
54	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Consider a modern aircraft, such
as a Boeing 747: it’s an extraordinarily
complex system containing more than
6 million parts, 171 miles of wiring,
and five miles of tubing (www.boeing.
com/commercial/747family/pf/pf_facts.
html). Viewed another way, it’s a com-
plex software and hardware infrastruc-
ture containing 6.5 MLOC distributed
across dozens of different computing

resources.1 To make design and con-
struction possible, the components—
physical and software—are necessarily
organized as a hierarchical federation
of systems that interact to satisfy the
aircraft’s safety, reliability, and perfor-
mance requirements.

This hierarchical aspect of de-
sign is crucial. Design considerations
at one level of abstraction, such as in

partitioning a system into subsystems
and allocating functionality to each,
determine what the subsystems should
do at the next level of abstraction. Re-
quirements at a particular level in the
hierarchy are implemented in terms of
a set of design decisions (an architec-
ture), which in turn induces sets of re-
quirements on that architecture’s com-
ponents; this is an idea that spans both
physical and software architectures.
Yet, we frequently speak of a system’s
“requirements” as separate from and
more abstract than its “architecture.”

Although some requirements engi-
neering techniques do support hierar-
chical decomposition of requirements
(notably, KAOS2 and i*3), these decom-
positions generally aren’t bound to the
system’s architecture, nor is there a pre-
scribed process for coevolution with
architectural models. Therefore, when
practitioners derive an architecture to
address a systems engineering chal-
lenge, they often have little guidance
on how the requirements should be de-
composed and allocated to architectural
components.

Iterative Requirements
and Architecture
Even in safety-critical systems with
well-understood domains, it’s difficult
to correctly specify requirements. In
previous work involving requirements
verification in model-based develop-
ment, we found that the requirements
were almost as likely to be incorrect as
the models.4 For example, one class of
errors involves inconsistencies between
two requirements:

•	 When button X is pressed, the
mode shall be A.

•	 When button Y is pressed, the mode
shall be B.

These requirements are inconsistent if
X and Y can be simultaneously pressed
and A and B are mutually exclusive.

FOCUS: Twin Peaks

Your “What” Is My
“How”: Iteration
and Hierarchy in
System Design
Michael W. Whalen, University of Minnesota

Andrew Gacek and Darren Cofer, Rockwell Collins

Anitha Murugesan, Mats P.E. Heimdahl, and Sanjai Rayadurgam,
University of Minnesota

// Requirements and architectural design should be more

closely aligned than they currently are: requirements

models must account for hierarchical system construction,

and architectural design notations must better support

requirements specification for system components. //

	 March/April 2013 | IEEE Software � 55

By constructing and analyzing mod-
els, we were able to find such incon-
sistencies, as well as implicit assump-
tions about the environment in which
the system was to be deployed. In fact,
because the models regularly brought
problems in the requirements to light,
the engineers iteratively refined models
and requirements using a “model a lit-
tle, test a little” approach.

For very large systems (or systems
of systems), it would be even less likely
that the top-level requirements would
be correct.5 But assuming they actu-
ally are correct, an additional chal-
lenge is demonstrating that, given the
architectural solution, the hierarchi-
cally decomposed requirements meet
the system-level requirements. An ap-
proach to requirements validation, ar-
chitectural design, and architectural
verification that uses the requirements
to drive the architectural decompo-
sition and the architecture to itera-
tively validate the requirements would
be highly desirable. Furthermore, we
would like this verification and valida-
tion to occur prior to building code-
level implementations.

A well-defined set of requirements
comes via informed deliberations
among stakeholders with shared as
well as competing interests. We can
view the starting point as an incom-
plete articulation of their key con-
cerns. Over the course of these de-
liberations, the participants make
rational choices and trade-offs. The
resulting requirements’ quality largely
reflects how well the participants en-
gaged in this process. Key stakehold-
ers include the systems, safety, and
software engineers, whose overrid-
ing concern is how to successfully
build a system that would meet the
resulting requirements. Understand-
ing the architecture is essential for
these stakeholders to determine the
main concerns that should inform
their positions during negotiations. It

highlights important aspects of how
the system would work, leaving out
the minutiae and focusing partici-
pants’ attention on concerns likely to
affect system feasibility. Therefore,
it’s only natural that in any practical
development process, requirements
and architecture evolve together.

