
Cost-Efficient Utilization of Public SLA Templates in Autonomic Cloud Markets

Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Schahram Dustdar
Distributed Systems Group, Institute of Information Systems, Vienna University of Technology, Austria

{breskovic, maurer, vincent, ivona, dustdar}@infosys.tuwien.ac.at

Abstract—Dynamic and self-adaptable markets are funda-
mental for the successful implementation of the Cloud comput-
ing paradigm where computing resources are provided on de-
mand and dynamically to the heterogeneous user base. Usually,
in Cloud markets, contracts between traders are established
using Service Level Agreements (SLAs), which include objec-
tives of service usage. However, Cloud markets face challenges,
which are usually not evident in other market types, such as
non-standardized goods and large variety of resource types
offered on the market, resulting in low number of matches
of consumers’ bids and providers’ asks. Moreover, existing
Cloud market mechanisms are usually static and cannot react
on dynamic change of user requirements. To counteract these
problems, we propose an adaptive approach for autonomically
deriving public SLA templates (i.e., templates for generation
of electronic contracts) based on user requirements. Although
this approach brings many benefits, it also incurs cost to users,
since they must adapt specifications of their requirements in
order to match automatically generated public SLA templates.
In this paper, we reduce this cost by autonomically modifying
specifications of user requirements. We introduce a method for
adapting public SLA templates not only in respect to definitions
of SLA attributes, but also to attribute values. Based on an
appropriate utility and cost model, we evaluate the approach
and show that it significantly improves the performance of the
adaptive SLA template technique.

Keywords-Service Level Agreement; SLA management; SLA
mapping; Cloud economics; electronic markets

I. INTRODUCTION

Cloud computing is a novel computing paradigm where
resources (e.g., software services and platforms) are ac-
cessed based on user requirements without regard to where
the services are hosted or how they are delivered. Informa-
tion is, therefore, commoditized and delivered in a manner
similar to traditional utilities such as water, electricity,
gas, and telephony [1]. Requirements of Cloud services
are expressed and negotiated by means of Service Level
Agreements (SLAs), which are contracts signed between a
customer and a service provider.

For the successful implementation of the Cloud computing
paradigm, well-developed software and hardware resource
markets are fundamental [2]. They allow millions of cus-
tomers worldwide to buy and sell consumable services at
any time of the day and from any geographical location that
has Internet access. Due to the broad scope of services and a
large number of users trading, they often offer a potential for
a relatively low price. Finally, they represent a simple, fast,
and inexpensive way to sell and purchase Cloud services.

Many electronic marketplaces suffer from challenging
situations [3]. Namely, due to the static nature of existing
Cloud markets, they cannot react on dynamic change of
user requirements. Moreover, due to the large variability in
resource types and still low number of traders, markets suffer
from low liquidity (i.e., probability to easily and quickly sell
or purchase a service at a certain price), repelling potential
consumers and providers. To counteract this problem, the
SLA mapping approach was introduced [4], making a first
step towards autonomic Cloud markets that adapt to changes
in user demands. The approach utilizes public SLA tem-
plates to represent groups of products traded on the market,
and private SLA templates to describe user requirements.
Users (providers and consumers) associate their services to
public SLA templates and submit SLA mappings to bridge
the differences between their private SLA templates and
the associated public SLA templates. Using the submitted
mappings, user requirements are analyzed and new public
SLA templates derived. This is done by applying clustering
algorithms to group similar demands, and learning methods
to adapt existing templates to reflect the needs of their users.

As shown in [4], the SLA mapping approach facilitates
continuous market evolution and adaptation of public SLA
templates, responding to market trends and changes. How-
ever, the approach has also several shortcomings. Namely,
after the new public SLA templates are derived, users
must create additional SLA mappings before using them,
which incurs cost [3]. As a result, although new public
SLA templates reflect their requirements in a larger extent,
users might prefer keeping the old public SLA templates in
order to avoid additional cost. This results in a constantly
increasing number of public SLA templates on the market,
increasing the cost of market maintenance and reducing the
market liquidity, due to channeling demand through a larger
number of public SLA templates.

In this paper, we introduce a technique for reducing the
cost of utilizing new public SLA templates. In particular,
after a new public SLA template is derived, users’ SLA
mappings submitted to the initial public SLA template are
autonomically modified in order to be applicable to the new
public SLA template. This approach improves the utility
of market participants, since they may utilize new public
templates that reflect their needs without any expenses.
Furthermore, the initial public SLA templates can be deleted
and replaced by the new templates, avoiding continuously



increasing number of public templates on the market and
making the market more efficient.

