p,D) and gkU (p,D) ≤ gk+1

U (p,D′).
(b) We have fkL(p,D) − fk+1

L (p,D′) ≥ 0 and fkU (p,D) −
fk+1
U (p,D′) ≤ 0. Therefore, fkL(p,D) ≥ fk+1

L (p,D′) and
fkU (p,D) ≤ fk+1

U (p,D′).

Theorem 1. Let Sk(D) = [l(k)(D), u(k)(D)], then
(a) S(k−1)(D) ⊂ S(k)(D), and
(b) S(k)(D) ⊂ Sk+1(D′).

Proof: (a) We have fk−1
U (p,D) ≤ fKU (p,D) and

gk−1
L (p,D) ≥ gkL(p,D), and gk−1

L (p,D) and gkL(p,D) are
non-increasing functions. Thus, we have l(k−1)(D) ≥ l(k)(D).
We also have fk−1

L (p,D) ≤ fkL(p,D) and gk−1
U (p,D) ≥

gkU (p,D), and gk−1
U (p,D) and gkU (p,D) are non-increasing

functions. Thus, we have u(k−1)(D) ≤ u(k)(D). Therefore,
Sk−1(D) ⊂ Sk(D).

(b) By Lemma 1 and similar arguments as (a), we have
l(k)(D) ≥ l(k+1)(D′) and u(k)(D) ≤ u(k+1)(D′). Therefore,
Sk(D) ⊂ Sk+1(D′).

Lemma 2. If p ∈ S(k)(D), then −U(p,D) ≤ k.

Proof: By the definition of U(·), if −U(p,D) = h, then p ∈
S(h)(D) and p /∈ S(h−1)(D). By the ladder constraint, we
have S(i)(D) ⊂ S(h−1)(D) for any i < h − 1. Therefore, if
p /∈ S(h−1)(D), then p /∈ S(i)(D) for any i ≤ h− 1. In other



TABLE II: Datasets used in the experiments.

Dataset Size #uncensored Description

FL 7874 2169 The dataset on the relationship between serum free light chain (FLC) and mortality.

TB 16116 1761 The Medical Birth Registry of Norway on the time between second and third births.

WT 21685 18615 The dataset on the unemployment time of people in Germany.

SB 53558 16341 The Medical Birth Registry of Norway on the time between the first and second births.

words, if −U(p,D) = h, then p /∈ S(i)(D) for any i ≤ h− 1.
Now assuming h > k, from the above argument it implies that
p /∈ S(k). This contradicts with the assumption of the lemma.
Therefore, the lemma is proven by contradiction.

Lemma 3. The sensitivity of utility function U(p,D) is 1.

max
p,D,D′:d(D,D′)=1

|U(p,D)− U(p,D′)| ≤ 1.

Proof: For simplicity, let k be the short form for −U(p,D) and
h be the short form for −U(p,D′). To prove the lemma, we
need to prove that k−1 ≤ h ≤ k+1. Assuming that h < k−1.
We have p ∈ S(h)(D′). By the ladder constraint, we have
S(h)(D′) ⊂ S(h+1)(D) ⊂ S(k−1)(D). So p ∈ S(k−1)(D).
Lemma 2 implies −U(p,D) ≤ k−1 and this contradicts with
the assumption that −U(p,D) = k. Hence, h ≥ k+ 1. By the
ladder constraint, we also have p ∈ S(k)(D) ⊂ S(k+1)(D′).
Finally, from Lemma 2, we have h ≤ k + 1. Therefore, the
lemma is proven.

Theorem 2. LSP is ε/2−differentially private.

Proof: Lemma 3 claims that the sensitivity of the utility
function U(·) is equal to 1. Hence, LSP is ε/2−differentially
private by the property of the exponential mechanism.

B. Proof for the Proposed TLL Mechanism

Theorem 3. TLL is ε/2−differentially private.

Proof: The global sensitivity of
∑
i di is equal to 1 be-

cause di ∈ {0, 1}. Therefore, the value δ in Algorithm 3
is ε/4−differentially private. We have ti ∈ [0, 1], hence
tpi ∈ [0, 1] for p > 0. Therefore, the global sensitivity of∑
i t
p
i is equal to 1. Consequently, the value τ in Algorithm 3

is ε/4−differentially private. By the composability property of
differential privacy, λ = p

√
τ/δ is ε/2−differentially private.

VI. PERFORMANCE EVALUATION

A. Experiment Setup

Datasets. We use four real datasets in the experiments. Table II
gives a summary of these datasets.
• The FLchain dataset (FL) - It is obtained from a study

on the association of the serum free light chain with
higher death rates [25], [26]. The survival time of a
patient is measured in days from enrollment until death.
The censored cases are patients who are still alive at the
last contact.

• The time-to-second-birth (SB) and time-to-third-birth
(TB) datasets - They are obtained from The Medical
Birth Registry of Norway [27]. The survival time is the
time between the first and second births, and between the
second and third births respectively. The censored cases
are women who do not have the second birth, and the
third birth respectively, at the time the data are collected.

• The Wichert dataset (WT) - It contains records on
unemployment duration of people in Germany [28]. The
survival time is the duration of unemployment until
having a job again. The censored cases are the ones who
do not have a new job at the time the data are collected.

Evaluation metric. We use the median absolute error (MdAE)
for performance measurement. MdAE is defined as:

MdAE = median ({|xi − x∗|, i = 1 . . . t}) , (8)

where xi is an answer from private mechanism, x∗ is the exact
value obtained from the traditional MLE approach without
privacy protection and t is the number of tries. We use
MdAE instead of the commonly used mean squared error
(MSE) because MdAE is more robust to outliers while MSE
is sensitive to outliers.

