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Abstract—In this work we introduce a fast big data approach
for road incident hot spot identification using Apache Spark.
We implement an existing immuno-inspired mechanism, namely
SeleSup, as a series of MapReduce-like operations. SeleSup is
composed of a number of iterations that remove data redun-
dancies and result in the detection of areas of high likelihood
of vehicles incidents. It has been successfully applied to large
datasets, however, as the size of the data increases to millions
of instances, its performance drops significantly. Our objective
therefore is to re-conceptualise the method for big data. In this
paper we present the new implementation, the challenges faced
when converting the method for the Apache Spark platform as
well as the outcomes obtained. For our experiments we employ
a large dataset containing hundreds of thousands of Heavy
Good Vehicles incidents, collected via telematics. Results show
a significant improvement in performance with no detriment to
the accuracy of the method.

I. INTRODUCTION

Transportation research mostly aims at establishing the
means for improving driving performance, economy and
safety [1]. Logistics complexity coupled with large transport
networks has required the widespread use of sensors, tracking
devices, and mobile communication equipment in order to
enable such developments [2]. These devices constantly gather
information of vehicles and their journeys. This includes,
for instance, safety hazards, vehicle diagnostics and driving
behaviour [3], [4]. Given the velocity by which large volumes
of data are produced, the challenge is to establish effective
tools for fast processing and analysis so that the information
can be employed by transport stake holders in a timely manner.
As data availability increases, opportunities and challenges to
extract useful information arise. Our interest lies in addressing
the problem of Hot Spot Identification (HSID) for traffic
incidents and accidents for very large datasets.

Current literature does not effectively address the hot spot
problem for big data. Identified gaps include (i) the number
of instances investigated is very limited; (ii) experiments are
mostly conducted within a small number of routes and jour-
neys and/or considers simulated data; and (iii) current methods
show a significant decrease in performance as the dataset
size increases. In an attempt to overcome these limitations,
Figueredo et al. [5] introduces an immuno-inspired algorithm
for HSID in roads for larger datasets. The datasets employed

include thousands of data points collected across the UK via
telematics. Although the solution is effectively implemented
for the case studies, it is observed that the approach’s process-
ing time increases significantly once millions of data points are
considered.

Fortunately, advances in cloud-based technologies provide
us with distributed environments to alleviate the computational
complexity and the management issues with big datasets.
Hadoop MapReduce [6] [7] tackles data-intensive applications
and employs a distributed file system, which allows for the
parallelisation of multiple jobs across a cluster of computers,
in fault-tolerant environment [8]. Its limitations however occur
when there is the need to share data across multiple steps.
This has therefore become an important restriction to iterative
algorithms or interactive queries. To address these limitations,
Apache Spark [9] has been introduced and consolidated as
a platform to cache data into main memory and query it
repeatedly.

In this work, we devise a fast big data approach for
HSID implemented using Apache Spark. We formulate the
mechanism proposed in [5] as a series of MapReduce-like
operations in such a way that our design provides exactly the
same behaviour as the original algorithm. Our experiments are
conducted with the same datasets as in [5] and results show
a considerable improvement in performance, which allows for
far more data to be processed. In the next section we introduce
the details of the problem, challenges and describe the previous
work. Subsequently, we present the basic concepts of the big
data technologies employed in this work. In Section IV we
introduce the implementation details of our solution. Then,
Section V presents experimental evaluation and discusses
the results obtained. Finally, we draw the conclusions and
opportunities for future research.

II. PROBLEM DESCRIPTION

The problem regards the determination of incident hot spots
from large telematics data. Hot spots can be defined as those
areas where there is a high likelihood of incident occurrence.
The determination of road hot spots assists stake holders to
effectively manage risks of danger to drivers and vehicles. Hot
spots are generally determined by road experts or via analysis



of historical data. However, as very large datasets are consid-
ered, several challenges to establish effective determination of
hot spots take place. For illustration purposes, let us consider
the scenarios of Figure 1. In the figure, the red circles represent
incident instances. The hot spots should indicate the location
of groups of points within a distance range that share similar
properties (such as location, direction of the road, angle of
the road, etc.). Therefore groupings such as those established
by the green circles in the figure do not produce valid hot
spots. The blue circles, instead are more likely to represent
acceptable solutions. The pink circle is unlikely to be a hot
spot, as it encompasses only one incident.