In this respect, we concur with
Bashar Nuseibeh’s twin peaks model,6
which recognizes that requirements
and architecture coevolve and that this
helps create both a sound architecture
and correct requirements. Nuseibeh
also points out that system develop-
ment often starts from candidate archi-
tectures that have been used in similar
systems. Such architectures might re-
strict the set of achievable requirements
but still be desirable for many reasons,
including designers’ and software engi-
neers’ familiarity with the architecture
and amortization of cost owing to the
candidate architecture getting refined
over several systems. Thus, iteration
between architectural models and re-
quirements can better deal with key
sources of requirements uncertainty
identified by Barry Boehm7: the use
of COTS components, “I’ll Know It
When I See It” (IKIWISI), and rapidly
changing requirements.

In this article, we extend this view
further and posit both that the dy-
namic model of coevolution induces a

static model of interrelationship that
ties requirements with architectural
elements in an inherently hierarchical
fashion, and that such a mapping is
equally essential for both building and
verifying complex systems.

Organizing Requirements
Once systems become sufficiently com-
plex, they are decomposed into subsys-
tems that are implemented by several
distinct teams. Consequently, the re-
quirements on the system as a whole
must be decomposed and allocated to
each of those subsystems. This decom-
position affects both requirements and
architecture because the decomposi-
tion’s structure will influence how re-
quirements flow down to each subsys-
tem. Therefore, requirements should be
organized into hierarchies that follow
the system’s architectural decomposi-
tion. This organization promotes a nat-
ural notion of refinement and traceabil-
ity between layers of requirements.

Such organization highlights the
idea that system decomposition is both
an architectural and requirements exer-
cise. The act of decomposing a system
into components (and then assembling
the components into a system) induces
a requirements analysis effort in which
we must ascertain whether the require-
ments allocated to subcomponents in
the architecture are sufficient to estab-
lish the system-level requirements. Of
equal importance, we must determine
whether any assumptions on a com-
ponent’s environment made when al-
locating requirements to that compo-
nent can be established (see Figure 1).
As we begin to allocate requirements

to components, we might find that the
architecture we’ve chosen simply can’t
meet the system-level requirements.
This might cause us to rearchitect the
system to meet the system-level require-
ment, levy additional constraints on the

In any practical development process,
requirements and architecture

evolve together.

56	 IEEE Software | www.computer.org/software

FOCUS: Twin Peaks

external environment, or renegotiate
the system-level requirement.

Architectural Models
Architectural models include compo-
nents as well as those components’ in-
terconnections, interfaces, and require-
ments (but not their implementations).
By annotating models with require-
ments for component behavior, they
become a means to support iteration
between requirements allocation and
architectural design.

At the leaf level, component
implementations are defined separately
using model-based development tools
or traditional programming languages,
as appropriate. They’re represented
in the system model by the subset
of specifications needed to describe
their system-level interactions; these
specifications can include information
about component functionality,
performance, security, bindings to
hardware, and other concerns.

All embedded safety-critical sys-
tems require an architectural modeling

language that can support descriptions
of both hardware and software com-
ponents and their interactions. We’ve
considered both the Systems Model-
ing Language (SysML)8 and Architec-
ture Analysis and Design Language
(AADL)9 notations. SysML was de-
signed for modeling the full scope of
a system, including its users and the
physical world, whereas AADL was de-
signed for modeling real-time embed-
ded systems. Although both SysML and
AADL are extensible and can be tai-
lored to support either domain, the fun-
damental constructs that each provides
reflect these differences. For example,
AADL lacks many of the constructs
for eliciting system requirements such
as SysML requirement diagrams and
use cases. On the other hand, SysML
lacks many of the constructs needed to
model embedded systems such as pro-
cesses, threads, processors, buses, and
memory. Our approach has been to use
AADL as our working notation and
support translation from SysML (with
some additional stereotypes for certain

components corresponding to AADL
constructs) into AADL models.

