
Comparison of FaaS Orchestration Systems
Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona Pons, Álvaro Ruiz Ollobarren

and David Arroyo Pinto
Computer Engineering and Mathematics Department

Universitat Rovira i Virgili
Tarragona, Spain

Email: {pedro.garcia, marc.sanchez, gerard.paris, daniel.barcelona, alvaro.ruiz}@urv.cat,
david.arroyop@estudiants.urv.cat

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/UCC-Companion.2018.00049

Abstract—Since the appearance of Amazon Lambda in 2014,
all major cloud providers have embraced the “Function as a Ser-
vice” (FaaS) model, because of its enormous potential for a wide
variety of applications. As expected (and also desired), the compe-
tition is fierce in the serverless world, and includes aspects such as
the run-time support for the orchestration of serverless functions.
In this regard, the three major production services are currently
Amazon Step Functions (December 2016), Azure Durable Func-
tions (June 2017), and IBM Composer (October 2017), still young
and experimental projects with a long way ahead. In this article,
we will compare and analyze these three serverless orchestration
systems under a common evaluation framework. We will study
their architectures, programming and billing models, and their
effective support for parallel execution, among others. Through a
series of experiments, we will also evaluate the run-time overhead
of the different infrastructures for different types of workflows.

Keywords-Cloud computing, Serverless, Function Composition,
Orchestration, Amazon Step Functions, Azure Durable Func-
tions, IBM Composer

I. INTRODUCTION

Serverless computing, and in particular, the “Function as a
Service” (FaaS) paradigm, has taken the industry by storm. In
the last four years, all the major cloud providers have offered
their own solutions, including the “Big Four” cloud vendors,
namely, AWS Lambda, IBM Cloud Functions, Google Cloud
Functions, and Azure Functions. Indeed, their ability to enable
event-driven computing and scale to thousands of concurrent
functions have spurred many cloud users to adopt serverless
computing for a variety of applications, such as microservices,
IoT, machine learning inference, etc.

Unfortunately, the FaaS model is very young and it lacks of
adequate coordination mechanisms between functions. Simply
put, it is still cumbersome to orchestrate a pool of serverless
functions to build a complex application. Proof of that is that in
different domains such as enterprise workflows, Web mashups,
genomics pipelines, or even AI workflows, it is still complex to
create flexible data processing pipelines and ensembles using
serverless functions.

In this piece of research, we will compare the three main
production services for function orchestration: IBM Composer,

This work has been partially supported by the Spanish government through
project “Software Defined Edge Clouds” (TIN2016-77836-C2-1-R) and by the
AWS Cloud Credits for Research program.

Amazon Step Functions, and Azure Durable Functions. To the
very best of our knowledge, this is the first work that presents a
comprehensive comparison of function orchestration systems.

Contributions. The contributions are the following:
• Evaluation framework: A first contribution is a set of tests

and metrics for the evaluation of serverless orchestration
systems. Our evaluation criteria is wide ranging, from the
analysis of their architectures, programming and billing
models, to their effective support for massive parallelism.
Furthermore, it includes a set of benchmarks to gauge the
orchestration overheads in different scenarios.

• Comparison of three major vendor models: By means
of the aforementioned evaluation framework, our second
contribution is a rigorous comparison of three commercial
projects. We present interesting insights and results of the
evaluation of the three systems for different applications.

• Novel Suspend API: As a third contribution, we propose
a novel programming abstraction that will facilitate the
implementation of custom orchestrators that comply with
the serverless trilemma [1], a recent lemma that identifies
three key competing constraints for function composition.

II. RELATED WORK

The first related work is [1] by Baldini et al. from IBM,
which introduces the serverless trilemma: Functions should be
considered as black boxes; function composition should obey a
substitution principle with respect to synchronous invocation
(i.e., a composition should be also a function); and invoca-
tions should not be double-billed. Also, the authors advocate
for run-time support for function orchestration, and present a
solution for sequential compositions that fulfills the trilemma:
IBM Sequences.

Other systems have tried before to orchestrate functions with
no explicit run-time support. These solutions can be classified
into two types: (I) functions to orchestrate functions; and (II)
external client schedulers. In the first category (e.g., [2], [3]),
the orchestration is performed inside a serverless function.
However, this approach suffers double billing according to the
trilemma: The orchestrator function is billed while waiting for
the execution of the orchestrated functions to complete (which
are also billed). In the second type (e.g., [4], [5]), an external
client scheduler coordinates functions, thereby avoiding double

ar
X

iv
:1

80
7.