Fig. 1. Examples of possible hot spot clusters. Clusters indicated in blue
represent good candidate solutions. Clusters inside pink and green lines
represent invalid solutions. Adapted from Figueredo et al. [5].

From Figure 1, several factors to establish an effective hot
spot detector should be considered. Once a distance range is
defined for the hot spot clusters, the solution is required to be
accurate and complete; this means that all existing hot spots
should be determined. Furthermore, the hot spot cluster centres
should indicate with a certain degree of precision those areas
where incidents take place frequently. In addition, it is required
that the solution is general and adaptable to different types of
incidents. In our case studies, for instance, we consider three
different types of incidents (speed, harsh braking and harsh
corners). These incidents have different characteristics and are
likely to occur in distinct parts of the road (e.g., harsh braking
and harsh corners are likely to happen in roundabouts or when
there is a bend in the road, while speeding incidents occur
with higher frequency in motorways). As more incident data
is gathered, the method should be robust enough to modify
the hot spot topology to a more current scenario, based on
new information. The approach should also be noise-tolerant.
Preferably, due to the large volumes of data considered and
the industrial application, it is desirable that the solution is
relatively low in complexity and fast to run.

For our case study, we investigate a large dataset containing
1,000,612 incidents collected for three HGV companies over
a three-month period in 2015, across the UK. The data is
distributed between incidents, as follows: 773,323 speeding
incidents (3139 speed and 770,184 contextual speed); 213,697
harsh braking incidents; 13,592 harsh cornering incidents.

A. Related work on Hot Spot Identification

HSID is mostly addressed by statistical methods assisted by
historical data. Government and public [10] also contribute to
the knowledge, however it also results in inaccuracies [11].
Two main reviews compare HSID methods. Montella [12]
investigates crash frequency, equivalent property damage only
crash frequency, crash rate, proportion method, Empirical
Bayes (EB) [13], EB estimate of severe-crash frequency (EBs)
and the potential for improvement (PFI) method for HSID.
In crash rate, locations are sorted by accident frequencies
divided by the length of road segments. EDPO ranks accidents
according to damage, costs and injuries. Crash rate normalises
crash frequency per traffic volume. The proportion method
prioritises sites depending on their crash probabilities. In
EB, the estimation of the safety of a spot is obtained using
the history of crashes and the expected crashes from safety
performance functions for similar sites. PFI is the difference
between the EB expected accident frequency and a crash
prediction model. Montella’s case study employs geometric,
traffic and 2245 crash records from 2001-2005 for a motorway
in Italy. 646 segments are considered. The author’s conclude
that the EB method is more suitable to detect priority locations.
Similarly, Cheng and Washington [14] employ simulation data
to evaluate ranking, confidence interval and EB, and also
conclude that EB performs better.

Anderson [15] introduces a kernel density estimation (KDE)
for HSID with clustering to determine classes of hot spots and
their causal indicators. The author assumes that road accidents
are influenced by their density in a specific area. The KDE
is therefore employed to establish those areas of high risk
of incidents and their spread, which are further categorised
after clustering. London traffic accident data (1999-2003) is
employed. The main limitation of the KDE, as pointed out
by the author is that it treats discrete events as a continuous
surface. This generalisation might incur inaccuracies, as not
all adjacent events necessarily belong to the same hot spots.
Bı́l et al. improves the KDE cluster detection to overcome
the lack of confidence in the accuracy of the results. The data
used consists of 7121 traffic incidents, collected via GPS, in
eastern Czech Republic. The analysis is performed on primary
roads separated into 713 sections, without intersections. Monte
Carlo is incorporated to create repeated random simulations
with variations in the incident locations. The work is limited,
however, as areas in the map are excluded and the roads
are segmented. This technique requires further investigation
to assess its applicability to big data.

Effati et al. [16] introduces a geospatial neuro-fuzzy ap-
proach for HSID. Historical data along with roadway infor-
mation is used to calibrate and validate the model. Their
methodology employs roadway geometry and environmental
factors, which are processed through an adaptive neuro-fuzzy
inference system. Their case study considers layers of data
regarding a highway in the North of Teheran. The correlation
between calculated hazardous zones and hot spots obtained
is verified; further, additional hazardous zones are spotted.



Although successfully applied to the case study, to the best
of our knowledge the method has not yet been exploited
for larger datasets. In addition, it requires several layers of
information provided by different stakeholders, which makes
the generalisation of the method far more laborious.