Besides autonomic creation of SLA mappings, in this
paper, we introduce a new method for grouping similar user
requirements that considers not only the structures of private
SLA templates, i.e., definitions of SLA parameters, but the
values of Service Level Objectives (SLOs) as well. SLOs are
agreed values of SLA parameters representing obligations
of the trading parties. With this approach, we additionally
increase the utility of market participants and provide more
advantageous options for creating product niches.

The main contributions of this paper are: (1) description of
the autonomic SLA mapping creation approach; (2) grouping
similar user requirements based on SLO values; (3) the
formalization of a measure for evaluating the approach
by determining the utility and cost to users; and (4) the
evaluation of the approach using an experimental testbed.

The rest of the paper is organized as follows. Section II
describes related work. Section III explains the adaptive SLA
mapping approach and introduces methods for autonomic
creation of SLA mappings. Methods for achieving cost-
efficient utilization of public SLA templates are discussed
in Section IV. Section V describes the simulation testbed,
formalizes the utility and cost model, and presents the
evaluation results. Section VI concludes the paper.

II. RELATED WORK

Specifications of user requirements in distributed systems
(Clouds and Grids) has been discussed by several research
projects [5]–[7]. As reported in [8], most projects use
SLA specifications based on WSLA and WS-Agreement,
which lack support for economic attributes and negotiation
protocols. To compensate these shortcomings, [5] introduce
utilization of semantic Web technologies based on WSDL-S
and OWL for enhancement of WS-Agreement specifications
to achieve autonomic SLA matching. Similar to that, [6]
and [7] suggest producing a unified QoS ontology appli-
cable to the main scenarios, including ontology-based SLA
formalization. However, they discuss only static SLAs and,
therefore, do not consider market changes.

Several research projects have discussed the implemen-
tation of system resource markets [9]–[11]. GRACE [9]
developed a market architecture for Grid markets and out-
lined a market mechanism, while the good itself (i.e.,
computing resource) has not been defined. Moreover, the
process of creating agreements between consumers and
providers has not been addressed. The SORMA project
[10] also considered open Grid markets. They identified
several market requirements, such as allocative efficiency,
budget-balance, truthfulness, and individual rationality [11].
However, they have not considered that a market can only
function efficiently with a sufficiently large liquidity.

As reported by Kephart and Chess [12], the scientific com-
munity has in recent years focused on making distributed

systems and supporting technologies adaptive and sustain-
able, referring to the principles of autonomic computing.
However, most of the scientific work addresses technical
issues to make systems autonomic, such as the develop-
ment of negotiation protocols to make Cloud services self-
adaptive [13], or considers autonomic service management
frameworks without explicitly taking economic methodolo-
gies into account [14]–[16]. On the other hand, research
on autonomic systems focusing on economic methods and
considerations, first proposed by [17], is in its early stage.
For example, [18] propose mechanisms that are able to
adaptively adjust their parameters based on the past behavior
of participants. A self-organizing resource allocation mecha-
nism in dynamic Application Layer Networks is proposed by
[19]. They do not, however, consider issues such as the mar-
ket adaptation depending on the available resources, which
is a crucial element for potential autonomic marketplaces.

III. TOWARDS AUTONOMIC CLOUD MARKETS

In our vision of Cloud markets, traders express their
requirements and offers in form of SLA templates. They are
documents comprising SLA parameters. Each SLA parame-
ter is given by its description, stating basic parameter prop-
erties (e.g., parameter name), metric, representing a method
of calculating the parameter, and Service Level Objective
(SLO), i.e., contract’s agreed value of the parameter. SLOs
are in SLA templates defined by ranges of acceptable values.
For example, an SLA template might state that any value
between 80 and 100 for a parameter CPUCores representing
the number of processor cores is acceptable for the user.

Consumers’ requests and providers’ offers are expressed
by means of private SLA templates. On the other hand, pub-
lic SLA templates are stored in publicly available, searchable
SLA registries and represent groups of products traded on
the market. For example, a public SLA template might be
defined for medical applications. When a provider wants to
offer a Cloud service on a market, he must first associate
his service to a public SLA template, i.e., position his offer
in one of the existing groups of products. This facilitates
finding appropriate trading partners, enables better consumer
support, and possibly increases providers’ profit, due to the
possibility of creating specialized product niches.