System Verification
In critical systems, there’s been signifi-
cant progress in analyzing the behavior
of leaf-level components against their
requirements. In the 2000s, tools and
techniques for unit testing source code
improved dramatically; today, coding
errors that escape detection through
testing are relatively rare.10 During the
past decade, model-based development
has increased the level of abstraction at
which engineers design software com-
ponents and has moved much of the
testing forward into the design phase.
Also during this time period, model
checking has become a practical form
of analysis that finds errors that testing
would miss and does so earlier in the
design process.11

Although engineers have become
better at demonstrating that leaf-level
components meet their requirements,
checking whether component-level re-
quirements demonstrate the satisfac-
tion of higher-level requirements is still
an area of ongoing research. Not sur-
prisingly, component integration has
become the most significant source of
errors in systems.5 In fact, although
techniques for specifying and verify-
ing individual components have be-
come highly automated, the most com-
mon tools used to specify the complex
system architectures containing the
components remain word processors,
spreadsheets, and drawing packages. It
will be important to develop better sup-
port for decomposition of requirements
throughout the system architecture and
subsequent verification that such de-
compositions are sound.

In the initial stages of requirements
and architectural co-design, the pro-
cess is relatively informal and fluid.
However, for critical systems, such in-
formality can lead to problems. Of-
ten, many of the errors in system

Flow down:
requirements for C2

 • Determine subcomponents
• Allocate requirements to
 subcomponents
• Verify that subcomponent
 requirements establish
 system requirements

System A
System C2

C2C1 X

Y

Z

Flow up: environmental
constraints and modified

system requirements from C2

…

System Z

…

Figure 1. Interplay between architecture and requirements. This figure illustrates how

requirements can flow both downward (for example, due to system decomposition) and

upward (for example, due to use of COTS components).

	 March/April 2013 | IEEE Software � 57

development manifest themselves in
integration; each of the leaf-level com-
ponents meets its requirements, but this
isn’t sufficient to establish system re-
quirement satisfation. To prevent these
integration errors, we wish to perform
virtual integration, in which we can de-
termine whether leaf-level requirements
demonstrate the satisfaction of system
level requirements at arbitrary levels of
abstraction.

Foundations
When we base the requirements and ar-
chitecture efforts on natural-language
requirements and modeling notations
lacking rigorous semantics, the reason-
ing process we promote closely resem-
bles the satisfaction argument of Jona-
than Hammond and his colleagues.12
The satisfaction argument looks to es-
tablish that system requirements hold
through an argument involving the sys-
tem behavior specification and assump-
tions about the system domain. When
systems are decomposed, a subcompo-
nent’s domain assumptions will likely
include assumptions about the behav-
iors of the other subcomponents with
which it communicates.

To formalize satisfaction argu-
ments, provide an appropriate mecha-
nism for capturing needed information
from other modeling domains to reason
about system-level properties.13 In this
formulation, guarantees correspond to
component requirements and are veri-
fied separately as part of the component
development process, either by formal
methods (such as model checking) or
traditional means involving testing and
inspections. Assumptions correspond
to the environmental constraints that
were used to verify that the component
satisfies its requirements. For formally
verified components, they are the asser-
tions or invariants on the component
inputs that were used in the proof pro-
cess. A contract specifies precisely the
information needed to reason about

the component’s interaction with other
parts of the system. Furthermore, a
contract mechanism supports a hier-
archical decomposition of verification
processes that follows the system mod-
el’s natural hierarchy.

The idea is that, for a given layer of
the architecture, we use the contracts
of the subcomponents within the ar-
chitecture to satisfy the system-level
requirements allocated to that level.
Figure 2 shows a simplified example of
the idea. Here, we want to establish at
the system level that the output signal
is always less than 50 when the input
signal is less than 10. We can prove this
using the assumptions and guarantees
provided by subcomponents A, B, and
C. This figure shows one layer of de-
composition, but the idea generalizes
arbitrarily to many layers. To create
a complete proof, we must prove that
each layer establishes its system-level
property.