El-Basyouny and Sayed [17] proposes a depth-based mul-
tivariate method using a full Bayes approach. They employ
236 signalized intersections from Vancouver with collision and
traffic data (2001-2008). Data is split in 2001-2005 for ranking
and 2006-2008 for evaluation. Markov Chains and Monte
Carlo are employed to obtain a set of full Bayes posterior
estimators on each multivariate Poisson log-normal model.
Dangerous intersections are detected after applying a depth
threshold, which value depends on funding available for safety
improvement. The model is compared to analogous methods
based on depths of accident frequency (AF). Results suggest
better results. This work is limited however to one dataset and
it requires further research in order to assess its applicability
to HSID.

From the literature it is possible to identify there is very
little research regarding generic methods for HSID with big
data. An attempt to tackle large data sets is found in the work
introduced by Figueredo et al. [5], as further discussed in
(Section IV) .

III. BIG DATA TECHNOLOGIES

MapReduce [7] was originally designed by Google in 2003
as a scalable data processing tool to run on commodity
hardware. It has become popular in its open-source implemen-
tation, called Apache Hadoop [18]. This platform transparently
processes data in a distributed cluster, relieving the user from
technical details, such as data partitioning, fault-tolerance and
job communication. Hadoop relies on its distributed file system
(HDFS) to tackle data-intensive application based on the
principle of data locality, which means that the computation
is placed near the data. There are tasks however for which
Hadoop MapReduce is not the most appropriate solution due
to the additional costs required for reusing data. This is the
case of interactive queries and online or iterative computing.

Among other platforms such as Haloop or Twister, Apache
Spark overcomes the drawbacks of Hadoop when dealing with
these tasks. Spark is a data processing framework layer on top
of the Hadoop ecosystem; it relies on the HDFS to preserve the
data locality principle. A Spark cluster is usually composed
of a driver/master node and a number of worker nodes, in
which the HDFS systems is setup. The key advantage of Spark
comes from a set of in-memory primitives that allows reuse
of data multiple times. The most well-known abstraction of
Spark is called Resilient Distributed Datasets (RDDs). This
is a distributed data structure that allows for computations in
parallel in a transparent way. RDDs can be cached in main
memory (of multiple nodes involved in the processing), so that
it makes easier and more efficient to reuse data. In addition,
Spark employs lazy evaluation, which allows the engine to
optimise consecutive data transformations without requiring
any action from the user. The partitioning of RDDs can also

be managed to optimise data placement. Spark is in continuous
development, as more efficient APIS, such as DataFrame
and Datasets are being designed to further accelerate data
processing.

IV. THE HOT SPOT IDENTIFICATION APPROACH

SeleSup is inspired by the Immune System self-regulation
mechanism, where only the fittest immune cells remain as part
of the body defense. It was introduced and further exploited
in [19]–[22] for instance selection and data classification. In
Figueredo et al. [5] the method is adapted to tackle HSID
for large datasets. It works by establishing a set of points
(suppressor set), which is meant to have the most significant
information in the data (in our case it is the set of hot spots).
This set size and its data points are initially defined randomly;
however, the self-adjustable, self-adapting character of the
method allows for the establishment of an optimal number of
hot spots, even when new data is acquired over time. The re-
maining incidents not contained in the suppressor set constitute
the set to be reduced, as they represent redundant information.
The method is well-suited to the hot spot problem, as for the
establishment of the hot spots there is no strong need for exact
precision in terms of location. As hot spots represent a region
of high likelihood of incidents, rather than a specific location
in the road (exact latitude and longitude), the indication of
the region is enough to solve the problem. In addition, the
simplicity of the method allows for fast processing and quick
deliver of results.