11
24

8v
2

 [
cs

.D
C

]
 2

5
Ja

n
20

19

https://ieeexplore.ieee.org/document/8605772

billing. But in this case, the substitution principle is violated.
Compositions cannot be treated themselves as functions since
they are external to the system itself.

As we will see in the next section, our evaluation framework
goes beyond the trilemma since it establishes different metrics
to compare orchestration mechanisms. Of course, we will also
include the trilemma in our framework as a metric.

III. EVALUATION FRAMEWORK

To evaluate different orchestration services, we will consider
the following metrics:

• ST-safeness: One key aspect of any orchestration service
is whether or not it fulfills the serverless trilemma [1]
(ST) mentioned in the previous section. An orchestration
service that complies with the trilemma is said to be ST-
safe.

• Programming model: It refers to programming simplicity
and the set of coding abstractions, but also, to whether it
provides a reflective API to observe the current state of a
function composition.

• Parallel execution support: Whether the framework sup-
ports the orchestration of parallel functions.

• State management: How data is passed from one stage
of a function composition to the next.

• Software packaging and repositories: Modularization and
software reuse of serverless applications.

• Architecture: The orchestrator can be an external entity
not implemented as a function (client-side scheduler), or
as part of the run-time itself as a function, scheduled in
reaction to events. For brevity, we will often refer to the
latter with the term “reactive core” [1].

• Overhead: Given the reliance of orchestration services on
a function scheduler, the significance of the orchestration
overhead should be measured for representative function
compositions such as chains and parallel patterns.

• Billing model: To complete the picture, it is fundamental
to provide detailed accounting, so users understand how
much they need to pay.

Although the above list of metrics could be expanded, we
believe that is by far enough to analyze the quality of the three
commercial projects. A summary of the complete comparison
can be found in Table II. Next, we evaluate each project based
on the above criteria, except the overheads that are reported in
Section IV.

A. Amazon Step Functions (ASF)

Amazon released ASF in December 2016 with the aim to
harness the composition of serverless functions. In particular,
ASF allows the creation of workflows as finite state machines
written in Amazon States Language, a custom JSON-based
Domain Specific Language (DSL).

ST-safeness. First of all, ASF does not comply with the
serverless trilemma (i.e., not ST-safe) because it breaks the
substitution principle. That is, a composition of functions is
not a function. Step Functions can be invoked, receive a JSON

input and generate a JSON output, they can orchestrate other
functions, but they are not functions themselves. This means
that a state machine cannot be part of another state machine.

Programming model. Amazon States Language supports
function chaining and branching (if statements), function re-
tries, and parallel executions. However, the DSL only permits
the representation of static graphs, and it is difficult to program
for relatively complex workflows.

It provides a basic reflective API to query the running state
or to cancel the entire workflow. Further, it offers monitoring
capabilities thanks to the logs accessible using CloudWatch.

Parallel execution support. ASF offers support for parallel
programming workflows in the DSL. They allow up to 1, 000
state transitions per second with burst capacity of 5, 000 state
transitions (per account per region).

State management. ASF restricts state passing between
functions to only 32KB. Since this information must be logged
for fault tolerance in long-running workflows, this limit helps
to presumably reduce the underlying storage overheads.

Software packaging and repositories. To quickly deploy
sample or complete serverless applications, Amazon offers the
AWS Serverless Application Repository [6]. Each application
is packaged using the standard AWS Serverless Application
Model (SAM) [7]. An important limitation here is that SAMs
cannot include Step Functions, thereby disabling composite
applications orchestrated by ASF.

Architecture. It is based on an external client scheduler that
synchronously interacts with the functions involved in the state
transitions (Steps), and logs each action to persistently record
it. Each transition will recover the previous state from the log
and run the next state in the workflow. Again, we insist that
the scheduler itself is not a function in the platform.

Billing model. Amazon provides a clear billing model. As
of July 2018 it charges 0.025 USD per 1, 000 state transitions.