However, for the successful trading between two parties,
SLA templates must be exactly the same in their structures
in order to be understood by both sides. This implies that
users’ private SLA templates must be equal to the public
SLA templates, which is often not the case. For this purpose,
we utilize the SLA mapping technique [4]. SLA mappings
are documents used to map the differences between two SLA
templates. We differentiate between ad-hoc SLA mappings,
which define a translation between a parameter existing in
both SLA templates, and future SLA mappings, which define
a wish for deleting an SLA parameter from a public SLA
template or adding a new parameter that is supported by
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user’s private template to a public SLA template. Properties
mapped by ad-hoc mappings can range from very simple,
such as incompatible element names (e.g., different names
for the same SLA parameters) to very complex distinctions,
such as differences in methods for calculating the parameter
values (e.g., different units for expressing the same values).

A. The SLA Mapping Approach
Figure 1 depicts the market adaptation process. In the

first step, a service provider assigns a service to a particular
public SLA template. For example, if a provider offers a
data-intensive surgical application for use, he might asso-
ciate it with a public SLA template for medical applications.
If the provider’s private SLA template describing the service
differs from the public template, he must define SLA map-
pings to bridge those differences (step 2). In the next step,
a consumer looks for a Cloud service to use. He fetches a
public SLA template and, if his private SLA template differs,
he creates SLA mappings to map those differences (step 4).

At a certain point of time, the public SLA template adap-
tation process is started (step 5). This process is executed
in several steps, as depicted in Figure 2. First, clustering
algorithms are applied to group structurally similar user
requirements based on submitted SLA mappings. Two SLA
templates are similar by their structures if parameter defini-
tions and metrics from the templates are similar, based on the
distance function defined in Section IV. With this approach,
the algorithm may update or even create new branches of
existing public SLA templates. For example, when adapting
a public template for medical applications, one group of
requirements might be for surgical applications, while an
another one might be for services in oncology. In the second
step, for each generated cluster, clustering algorithms are
applied to create subgroups of requirements by differing in
SLO values expressed in users’ private SLA templates. For
example, in the group for surgical applications, a clustering
algorithm might recognize a subgroup for data-intensive
surgical applications (e.g., for big city hospitals), and another
for simple surgical applications (e.g., for small ambulances).

For each of the subgroups of user requirements created by
the second iteration of clustering, a new public SLA template
is created. This is done by applying learning methods (step 3
in Figure 2), which for each parameter from the initial public

SLA template determine if its properties should be changed,
or if a new parameter should be introduced, or an existing
one deleted. After new templates have been created, they are
published in the registry, and the old ones are deleted.

B. Autonomic SLA Mapping Adaptation

Although new public SLA templates reflect users’ needs
more precisely, users might prefer keeping the old public
templates instead of using the new ones. This is because of
the expenses for creating more SLA mappings to the new
SLA templates, while the usage of the existing templates
does not incur any additional cost. This results in a constant
increase of number of public SLA templates, which may
raise the expenses for the market, since the registry holds
and maintains both old and new SLA templates. Therefore,
a market must motivate users to utilize new public SLA
templates, which is possible only without incurring them
additional costs. To counteract this problem, in this paper,
we investigate autonomic modification and creation of SLA
mappings. Namely, we update the existing and possibly
create new SLA mappings for users by utilizing the same
rules used to transform the initial public SLA templates into
the new public templates (step 6 in Figure 1). This approach
dramatically reduces the cost for users and enables the
market to delete the old public SLA templates, ensuring low
cost of maintenance. The process of autonomic adaptation
of SLA mappings is explained in detail in Section IV.

IV. ACHIEVING COST-EFFICIENT UTILIZATION OF
PUBLIC SLA TEMPLATES

In this section, we discuss the algorithms and methods
implemented for grouping similar user requirements and
generating new SLA templates. Besides, we explain the
process of the autonomic creation of SLA mappings.
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A. Public SLA Template Management

In the first step of the adaptation process, as mentioned
in Section I, a clustering algorithm is applied to group
similar requirements of market participants. User require-
ments are specified by private SLA templates, which can be
reconstructed from the public SLA templates by applying
users’ SLA mappings. Therefore, it is possible to say that
the clustering algorithm is applied to group users’ private
SLA templates. This process is executed in two steps. In the
first step, as described in [4], submitted SLA mappings are
analyzed and users’ private SLA templates grouped so that
one cluster contains those templates that are similar by their
structures. In this paper, we introduce the second step, in
which for each group of private SLA templates a clustering
algorithm is applied to group templates into new clusters
based on the SLO values contained by the templates.