SeleSup pseudo-code applied to the hot spot problem is
shown in Algorithm 1. Initially, the centres of the hot spot
clusters are chosen randomly, according to a predefined size.
The candidate centres are part of the suppressor set. In
the first loop of the algorithm, candidate centres that are
redundant, that is, those belonging to the same hot spot region
are removed. Centres belong to the same region when their
distance is smaller than the predefined hot spot distance range.
In addition, depending on the objectives of the problem, other
constraints such as address, direction and angle of the road,
day of the week, time of the day can also be incorporated.
The second loop associates the remaining incidents (set to
be reduced) to the cluster centres, also based on distance.
Instances successfully assigned to a hot spot centre are re-
moved, as they are redundant in the system. Those incidents
that remain after the second loop in the set to be reduced are
then potential hot spots, as they are not close to any existing
hot spot centre. The final loop of the algorithm addresses those
incident points that were not in the range of a cluster centre
and removes possible redundancies within this set. At each
elimination stage, the remaining hot spots are associated with
a score (fitness value). This value indicates the number of
incidents that occurred in a certain hot spot cluster. This allows
for hot spot ranking and comparison. In addition the the hot
spot stores the date in which the last incident took place for
future hot spot topology updating. A more detailed explanation
of the algorithm is found in [5].



Algorithm 1: The SeleSup for Hot Spot Identification
inputs : Incident data, suppressor set size, mileage range for hot spot

forall SuppressorCells do fitness = 0;

STAGE 1
foreach Suppressor cell si from SuppressorCells do

SetOfRedundantSupressors ← suppressor cells within the similarity range of
si;

SuppressorCells ← SuppressorCells - SetOfRedundantSuppressors;
si’s fitness ← size(SetOfRedundantSuppressors);

STAGE 2
foreach rj from CellsToBeEliminated do

Nearest suppressor sk ← Find the SuppressorCell within the similarity
range of rj ;

if NearestSuppressor is not empty then
CellsToBeEliminated ← CellsToBeEliminated - rj ;
increase sK fitness;

STAGE 3
forall CellsToBeEliminated do fitness = 0;
if CellsToBeEliminated is not empty then

foreach rl from CellsToBeEliminated do
RedundantSet ← other cells from CellsToBeEliminated within

the mileage (and constraints) of rl);
CellsToBeEliminated ← CellsToBeEliminated - RedundantSet;
rl’s fitness ← size(RedundantSet);

SuppressorCells ← SuppressorCells +
CellsToBeEliminated;

Eliminate those SuppressorCells with fitness = 0;
Output the set of surviving SuppressorCells as the reduced set containing the hot

spots locations;

Although the method provided in Algorithm 1 is satisfactory
in terms of processing time for hundreds of thousands of data
points, as the data sizes approach millions of points, it lacks
scalability. The two main problems identified when dealing
with large sets of data points are (i) runtime: The complexity
of SeleSup to identify Hot Spots in a set with N data points is
quadratic (O(N2)), where the Haversine distance has the high-
est computational cost. When dealing with very big datasets,
the performance of the method therefore decays significantly;
and memory consumption: For a rapid computation of the
distances between data points, the SeleSup model requires
that all data to be loaded and stored in memory. For big data
this means that the available RAM memory limits are easily
exceeded. In addition, due to the processing time and memory
restrictions, it is harder to conduct a thorough study regarding
the stability and consistency of the method. Furthermore, the
differences in performance for different sizes of suppressor
sets have not yet been assessed. To overcome these limitations,
we therefore formulate the SeleSup HSID method as Spark
operations. The reasoning behind adopting Spark as big data
technology comes from the multiple iterations that SeleSup
needs to perform through the data, which as we stated before
fits better with Spark rather than Hadoop MapReduce. The
details of the implementation, as well as the results obtained
are discussed next.

A. The Spark-based Approach Adaptation

SeleSup has three stages for redundancy removal and de-
termination of the hot spots. From a data perspective, stages
1 and 3 (Algorithm 1) remove redundancies within the same
data subsets; Stage 2 eliminates redundancies of a larger set by

comparing it against a set of Suppressors. Algorithm 2 shows
the pseudo-code for the SeleSup Spark version. It focuses on
the required Spark operations for the three stages. We describe
the most significant instructions, which are enumerated from
1 to 11. The source code of this algorithm is available at
GitHub1.