B. IBM Composer

IBM released an early solution to function composition in
November 2016 with action sequences (IBM Sequences), a
simple mechanism to chain together a sequence of functions.
In addition to the support for different languages, a very in-
teresting property is that a sequence itself can be invoked as
a function in another composition. Because IBM Sequences
is built into the reactive core of OpenWhisk (the substrate
of IBM Cloud Functions), there is no double billing for the
orchestration.

However, IBM Sequences only supports simple chaining of
functions. To address that, IBM released Composer [8] as a
Tech Preview in October 2017. Specifically, IBM Composer
adds other composition patterns beyond sequences like condi-
tional constructs, loops, retries, etc.

ST-safeness. A key difference with ASF is that from the
beginning, all these function orchestration services were given
run-time support in the reactive core, fulfilling the substitution
principle for the synchronous orchestration of functions. As a
result, IBM can properly claim to be the first to implement a
ST-safe serverless run-time.

Programming model. IBM Composer provides a com-
plete composition library in JavaScript with functions
such as composer.sequence, composer.if or
composer.try, among others, which synthesize Open-
Whisk conductor actions to implement compositions.
Moreover, it also includes several command line interface
(CLI) tools, alongside a visual workflow interface for com-
positions (IBM Cloud Functions Shell). The programming
model is much simpler than Amazon’s DSL. Altough it does
not support parallel execution patterns, it offers simple CLI
commands to expose functions as Web frontends, and to
compose functions with external Web microservices.

Unfortunately, it does not provide a reflective API to control
conductor actions, only visual monitoring of the platform logs
using Kibana or the IBM Cloud Functions Shell.

Parallel execution support. IBM Composer does not cur-
rently support parallel execution of functions in a composi-
tion.

State management. IBM allows 5MB of state parameters
passed between functions in orchestrations. As we will see in
Section IV, however, the overheads related to state passing can
significantly grow with increasing parameter sizes.

Software packaging and repositories. IBM offers the so-
called OpenWhisk packages [9] to bundle together functions
and their triggers. Furthermore, it permits to publish and search
packages in a public namespace in the IBM Cloud. However,
it is also true that the Amazon SAM standard and metadata is
more detailed and powerful than that of IBM. SAM metadata
model supports many parameters for serverless applications,
like memory allocations, timeout, resource dependencies, and
events and triggers.

Architecture. The software architecture of the orchestrator
service is integrated in the reactive core. In [1], it is described
how this can be accomplished with the help of the so-called
“active ack” mechanism, inspired in a pipeline bypass strategy.
The idea is to bypass the system of records and to use directly
message queues to forward results to the orchestrator (termed
“controller” here). It is claimed in [1] that such an event-
based controller hugely reduces the overhead of transitioning
from one function to another (at least inside the OpenWhisk
framework). We will verify whether this is true in Section IV.

Billing model. IBM Composer is still in Tech Preview, so
its billing costs remain opaque. IBM Sequences charge users
only for all the function invocations that occurred as part of
the sequential composition.

C. Azure Durable Functions (ADF)

ADF is an experimental project that Microsoft published
in June 2017. It is probably the most ambitious orchestration
service thanks to its advanced programming abstractions.

ST-safeness. According to the trilemma, ADF is ST-safe. It
complies with the composition as function constraint.

Programming model. It has better programmability than the
other two projects because they define workflows directly in
C# code. Using the powerful async/await constructs, it be-
comes easy to build stateful durable workflows. Specifically,

the programming model supports function chaining, retries,
parallel spawning (fan-out/fan-in), and the interaction with ex-
ternal asynchronous Web services.

It provides a complete reflective API that permits not only
accessing the current state of a given orchestration, but also
triggering events to an awaiting orchestration instance. It even
advertises novel services like eternal orchestrations, persistent
addressing with singleton orchestrations, or versioning.

Parallel execution support. ADF provides the fan-out/fan-in
pattern to allow executing multiple functions concurrently and
perform aggregations on the results.

State management. ADF does not restrict the size of state
parameters passed across functions. Because this information
is logged for fault tolerance in long-running workflows, ADF
stores the parameters larger than 60KB in compressed form to
avoid overhead penalties and reduce storage costs.

Software packaging and repositories. Regarding software
packaging, Microsoft provides a very simple packaging for-
mat [10] for deploying functions. It is also possible to export
to other Microsoft software packaging standards like .NET
assemblies and Microsoft Web Deploy for Web packages.