For grouping users’ private SLA templates we apply
the k-means clustering algorithm. k-means partitions N
data points into k disjoint subsets Sj containing Nj

data points so as to minimize the sum-of-square criterion∑k
j=1

∑
n∈Sj

|xn − µj |2, where xn is the nth data point
and µj is the geometric centroid of the data points in Sj

[20]. The algorithm, given an initial set of k means, assigns
each data point to a cluster with the closest mean. It then
calculates new means to be centroids of observations in the
clusters and stops when the assignments no longer change. In
our discussion of grouping user requirements, a data point is
a user’s private SLA template, and a cluster centroid is a new
public SLA template for the group of users. In this paper,
k-means creates

√
N/2 clusters, while in our future work

we plan to introduce a heuristic method for determining the
number k based on a measure of market liquidity.

In order to be able to utilize clustering algorithms, we
must determine (dis)similarity of two data points, i.e., two
SLA templates. Furthermore, based on the submitted SLA
mappings, we must define a method for computing a cluster
centroid, i.e., a new public SLA template for a group
of users. In the following, we explain our approaches to
counteract the two issues.

1) Computing Distance Between SLA Templates: We
define two methods for computing distance between SLA
templates: one in respect to their structures, and one in
respect to their SLO values.

The distance between the structures of SLA templates is
expressed as a number of differences between parameter
properties of SLA templates. For two SLA templates T1 and
T2, the distance between their structures S in respect to an
SLA parameter p and its properties (parameter description
and metric) is defined as:

dS,p(T1, T2) =


0, if properties of p are same in T1 and T2

1, if T1 or T2 does not contain p or if only
one property of p differs in T1 and T2

2, if both properties of p differ in T1 and T2

Total distance between two SLA templates in respect to their
structures is calculated as sum of distances between all SLA
parameters contained by at least one of the templates.

When calculating the distance between two templates in
respect to their SLO values, we must consider that the SLO
values are in SLA templates represented by ranges of real
numbers, as explained in Section I. In order to compute the
distance between such ranges, we utilize Hausdorff metric
[21], which defines this value as a maximum distance of one
range to the nearest point in the other range. In detail, if X
and Y are two non-empty subsets of a metric space (M,d),
their Hausdorff distance dH(X,Y ) is defined by

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (1)

where sup represents the supremum and inf the infimum.
Let values of an SLO V from an SLA template T1 be
VT1

= [x1, y1] and SLO value from an SLA template T2
be VT2

= [x2, y2]. For any two bounded ranges VT1
and VT2

it is simple to show that their Hausdorff distance is

dH(VT1
, VT2

) = max(|x1 − x2|, |y1 − y2|) (2)

The total distance between two SLA templates in respect
to their SLO values is calculated by computing distances
between values defined in at least one of the templates and
adding them up. In order to be mutually comparable, they
are fitted into a range [0, 1] before summing. This is done
by applying the following equation:

dV (T1, T2) =
dH(VT1 , VT2)−min(dH,V )

max(dH,V )−min(dH,V )
(3)

where min(dH,V ) is the minimum distance between any
two SLA templates in respect to the values of the SLO V
and max(dH,V ) its maximum. If a value is contained by
only one of the two templates, the distance is maximum,
i.e., equal to 1. In case the SLO values are expressed in a
unit different from the SLO unit defined by the initial public
SLA template, the value is being converted into the unit from
the public template before computing the distance.

2) Adapting SLA Templates: For each computed cluster
of users’ private SLA templates, we must be able to compute
a cluster centroid, i.e., derive a new public template from an
initial public SLA template depending on the needs of the
group of users. For this purpose we define three learning
methods. These methods analyze submitted SLA mappings
and for each SLA parameter determine whether the current
parameter description and metric should be changed, as well
as if a new parameter should be added or an existing one
deleted. As in [4], we utilize the following methods:
a) maximum method, which selects a candidate with the

highest number of SLA mappings (maximum candidate);
b) threshold method, where the value gets chosen if it

has the highest count and is used more than the given
threshold (in our simulations fixed at 60%); and



c) significant-change method, where a parameter property
is only changed if the percentage difference between the
highest count value and the current public template value
exceeds a given threshold, which we fix at σT > 15%.

After adapting template structures, SLO values are con-
verted to possibly changed SLO units and updated in order
to reflect user requirements. An SLO value is changed so
that the lower limit of the range is set to the minimal value
and the upper limit to the maximal value contained by any
private SLA template in the given group of users.