The system-level properties that we
wish to verify fall into several catego-
ries requiring different verification ap-
proaches and tools. At the topmost
level, we’re interested in behavioral
properties that describe the state of
the system as it changes over time. Be-
havioral properties describe protocols
governing component interactions in

the system or the system’s response to
combinations of triggering events. Cur-
rently, we use the Property Specifica-
tion Language (PSL) to specify most
behavioral properties of components.
This allows straightforward formu-
lation of a variety of temporal logic
properties. Recently, Rockwell Collins
and the University of Minnesota cre-
ated a relevant tool suite called the as-
sume guarantee reasoning environment
(AGREE), which we describe in greater
detail elsewhere.14

Goals
We had two goals in creating this veri-
fication approach: the first was to reuse
the verification already performed on
components, and the second was to en-
able distributed development by estab-
lishing the formal requirements of sub-
components that are used to assemble
a system architecture. If we can estab-
lish a system property of interest using
the contracts of its components, then
we have a means of performing virtual
integration of components. We can use
the contract of each of the components
as a specification for suppliers, giving
us a great deal of confidence that if all
the suppliers meet the specifications,
the integrated system will work prop-
erly. Thus, we can arbitrarily choose

Assumption: Input < 20
Guarantee:

Output < 2 × Input
Assumption: none

Guarantee:
Output = Input1 + Input2

Assumption: Input < 10
Guarantee: Output < 50

Assumption: Input < 20
Guarantee:

Output < Input + 15

A

B

C

Figure 2. A tiny system architecture to illustrate assume-guarantee contracts.

58	 IEEE Software | www.computer.org/software

FOCUS: Twin Peaks

the leaf level of the components (and
their requirements) that we wish to
analyze.

Figure 2 illustrates the composi-
tional verification conditions for a toy
example. Components are organized
hierarchically into systems. We want
to be able to compose proofs starting
from the leaf components (those whose
implementation is specified outside of
the architecture model) recursively
through all the layers of the architec-
ture. Each layer of the architecture is
considered to be a system with inputs
and outputs and containing a collec-
tion of components. A system S can
be described by its own contract (AS,
PS) plus the contracts of its compo-
nents CS, so S = (AS, PS, CS). Compo-
nents communicate in the sense that
their formulas can refer to the same
variables. For a given layer, the proof
obligation is to demonstrate that the
system guarantee PS is provable given
the behavior of its subcomponents CS
and the system assumption AS—that
is, we should be able to derive PS as a
consequence of CS and AS by applying
the rules of the logic used to formulate
these contracts. Such a proof, in effect,
assures a successful integration of the
contract-conforming components to
realize a system that can meet its con-
tract, reducing both the burden and
risk associated with system integration
during development.

In our framework, we use past-time
linear temporal logic (PLTL) to formu-
late systems’ correctness obligations.
Temporal logics such as PLTL include
operators for reasoning about the be-
havior of propositions over a sequence
of instants in time. For example, to say
that property P is always true at every
instant in time (that is, that it’s glob-
ally true), we would use G(P), where
G stands for “globally.” The correct-
ness obligations are the form G(H(A)
⇒ P), which informally means that if
assumption A has been true from the

beginning of the execution up until
this instant (that is, assumption A is
historically true), then guarantee P is
true.

For the obligation in Figure 2, our
goal is to prove the formula G(H(AS)
⇒ PS) given the contracted behav-
ior G(H(AC) ⇒ PC) for each compo-
nent c within the system. It’s conceiv-
able that for a given system instance,
a sufficiently powerful model checker
could prove this goal directly from the
system and component assumptions.
However, we take a more general ap-
proach: we establish generic verifica-
tion conditions that together are suffi-
cient to establish the goal formula. In
this example, this means that for sys-
tem S, we want to prove that output
< 50 assuming that input < 10, and
that the contracts for components A,
B, and C are satisfied. For a system
with n components, there are n + 1
verification conditions: one for each
component and one for the system as
a whole. The component verification
conditions establish that each compo-
nent’s assumptions are implied by the
system-level assumptions and the prop-
erties of the sibling components. For
this system, the verification conditions
generated would be

G(H(AS) ⇒ AA)

G(H(AS ∧ PA) ⇒ AB)

G(H(AS ∧ PA ∧ PB) ⇒ AC)

G(H(AS ∧ PA ∧ PB ∧ PC) ⇒ PS).

In general, these architectures can
contain cycles between components,
in which component A requires the
guarantees of component B and vice
versa, which can lead to unsound
circular reasoning. To avoid this, we
use induction over time, which re-
quires that (at least) one of the com-
ponents can only refer to guarantees

of the other in earlier instants in time.
This ensures that at a given instant
in time, there is no circularity.13 The
system-level verification condition
shows that the system guarantees fol-
low from the system assumptions and
each subcomponent’s properties. This
is essentially an expansion of the orig-
inal goal G(H(AS) ⇒ PS), with the ad-
ditional information obtained from
each component.