Architecture. Its software architecture is an extension of the
reactive core. Specifically, the architecture is based on the
Durable Task Framework, which enables development of long-
running workflows using a pattern called event sourcing. This
pattern stores all events produced by function calls and enables
the event replay to restore a previous state. Events are stored
using Azure Storage queues, tables and blobs to manage state
and events.

The key benefit of this approach is to support long-running
workflows where the durable function can be hibernated, and
later restored, using event sourcing. This also means that all
the orchestration function code must be deterministic.

Billing model. ADF is also in Tech Preview. Hence, there
is not a clear billing model. The project’s web site suggests
that users can be billed by the execution time of the Durable
Functions in the composition. Users may also be charged with
unpredictable storage costs originated by event sourcing. This
is worrying, and the web site even suggests that depending on
the code of the function, storage costs could become large.

IV. EXPERIMENTAL RESULTS

We evaluate the run-time overhead of Amazon’s, IBM’s and
Microsoft’s orchestration services. We consider as overhead all
the time spent outside the functions being composed, which is
easy to measure in all platforms. For a sequential composition
g of n functions g = f1 ◦ f2 ◦ · · · ◦ fn, it is just:

overhead (g) = exec_time(g)−
n∑

i=1

exec_time(fi).

It is important to note here that our overhead definition in-
cludes the delays between function invocations, and the exe-
cution time of the orchestration function (for IBM Composer
and ADF) or the delays between state transitions (for ASF).

For all the tests, we listed only the results when functions
were in warm state. This implies that we did not consider

the cold start of spawning the function containers and VMs.
Our focus here was on measuring the overheads of running
function compositions. All the tests were repeated 10 times.
Measurements were done during June and July of 2018.

Functions were coded in Java in all platforms. The single
exception was ADF, which does not currently support Java,
but C#. The orchestration functions were implemented in the
default language available in each platform: Node.js for IBM
Composer, and C# for ADF. ASF orchestration was specified
in Amazon States Language with the aid of AWS Java SDK.
IBM Sequences were statically defined by a command-line
argument at deployment time.

A. Sequences

First, we quantify the overhead for sequential compositions
of lengths n ∈ {5, 10, 20, 40, 80} for the following services:
IBM Cloud (Sequences and Composer); AWS Step Functions;
and Azure Durable Functions. For simplicity, all the functions
in the sequence were the same: A function that slept for 1s,
and then returned. Listings 1 and 2 show the implementation
of the orchestration function for IBM Composer and ADF,
respectively. Listing 3 is the Java code used to generate the
JSON-based equivalent state machine for ASF.

Listing 1: IBM Composer code for the sequences experiment.
composer . r e p e a t (4 0 , ’ s l e e p A c t i o n ’)

Listing 2: ADF code for the sequences experiment.
f o r (i n t i = 0 ; i < NSTEPS ; i ++) {

a w a i t c o n t e x t .
C a l l A c t i v i t y A s y n c (" s l e e p A c t i o n " , n u l l) ;

}

Listing 3: Code that generates the JSON-based state machine
for the sequences experiment using the AWS Java SDK.
S t a t e M a c h i n e . B u i l d e r s t a t e M a c h i n e B u i l d e r =

s t a t e M a c h i n e ()
. comment ("A Sequence s t a t e machine ")
. s t a r t A t (" 1 ") ;

f o r (i n t i = 1 ; i <= NSTEPS ; i ++) {
s t a t e M a c h i n e B u i l d e r . s t a t e (S t r i n g . va lueOf (i) ,

t a s k S t a t e () . r e s o u r c e (a rnTask)
. t r a n s i t i o n ((i != NSTEPS) ?

n e x t (S t r i n g . va lueOf (i + 1)) : end ())) ;
}
S t a t e M a c h i n e s t a t e M a c h i n e =

s t a t e M a c h i n e B u i l d e r . b u i l d () ;

Results. The results for 80 functions are not available for IBM
Sequences and Composer because IBM Cloud has a limit of
50 actions in any composition. ADF was tested twice with
extended sessions enabled and disabled. This feature
allows the platform to hold orchestrator function instances
longer in memory, avoiding the default aggressive replay be-
havior of event sourcing.