Algorithm 2: SeleSup Spark-based Hot Spot Identification
Require: IncidentData; #Maps; #SuppressorSetSize; #MileageRange
1: incidentsRDD ← textFile(IncidentData, #Maps).zipWithIndex().cache()
2: SuppressorsCells ← incidentsRDD.takeSample(false, SuppressorSetSize)
3: CellsToBeEliminated ← incidentsRDD.filterNot(line → SuppressorsCells.Indexes.

contains(line.Index))
forall SuppressorCells do fitnessi = 0;
STAGE 1

4: RemoveRedundancies(SuppressorsCells) {Updating fitness accordingly}
STAGE 2

5: SuppressorsCells BC ← sc.broadcast(SuppressorsCells)
6: < CellsToBeEliminated, fitnessStage2 > ←

CellsToBeEliminated.mapPartitions(dataset ⇒
EliminateAndFitness(dataset,SuppressorsCells BC, MileageRange))

7: fitness = fitness + fitnessStage2.aggregate()
STAGE 3a

8: < CellsToBeEliminated, fitnessStage3a >=
CellsToBeEliminated.mapPartitions(dataset ⇒ RemoveRedundacies(dataset))

9: fitnessCellsToBeEliminated =fitnessStage3a.aggregate() STAGE 3b
10: for i = 0 to #Maps do
11: BC −Mapi ← broadcast(CellsToBeEliminated.getSplit(i))
12: CellsToBeEliminated ← CellsToBeEliminated.mapPartition(dataset →

CleaningFromPartion1toN(dataset, BC −Mapi, MileageRange,i))
13: end for

In the algorithm above, let IncidentData be the dataset
of incidents stored in the HDFS as a single file. This file
is composed of h HDFS blocks that can be examined from
any computing node. The algorithm starts off reading the
entire IncidentData set from HDFS as an RDD, denoted as
incidentsRDD, splitting the dataset into an user-defined num-
ber of #Map disjoint partitions (Instruction 1). This operation
spreads the data across the computing nodes, caching the
different subsets (Map1,Map2,...,Mapm) into main memory.
For simplicity, incidentsRDD is zipped with indexes (using
zipWithIndex() operation. Subsequently, we need to extract
a random subset from IncidentData to create the initial
SuppressorCells set. This is done according to a user-defined
parameter #SuppressorSetSize. We assume that this is a small
number, so that the SuppressorCells set can be stored in the
driver node without exceeding memory contritions. As we
show in our experiments (Section V), there is no need to
establish large values for this parameter, as the outcome of
the algorithm remains fairly similar.

The Spark action ‘takeSample’ randomly subsamples the
data and sends it to the driver node (Instruction 2). Once the
initial set of SuppressorCells is defined, we need to remove
those selected data points from the original incidentsRDD
to obtain a set of CellsToBeEliminated. To do so, we use a
filter transformation for removal according to their indexes
(Instruction 3). This a MapReduce-like operation that is run
in parallel and does not move any information back to the
driver node.

1https://github.com/triguero/Immune-HotSpot



Fig. 2. Stage 2: Eliminating redundant points in CellsToBeEliminated w.r.t. the SuppressorCells and compute the resulting fitness

Fig. 3. Stage 3: An iterative Spark approach to remove redundancies from the same dataset: CellsToBeEliminated. Note that in the plot y > z > q.

As detailed in the previous section, the first stage of this
algorithm consists of removing those candidate centres that
are redundant. In our implementation, we run this operation in
a sequential manner in the driver node rather than in parallel.
This set should be sufficiently small to be processed quickly in
the driver, without the need for parallelisation. This operation
however is the same as that performed in Stage 3 (implemented
in parallel), and therefore could be parallelised if necessary.

Algorithm 3: Map function to clean CellsToBeRemoved
and update fitness of SuppressorCells

Require: CellsToBeEliminatedi; #Miles; SuppressorCells (Broadcast)
forall SuppressorCells do fitness = 0;
foreach rj from CellsToBeEliminatedi do

Nearest suppressor sk ← Find the SuppressorCells within the similarity
range of rj ;
if NearestSuppressor is not empty then

CellsToBeEliminatedi ← CellsToBeEliminatedi - rj ;
increase sK fitness;

return < CellsToBeEliminatedi, fitness >

Stage 2 begins when we have both sets SuppressorCells (in
the driver node) and CellsToBeEliminated (spread across the
cluster of nodes as an RDD) ready; we have to find those
data points in CellsToBeEliminated that are suppressed by the