Scaling to Real Systems
Of course, reasoning about toy ex-
amples is neither interesting nor use-
ful for practitioners attempting to
build large-scale systems. For a DoD-
sponsored project, we modeled an
avionics system architecture involv-
ing an autopilot, two redundant flight
guidance systems, and a variety of re-
dundant sensors. (Figure 3 shows the
architecture’s top layer.) Using this
model, we proved properties describ-
ing limits on the transient commanded
pitch behavior of the flight control sys-
tem using AGREE.14 Even given a rela-
tively complex architecture, each com-
positional analysis required a small
amount of time owing to the analysis
problem’s decomposition into layers—
on the order of five seconds for each
layer of the avionics system.

A n important limitation in the
current tool suite14 is that it
can only deal with systems

that are synchronous with a one-step
communication delay between con-
nected components. The synchrony hy-
pothesis, in this case, means that the
components share a global clock. In
order to be appropriate for full-scale
use, we must accurately support no-
tions of time in our composition frame-
work. This isn’t likely to require any
changes to the underlying formalism
of composition, but we must account
for the delays induced by computation

	 March/April 2013 | IEEE Software � 59

time, network traffic, and other ar-
chitectural properties of the model
through extraction of this information
from the AADL model and incorpo-
ration into the formal analysis model.
PSL provides some support because it
lets us add property clocks, represent-
ing the instants at which they should be
examined. We can use these clocks to
describe instants in which a component
operates in the context of a larger sys-
tem. This is the major focus of the next

phase of our work, in which we will be
modeling more realistic avionics and
medical device architectures.

A more general concern regards the
choice of representing components as
sets of PSL properties as opposed to
other formalisms, such as process al-
gebras. In our work, we have found
that declarative properties can be
closely aligned with a style of require-
ments that are traditionally used in
avionics systems.4 However, complex

coordination activities among multiple
components within an architecture can
be difficult to represent using temporal
logic. In future work, we hope to exam-
ine whether the process-algebraic view
of the system can be aligned with our
temporal-logic view.

Acknowledgments
An earlier version of this article as a position
paper is included in the Proceedings of First
International Workshop on the Twin Peaks

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

FM_R

CSA

FD_L FD_R

Flight_Control_SystemFlight_Control_System_Impl

GC_L GC_R

CSA

AD

AH

GC

LSO
AD

AH

VNAV

GC

LSI

FGSRtoAP

AP2CSA

AHLtoFGSL

FMLtoFGSL

ADLtoFGSL

FGSLtoAP

FGSLtoFGSR

FGSRtoFGSL

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

FGSLtoFDL

NAV_L NAV_R

THROT_L THROT_RYOKE_L YOKE_R

FM_L

THROT_L THROT_R

YOKE_L YOKE_R

FCI

FCI: Flight_Crew_Interface

VNAV

NAV

LSI

FCI NAVFCI

LSO

YOKER2FCIYOKEL2FCI

THROTL2FCI

NAVLtoFGSL

THROTR2FCI

NAVRtoFGSR

FCItoFGSL FCItoFGSR

AP: Autopilot_System

FGS_R: Flight_Guidance_SystemFGS_L: Flight_Guidance_System

Figure 3. A fragment of an avionics flight control system modeled in SysML containing dual-redundant flight guidance systems.

60	 IEEE Software | www.computer.org/software

FOCUS: Twin Peaks

of Requirements and Architecture, IEEE,
2012, pp. 36–40. DARPA/AFRL (on project
FA8650-10-C-7081) and NSF grants CNS-
0931931 and CNS-1035715 have partially
supported this work.

References
	 1.	 R. Charette, “This Car Runs on Code,” IEEE

Spectrum, Feb. 2009; http://spectrum.ieee.org/
green-tech/advanced-cars/this-car-runs-on-
code.

	 2.	 A. van Lamsweerde, “Engineering Require-
ments for System Reliability and Security,”
Software System Reliability and Security, M.
Broy, J. Grunbauer, and C.A.R. Hoare, eds.,
vol. 9, IOS Press, 2007, pp. 196–238.