Fig. 1 plots the results for the different platforms. We see
that the static compositions of IBM Sequences have the lowest
overhead (around 0.3s for 40 functions). IBM Composer and
AWS Step Functions exhibit a similar overhead (1.1s and 1.2s,
respectively, for 40 functions). In comparison, Azure Durable

Functions has a remarkably higher overhead (around 8 seconds
for 40 functions), which does not significantly improve when
using extended sessions. Overall, the overhead grows
linearly with the number of functions in the sequence.

Apparently, the limit of 50 actions in any composition, along
with the lack of a waiting mechanism to suspend and resume
orchestration at later times, disqualifies IBM Composer from
implementing long-running workflows. However, ASF with its
Wait state, and ADF with its durable timers, are able to define
long-running workflows that last for days or even months.

B. Parallelism

Our goal was to measure the overhead of running n times
the same function in parallel, for n ∈ {5, 10, 20, 40, 80}. The
function slept for 20s and returned. So ideally, a zero-overhead
parallel composition should last 20s, irrespective of the value
of n. The extra time was pure overhead. This experiment was
only conducted for ASF and ADF (extended sessions
enabled) — IBM Composer does not currently support parallel
execution. Listing 4 shows the ADF code for this test that uses
the simple fan-out/fan-in pattern to execute multiple functions
concurrently. Listing 5 does the equivalent for Step Functions.

Listing 4: ADF code for the parallelism experiment.
v a r t a s k s = new Task < long >[NSTEPS] ;
f o r (i n t i = 0 ; i < NSTEPS ; i ++)
{

t a s k s [i] = c o n t e x t . C a l l A c t i v i t y A s y n c < long >(
" s l e e p A c t i o n ") ;

}
a w a i t Task . WhenAll (t a s k s) ;

Listing 5: Code that generates the JSON-based state machine
for the parallelism experiment using the AWS Java SDK.
S t a t e M a c h i n e . B u i l d e r s t a t e M a c h i n e B u i l d e r =

s t a t e M a c h i n e ()
. comment ("A s t a t e machine wi th p a r . s t a t e s . ")
. s t a r t A t (" P a r a l l e l ") ;

Branch . B u i l d e r [] b r a n c h B u i l d e r s =
new Branch . B u i l d e r [NSTEPS] ;

f o r (i n t i = 0 ; i < NSTEPS ; i ++) {
b r a n c h B u i l d e r s [i] = b ra nc h ()

. s t a r t A t (S t r i n g . va lueOf (i + 1))

. s t a t e (S t r i n g . va lueOf (i + 1) ,
t a s k S t a t e ()
. r e s o u r c e (a rnTask) . t r a n s i t i o n (end ())) ;

}

s t a t e M a c h i n e B u i l d e r . s t a t e (" P a r a l l e l " ,
p a r a l l e l S t a t e () . b r a n c h e s (b r a n c h B u i l d e r s)
. t r a n s i t i o n (end ())) ;

f i n a l S t a t e M a c h i n e s t a t e M a c h i n e =
s t a t e M a c h i n e B u i l d e r . b u i l d () ;

Results. Fig. 2 depicts the run-time overhead incurred in both
platforms when invoking functions in parallel. We can extract
two main insights from this figure. First, the overhead grows
exponentially with the number of parallel functions n. To wit,
with 80 functions, ASF has an average overhead of 18.3s and
ADF of 32.1s, respectively. Secondly, the results also suggest
that ADF exhibits a high variability, whereas overhead on ASF
is quite predictable.

Fig. 1: Function sequences overhead.

Fig. 2: Parallelism overhead.

C. State management

First, note that a fair comparison of the overhead attributed
to state passing between functions is difficult in practice. The
main reason is that each platform has its own limits on the size
of function parameters and results. To wit, ASF has a limit of
32, 768 characters (32 KB), whereas Azure Functions provides
large message support, allowing parameters and return values
of any size (those greater than 60KB are stored compressed in
Azure Blob Storage). IBM Cloud Functions has a limit of 1MB
for both parameters and results, albeit we empirically found
in our tests that this limit is actually of 5MB.

To measure this overhead, we built a short sequence of 5
functions, each one receiving a parameter, sleeping for 1s, and
returning the same parameter. We used a payload of 32KB, as
it is the maximum allowed by AWS.