elements in SuppressorCells. In order to accomplish this task,
the SuppressorCells set needs to be available in all the nodes
involved in this computation. For this reason, we broadcast the
SuppressorCells set to all the computing nodes. The broadcast
function of Spark allows us to maintain a read-only variable
cached on the main memory of each machine rather than
copying this within each task. Note that this set of data points
is stored only once in each node independently of the number
of tasks executed in it. After that, a map phase starts over
the #Map partitions of CellsToBeEliminated to filter each of
these partitions out. The mapPartitions() transformation runs
the function defined in Algorithm 3 on each block of the
CellsToBeEliminated RDD, concurrently. This operation does
not only filter redundant data points from CellsToBeEliminated
but it also computes the fitness of SuppressorCells (i.e. number
of data points that a given cell from SuppressorCells has
suppressed) in each map partition. This means that the fitness
obtained in each map needs to be collected in the driver and
aggregated appropriately with the fitness achieved in the first
stage (See Instruction 7). It is important to point out that at this
stage, the CellsToBeEliminated set continues to be distributed
in the different nodes. Figure 2 shows a flowchart with the
parallelisation steps of this stage.



In the last stage the remaining elements of CellsToBeEl-
iminated need cleaning. We explore two alternatives in our
experiments. For the first alternative, assuming that the num-
ber of remaining elements in CellsToBeEliminated could be
considerably small at this stage, we collect the data from the
worker nodes to the driver node and apply the removal of
redundant elements in a sequential fashion (as performed in
stage 1). Secondly, as an option for those cases in which
at this stage the set of CellsToBeEliminated is still large,
we consider the following two parallel steps (Instructions
8-13). First, taking advantage that CellsToBeEliminated is
parallelised, we clean each single partition individually (In-
struction 8). This is not the same process originally defined
in Algorithm 1; however, it has the exact same behaviour.
We carry out this process by means of a map phase that
filters those data points that are redundant within the same
map partition. This step also carries the fitness associated to
the remaining CellsToBeEliminated. For the rest of elements
in CellsToBeEliminated, we compare the redundancy between
the data of the different partitions. That implies moving data
around and we want to minimise the impact of this operation.
We propose therefore to iteratively collect back to the driver
a partition of CellsToBeEliminated (from Map1 to Mapm)
and to broadcast it. Then we compare such partition (Mapi)
against the remaining partitions (∀j, j > i) (instructions 10-
13). We do not need to compare all partitions against each
other; instead, we compare the current partition i to the next
partitions (respecting the order). The point here is that after
every iteration of this loop, the entire CellsToBeEliminated
become smaller. To perform this stage properly, we have to
consider the fitness of the elements of CellsToBeEliminated.
Figure 3 summarises the main parallel operations applied to
CellsToBeEliminated. Next we investigate the performance of
both options.

V. EXPERIMENTS AND RESULTS

We employ our method to four real-world datasets of speed-
ing, harsh cornering, harsh braking and contextual speeding
incidents, ranging from three thousand incidents to more than
seven hundred thousand data points. The data refers to three
months of incidents collected via telematics. All datasets con-
tain the same attributes (latitude, longitude, course, address).
The mileage limit ranges for the hot spots clusters definition
are set to 0.5, 2 and 5 miles for speeding and contextual
speeding incidents; and 0.1, 0.2 and 0.5 mileage limit for
harsh braking and harsh cornering incidents. We have ran the
algorithm considering mileage limit, course and address as
constraints for the hot spot definition.

The experiments have been carried out in a single node with
an Intel(R) Xeon(R) CPU E5-1650 v4 processor (12 cores) at
3.60GHz, and 64 GB of RAM. In terms of software, we have
used the Cloudera’s open-source Apache Hadoop distribution
(Hadoop 2.6.0-cdh5.4.2) and Spark 1.6.2. In our experiments,
we have set a total number of 8 concurrent tasks.

First, we compare the SeleSup implemented in [5] against
our Spark-based solution (including parallelisation of Stage

Fig. 4. Results comparison for SeleSup SeleSup Spark implementations.
Figure (a) shows the results for SeleSup (red markers) and Figure (b) shows
the results for SeleSup Spark (green markers).
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Fig. 5. Number of Hot Spots identified (Fitness>10) w.r.t the initial
percentage of randomly selected suppressors. For each dataset, mileage limit
is indicated between brackets.

3). Note that our aim is not to establish an exhaustive runtime
comparison between the implementation from [5] (in Matlab)
and our model (in Scala and Spark). Instead, we want to
show the significant difference in time performance achieved
with the proposed scheme. The datasets, number of hot spots
(reduction set size) obtained and runtime are shown in Table I.
In the table we also show the number of hot spots with
fitness higher than zero, and those with fitness higher than
10. Figure 4 shows the hot spots identified by both SeleSup
(Figure 4(a)) and SeleSup Spark (Figure 4(b)) for harsh
braking with half a mile range around Cambridgeshire (UK).