	 3.	 E. Yu et al., Social Modeling for Requirements
Engineering, MIT Press, 2011.

	 4.	 S.P. Miller et al., “Proving the Shalls: Early
Validation of Requirements through Formal
Methods,” Int’l J. Software. Tools for
Technology Transfer, vol. 8, no. 4, 2006, pp.
303–319.

	 5.	 R. Lutz, “Analyzing Software Requirements
Errors in Safety-Critical, Embedded Systems,”
Proc. IEEE Int’l Symp. Requirements Engi-
neering, IEEE, 1993, pp. 126–133.

	 6.	 B. Nuseibeh, “Weaving Together Require-
ments and Architectures,” Computer, vol. 34,
no. 3, 2001, pp. 115–117.

	 7.	 B. Boehm, “Requirements that Handle IKI-
WISI, COTS, and Rapid Change,” Computer,
vol. 33, no. 7, 2000, pp. 99–102.

	 8.	 S. Friedenthal, A. Moore, and R. Steiner, A
Practical Guide to SysML: Systems Modeling
Language, Morgan Kaufmann, 2008.

	 9.	 Std. SAE-AS5506, Architecture Analysis and
Design Language, SAE Int’l, Nov. 2004.

	10.	 J. Rushby, “New Challenges in Certification
for Aircraft Software,” Proc. 9th ACM Int’l
Conf. Embedded Software, ACM, 2011, pp.
211–218.

	11.	 S.P. Miller, M.W. Whalen, and D.D. Cofer,
“Software Model Checking Takes Off,”
Comm. ACM, vol. 53, no. 2, 2010, pp. 58–64.

	12.	 J. Hammond, R. Rawlings, and A. Hall,
“Will It Work?,” Proc. 5th IEEE Int’l Symp.
Requirements Eng., IEEE, 2001, pp. 102–109.

	13.	 K.L. McMillan, “Circular Compositional
Reasoning about Liveness,” tech. report 1999-
02, Cadence Berkeley Labs, 1999.

	14.	 D.D. Cofer et al., “Compositional Verifica-
tion of Architectural Models,” Proc. 4th
NASA Formal Methods Symp. (NFM 12),
A.E. Goodloe and S. Person, eds., vol. 7226.
Springer, 2012, pp. 126–140.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Michael M. Whalen is a program director at the University of
Minnesota Software Engineering Center. His research interests include
formal analysis, language translation, testing, and requirements
engineering. Whalen received a PhD in computer science from the
University of Minnesota. He’s a senior member of IEEE. Contact him at
whalen@cs.umn.edu.

Andrew Gacek is a senior systems engineer in Rockwell Collins’
Trusted Systems group. His research interests include automated test-
ing, model checking, and logic. Gacek received a PhD in programming
languages and logic from the University of Minnesota. Contact him at
ajgacek@rockwellcollins.com.

Darren Cofer is a principal systems engineer at Rockwell Collins’
Advanced Technology Center. His research interests include the use
of formal methods for verification and certification of high-assurance
embedded systems. Cofer received a PhD in electrical and computer
engineering from the University of Texas at Austin. He’s a senior mem-
ber of IEEE. Contact him at ddcofer@rockwellcollins.com.

Anitha Murugesan is a PhD student in software engineering at
the University of Minnesota. Her research interests include require-
ments engineering and modeling for cyberphysical systems. Murugesan
received an MTech in computer science and engineering from Vellore
Institute of Technology. Contact her at anitha@cs.umn.edu.

Mats P.E. Heimdahl is a full professor of computer science and
engineering at the University of Minnesota. His research interests
include software engineering, safety-critical systems, testing, require-
ments engineering, and automated analysis of specifications. Heimdahl
received a PhD in information and computer science from the University
of California, Irvine. He’s a member of IEEE, ACM, and PSIA. Contact
him at heimdahl@cs.umn.edu.

Sanjai Rayadurgam is a program director at the University of
Minnesota Software Engineering Center. His research interests include
software testing, formal analysis, and requirements modeling, with
particular focus on safety-critical systems development. Rayadurgam
received a PhD from the University of Minnesota at Twin Cities. He’s a
member of IEEE and ACM. Contact him at rsanjai@cs.umn.edu.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