Results. Table I reports the overhead of this sequence in each
platform (baseline) and how increases when state is passed
between functions. We observe a clear increase in the over-
head in IBM Cloud and AWS, whereas the overhead for Azure
slightly increases, remaining high in all cases.

We also found that larger parameters considerably increase
the overhead in IBM Cloud. Starting at 500KB (for Composer)
and at 1MB (for Sequences), each state transition adds an extra
delay greater than 10s. On the contrary, the overhead of ADF’s
large message support grows linearly with the parameter size,

TABLE I: Overhead for a sequence of 5 actions and a payload
of 32KB.

Platform Overhead (ms) Increase (%)

Without
payload

With
payload

IBM Sequences 49.0 80.8 65%

IBM Composer 175.7 298.4 70%

AWS Step Functions 168.0 287.0 71%

Azure DF 766.2 859.5 12%

but it is considerably lower than that in IBM Composer.

V. ST-SAFE ALTERNATIVE: SUSPEND API FOR
FUNCTIONS

In this paper, we propose a simple alternative to enable the
construction of custom orchestrators. To this end, we propose
the following extension:

Function.suspend(Event): This abstraction will
move the function to a suspended state linked to a given event
Event. The run-time must passivate the current function and
stop billing it until the function is reactivated again by the
triggering of the defined Event.

Cloud Providers could, of course, establish time limits to
kill suspended states. Since the core run-time is reactive and
event-based, suspending a function and triggering its activation
with a custom event should be feasible. In this line, the recent
introduction of SQS Custom Event Sources by Amazon [11]
shows how this triggering could be produced. Passivation and
activation of functions could be inspired in previous works on
continuations [12].

This simple API would then enable third-party developers
to implement their own custom orchestrators that comply with
the serverless trilemma. It is obvious that these orchestrators
would be ST-safe: (I) invocations would not be double-billed
(during the suspended state); (II) substitution principle would
be respected, because compositions are normal functions, and
(III) composed functions may be black-boxes.

Many programming patterns like async/await, fork/join, fan-
out/fan-in may be implemented on top of the Suspend API. It
is also certain that providing fault-tolerance to state transitions
should be then responsibility of the custom orchestrators. The
run-time core should only guarantee the recovery of the last
suspended state.

VI. INSIGHTS AND FUTURE DIRECTIONS

First of all, we must consider that IBM Composer and ADF
are still experimental projects that could improve in the next
months. However, after evaluation and overhead quantification,
we are now in position to give some interesting insights, which
ensue from our comparison in Table II:

1) ASF is the most mature and performant project in the
market: According to the validation, ASF appears to be

TABLE II: Evaluation Framework.

Metrics Systems

Amazon Step
Functions

IBM
Composer

Azure Durable
Functions

ST-safe [1] No
(compositions
are not
functions)

Yes
(composition
as functions)

Yes
(composition
as functions)

Programming
model

DSL (JSON) Composition
library
(Javascript)

async/await
(C#)

Reflective API Yes (limited) No Yes

Parallel
execution
support

Yes (limited) No Yes (limited)

Software
packaging and
repositories

Yes Yes Yes (no repo)

Billing model $0.025 per
1, 000 state
transitions

Orchestrator
function
execution

Orchestrator
function
execution +
storage costs

Architecture Synchronous
client scheduler

Reactive
scheduler

Reactive
scheduler

the most efficient service for both short and long-running
orchestrations. IBM is following close for short-running
orchestrations. ADF still exhibits significant overhead
for all categories. This, of course, can radically change
in the future with more stable releases entering the scene.

2) ADF is the most advanced in terms of programmability.
IBM Composer wins in simplicity: Coding abstractions
in ADF (e.g., async/await, eternal orchestrator, singleton
addressing) are overtly the most advanced, but they are
designed for skilled developers. On the contrary, IBM’s
Composer library is more limited, but also easier to use.
ASF programmability is very limited compared to the
other projects.

3) IBM Composer is designed for short-running sequential
orchestrations: Unlike ASF or ADF, IBM Composer is
not designed to run workflows that last for days or even
months. It is now mainly targeting at Web mashups and
interactive APIs that require simple workflows.