Baselines. We compare our proposed mechanisms LSP and
TLL with the Laplace mechanism and the sample-and-
aggregate (SAA) mechanism [29], [30].
• The Laplace mechanism - It adds Laplacian noise to the

estimated values of p and λ independently. Each of them
has the global sensitivity of γ (0 ≤ λ, p ≤ γ).

• The SAA mechanism - It divides the dataset into par-
titions of random non-overlap subsets, and uses MLE
approach to estimate the parameters on these subsets.
The estimated parameters are then aggregated together to
derive the estimation of the whole dataset. The aggregated
results are published by applying the Laplace mechanism.
See [29] for the details of the SAA mechanism.

Hyper-parameter settings. All experiments are repeated with
t = 500 times for statistical stability. The privacy budget
consumed by each mechanism varies from 0.05 to 1.6 for
evaluating the accuracy of the results with different privacy
budgets. Consequently, the total privacy budget ε consumed
by private mechanisms to publish both p and λ varies from
0.1 to 3.2. For the LSP mechanism, we set the number of
rungs K = 500. For the SAA mechanism, we set the number
of subsets such that each subset has 500 records on average.
We set the upper bound γ = 10 for the values of p and λ.
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Fig. 3: The median absolute errors (MdAE) on estimating the value of the shape parameter p.
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Fig. 4: The median absolute errors (MdAE) on estimating the value of the scale parameter λ.

Moreover, we also set ω = 6. As such, we normalize all the
survival times into the interval [exp(−6), 1].

B. Experimental Results
1) Performance on estimating the shape parameter p:

Figure 3 shows the performance results of the Laplace mecha-
nism, the SAA mechanism and our proposed LSP mechanism
on estimating the parameter p.

For the dataset FL, LSP significantly outperforms the
Laplace and SAA mechanisms at all levels of privacy budgets.
The MdAE of LSP is 100 times smaller than that of SAA
and about 1500 times smaller than that of Laplace. Even at
the smallest privacy budget 0.05, the MdAE of LSP is only
0.1. In other words, at privacy budget 0.05 we should expect
the output of LSP is about 0.1 away from the exact output
from the MLE. For the dataset TB, LSP still outperforms
the Laplace and SAA mechanisms at all levels of privacy
budgets. The MdAE of LSP is 7 to 13 times smaller than that
of SAA. Even though the size of TB is 2 times bigger than
the size of FL, the number of uncensored records of TB is
smaller than the number of uncensored records of FL. Due
to the smaller number of uncensored records, the estimated
value of p tends to be more sensitive to the change in the
dataset. This causes the decrease in performance on TB when
compared with FL. For the dataset WT, our proposed LSP
mechanism again significantly outperforms the Laplace and
SAA mechanisms at all levels of privacy budgets. The MdAE
of LSP is 300 times smaller than that of SAA. For the dataset

SB, LSP still outperforms the Laplace and SAA mechanisms.
Even though SB is bigger in size, it has a smaller number of
uncensored records than WT. Therefore, the performance on
SB is not as good as the performance on WT.

Overall, the Laplace mechanism performs quite consis-
tently throughout the four datasets. The SAA mechanism tends
to have better performance on bigger datasets. SB has the size
about 6 times bigger than FL. Meanwhile, the performance of
SAA on SB is also about 6 times better than the performance
on FL. LSP has the best performance with useful output in
all datasets, even at very small privacy budget, i.e., 0.05.
However, the performance of the LSP mechanism depends
on the number of uncensored records more than the actual
size of the datasets.

2) Performance on estimating the scale parameter λ:
Figure 4 shows the performance results of the Laplace mech-
anism, the SAA mechanism and our proposed TLL mechanism
on estimating the parameter λ.

For the dataset FL, TLL outperforms the Laplace and SAA
mechanisms. The MdAE of TLL is about 30 times smaller than
that of SAA and about 450 times smaller than that of Laplace.
At the lowest privacy budget 0.05, the MdAE of TLL is 0.297
which is still acceptable because the exact value of λ on this
dataset is 2.6098. In other words, the relative error in this case
is about 11%. For the dataset TB, TLL still outperforms the
Laplace and SAA mechanisms. The performance of TLL on
TB is about 3 times better than its performance on FL. For



the dataset WT, TLL significantly outperforms the Laplace
and SAA mechanisms. The performance of TLL is about 3
orders of magnitude better than that of the SAA mechanism
and more than 4 orders of magnitude better than that of the
Laplace mechanism. The increase in accuracy on this dataset is
mainly due to the very accurate estimated value of p from LSP
and the bigger dataset size. These enable TTL to estimate λ
with very high accuracy. For the dataset SB, TLL outperforms
the other two mechanisms even though its performance is not
as good as the performance on WT. The MdAE of TLL is
about 300 times smaller than that of the SAA mechanism.

In summary, the Laplace mechanism has consistent perfor-
mance throughout the four datasets. The SAA mechanism has
improved performance for bigger datasets. Our proposed TLL
mechanism outperforms both SAA and Laplace mechanisms
on all datasets and privacy budgets. Moreover, TLL still
outputs meaningful answers even at small privacy budgets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed differential private mecha-
nisms for parametric survival analysis with Weibull distribu-
tion. Our mechanisms exploit the property of local sensitivity
to publish answers with high accuracy. We prove that our
mechanisms guarantee privacy protection under differential
privacy. The experiments on real datasets show that the per-
formance of our mechanisms are better than the current state-
of-the-art techniques and able to publish meaningful answers.
This work is only the first step to explore the applications
of differential privacy to protect privacy in survival analysis.
For further work, we intend to investigate new mechanisms
for parametric survival analysis with other probability distri-
butions such as the log-normal distribution, and explore the
possibilities of protecting Cox regression under differential
privacy.
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