As we have developed an exact parallelisation of the original
SeleSup algorithm, the results of the parallel and sequential
versions are expected to be very similar. Nevertheless, as the



TABLE I
COMPARATIVE RESULTS BETWEEN THE ORIGINAL IMPLEMENTATION IN MATLAB AND THE FULLY PARALLEL VERSION DESIGNED IN SPARK. NOTE THAT

TIME IS EXPRESSED AS HH:MM:SS

Data set Incidents Mileage
Methods’ performance

SeleSup HSID SeleSup Spark HSID
Fitness > 0 Fitness >10 Time Fitness > 0 Fitness >10 Time

speeding 3139
0.5 615 18 00:03:32 620 20 00:00:03
2 513 32 00:01:44 517 34 00:00:03
5 385 62 00:01:04 391 60 00:00:03

harsh cornering 13568
0.1 1939 191 00:38:10 1943 186 00:00:04
0.2 1937 202 00:33:34 1940 203 00:00:04
0.5 1903 211 00:31:13 1897 213 00:00:04

harsh braking 213697
0.1 30516 2897 08:34:45 30497 2895 00:02:30
0.2 29417 3244 07:02:44 29463 3228 00:01:47
0.5 26402 3704 05:06:24 26509 3655 00:01:03

contextual speeding 770184 2 23209 9998 20:38:47 23323 10002 00:01:07
5 16718 7550 13:45:51 16739 7556 00:00:55
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Fig. 6. Contextual Speed dataset: Runtime comparison across different initial SuppressorCells sizes

initial selection of the suppressor set is random, the number of
hot spots and their location can vary slightly. As the mileage
range increases, the number of hot spots reduces as each hot
spot represents a bigger region in the same road, address and
direction.

In terms of runtime, we can observe that the required time
of the sequential version with more than tens of thousands
of data points becomes prohibitive. Our new Spark proposed
solution is able to cope with even the largest dataset within a
reasonable amount of time.

In addition, the parallel design allows us to carry out a
more thorough study of the behaviour of the algorithm in
these datasets. We therefore asses the SeleSup HSID in terms
of stability and consistency. The only parameter associated to
SeleSup is the initial number of randomly selected suppressors
(#SuppressorSetSize). In Figure 5, we plot the number of iden-
tified hot spots (Fitness>10) according to different percentages

of initial suppressors (5, 10, 20, 30 and 40%). We can observe
that the algorithm is quite stable in the number of resulting
identified hot spots, independently of the initial number of
selected data points.

We also explore the performance of the different stages that
are considered within SeleSup. To achieve this, we focus on
the largest dataset (Contextual speeding), which is the most
time consuming. Figure 6 depicts a comparison between the
two different versions of our algorithm, including paralleli-
sation of stage 3 (denoted as fully parallel, Figure 6b) and
sequential stage 3 (named as partially parallel, Figure 6a). In
the figures, we present the runtime required for the three main
stages of the algorithm and the total runtime. From the plots
we conclude that:
• As we decided to keep a sequential version of Stage 1, a

very high number of initial suppressors clearly affects
the performance, becoming the most time consuming



operation. However, as noticed before, the outcome of
the algorithm is independent of the number of initial
suppressors. Our recommendation is to keep this stage
sequential with a low percentage of initial suppressors.

• Despite being one of the most important and time-
consuming stages of SeleSup, the parallelisation of Stage
2 has turned out to be very efficient in comparison to the
other stages.

• For this large dataset in particular, the parallelisation of
Stage 3 has resulted in a good reduction of the required
time (under 180 seconds). However, as the number of
initial suppresors increases the number of elements in
the last stage is so small that the parallelisation is slower
than the sequential version.

VI. CONCLUSIONS

In this paper we have developed a big data approach for
identifying vehicle incident hot spots on roads. We have de-
signed a fast immune-inspired mechanism to detect road inci-
dent hot spots, using MapReduce as a programming paradigm
and Spark as big data technology. The results have proven
the effectiveness, stability and efficiency of the proposed
algorithm. As future work, we consider the evaluation of
even larger datasets, and the development of an appropriate
approach to tackle data streams.
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