4) None of the existing services is prepared for parallel
programming: Neither ASF nor ADF offer satisfactory
concurrency and parallelism for compute-intensive tasks.
The overheads are too high. This could change in the
future if there is user demand, but until then, external
client schedulers will likely be the norm to tap into the
massive parallelism of functions.

5) State size implies costs and overheads: ASF imposes a
stringent limit of 32KB for state passing, which allows
them to offer a clear billing model and a very stable
run-time with predictable overheads. ADF does not set
limits on state size. But overheads are still unstable and

the final costs are even unknown beforehand. IBM of-
fers 5MB, but without revealing how the cost of han-
dling state is calculated. Also, its performance declines
with state size. In this case, Amazon is the most mature
project.

6) Orchestration should have a cost: Cloud vendors cannot
offer this service for free, because it consumes storage
and computational resources. Only storage and retrieval
of state, and fault-tolerance support, incur in derived
storage costs. Again, Amazon is the most mature project,
and they are the only ones offering a clear billing model.
Others will have to follow suit in the next months.

7) If the cost is high, users will create their own external
orchestrators: We still do not have adoption statistics for
these commercial services, but in many cases, users will
develop external client schedulers to avoid billing costs.
They will not be ST-safe, but this is not mandatory for
many applications.

8) Event-based Suspend API for functions may deem run-
time orchestrators unnecessary: Just a simple abstraction
like suspending the state of a function until an event is
triggered may be the optimal solution. Using this API, it
would be easy to implement a ST-safe orchestrator. All
programming abstractions (e.g., sequences, branching,
parallel execution) could be built on top of it.

REFERENCES

[1] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu, “The serverless trilemma: Function composition
for serverless computing,” in Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, ser. Onward! 2017, 2017, pp. 89–103.

[2] Y. Kim and J. Lin, “Serverless data analytics with flint,” CoRR, vol.
abs/1803.06354, 2018. [Online]. Available: http://arxiv.org/abs/1803.
06354

[3] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer
Systems, in press.

[4] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, ser. SoCC’17. New York, NY, USA:
ACM, 2017, pp. 445–451.

[5] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). Boston, MA: USENIX Association,
2017, pp. 363–376.

[6] Amazon, “AWS Serverless Repository,” https://aws.amazon.com/
serverless/serverlessrepo/.

[7] ——, “AWS Serverless Application Model (SAM),” https://github.com/
awslabs/serverless-application-model.

[8] IBM, “Composer,” https://github.com/ibm-functions/composer.
[9] ——, “IBM OpenWhisk packages,” https://console.bluemix.net/docs/

openwhisk/openwhisk_packages.html.
[10] Microsoft, “Azure Functions packaging format,” https://docs.microsoft.

com/en-us/azure/azure-functions/deployment-zip-push.
[11] Amazon, “Lambda SQS Event Source,” https://aws.amazon.com/blogs/

aws/aws-lambda-adds-amazon-simple-queue-service-to-supported-
event-sources/.

[12] J. C. Reynolds, “The discoveries of continuations,” Lisp and symbolic
computation, vol. 6, no. 3-4, pp. 233–247, 1993.

http://arxiv.org/abs/1803.06354
http://arxiv.org/abs/1803.06354
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://github.com/ibm-functions/composer
https://console.bluemix.net/docs/openwhisk/openwhisk_packages.html
https://console.bluemix.net/docs/openwhisk/openwhisk_packages.html
https://docs.microsoft.com/en-us/azure/azure-functions/deployment-zip-push
https://docs.microsoft.com/en-us/azure/azure-functions/deployment-zip-push
https://aws.amazon.com/blogs/aws/aws-lambda-adds-amazon-simple-queue-service-to-supported-event-sources/
https://aws.amazon.com/blogs/aws/aws-lambda-adds-amazon-simple-queue-service-to-supported-event-sources/
https://aws.amazon.com/blogs/aws/aws-lambda-adds-amazon-simple-queue-service-to-supported-event-sources/

	I Introduction
	II Related Work
	III Evaluation Framework
	III-A Amazon Step Functions (ASF)
	III-B IBM Composer
	III-C Azure Durable Functions (ADF)

	IV Experimental results
	IV-A Sequences
	IV-B Parallelism
	IV-C State management

	V ST-safe Alternative: Suspend API for Functions
	VI Insights and Future Directions
	References