B. Autonomic SLA Mapping Modification

In order to reduce the cost of creating new SLA mappings
for users and therefore make the market more attractive,
once a new public SLA template has been introduced to
the market, users’ SLA mappings are redefined so that they
can be used for the newly created public SLA templates
in future processes. In our discussion of the algorithm
for autonomic SLA mapping modification, we observe a
user’s private SLA template Tu, an initial public SLA
template Ti, and a newly generated public SLA template
Tn. An SLA parameter α is in an SLA template T defined
by its description DT (α), metric FT (α), and SLO value
SLOT (α), noted [DT (α), FT (α), SLOT (α)]. An ad-hoc
SLA mapping between descriptions of an SLA parameter α
in SLA templates T1 and T2 is noted as DT1

(α)↔ DT2
(α).

Finally, we define function χ to determine if T contains α:

χT (α) =

{
false, if T does not contain α
true, if T contains α

(4)

The algorithm iterates through all SLA mappings applied
to transform Ti into Tn, and for each mapping executes one
of the possible actions, as depicted in Figure 3. Since a
mapping for a parameter α only exists if there is a difference
in its definition in two SLA templates, we assume that α
exists in at least Ti or Tn and that its properties differ in
those templates. In cases where this does not hold, existing
user’s SLA mappings for this parameter are kept intact.

In case α exists in all three SLA templates (line 1), one
of the following actions is executed:

1) If a parameter property did not differ in Ti and Tu, but
it changed in Tn, a new ad-hoc mapping is created to
map the newly created difference (lines 2-3).

2) If a parameter property differs in all three templates,
a new ad-hoc SLA mapping is created (lines 4-5) that
is a combination of the existing mappings so that the
output of one becomes the input for another mapping,
as illustrated in Figure 4.

3) If a parameter property does not differ in Tu and Tn,
existing ad-hoc SLA mapping is deleted (lines 6-7).

In case α was deleted from Ti, but it is needed by the
user, the algorithm creates a new adding wish (lines 9-
10) and deletes possibly existing ad-hoc mapping for the

1: if χTn(α) = χTi(α) = χTu(α) = true then
2: if DTi(α) 6= DTn(α) ∧DTi(α) = DTu(α) then
3: create DTn(α) ↔ DTu(α)
4: else if DTn(α) 6= DTi(α) ∧ DTn(α) 6= DTu(α) ∧

DTi(α) 6= DTu(α) then
5: combine DTn(α) ↔ DTi(α) and DTi(α) ↔ DTu(α)
6: else if DTn(α) 6= DTi(α) ∧DTn(α) = DTu(α) then
7: delete ad-hoc mapping DTi(α) ↔ DTu(α)
8: end if
9: else if χTn(α) = false ∧ χTi(α) = χTu(α) = true then

10: create adding wish [DTu(α), FTu(α), SLOTu(α)]
11: if DTi(α) 6= DTu(α) then
12: delete existing ad-hoc mapping DTi(α) ↔ DTu(α)
13: end if
14: else if χTi(α) = true ∧ χTn(α) = χTu(α) = false then
15: delete existing deleting wish for the parameter α
16: else if χTi(α) = false ∧ χTn(α) = true then
17: if ∃µ : χTu(µ) = true ∧ χTi(µ) = false ∧ DTu(µ) =

DTn(α) ∧ FTu(µ) = FTn(α) then
18: delete existing adding wish for the parameter µ
19: else
20: create deleting wish for the parameter α
21: end if
22: else if χTi(α) = χTn(α) = true ∧ χTu(α) = false then
23: keep existing deleting wish for the parameter α
24: end if

Figure 3. Algorithm for autonomic SLA mapping modification

deleted parameter (lines 11-12). On the other hand, if it was
deleted from Ti, but the user does not need it, the existing
deleting wish is removed (lines 14-15). If a new parameter
is introduced in Tn (line 16), the algorithm deletes existing
adding wish if it recognizes the equivalent from Tu (lines
17-18), or it creates a deleting wish for the newly added
parameter (lines 19-20). Note that the recognition of the
newly added parameter’s equivalent in the user’s private SLA
template is possible only if the user’s adding wish is exactly
the same as the one applied to modify the initial public
SLA template. Finally, if the parameter properties changed
in Ti and Tn, but the user does not utilize the parameter,
the existing deleting wish is kept (lines 22-23). Note that in
Figure 3 we compare only parameter descriptions, while the
implementation also considers their metrics. This is done by
simply replacing DT with FT in the given algorithm.

Ideally, by autonomically modifying users’ SLA map-
pings, we eliminate the cost of creating new SLA mappings
for the users. However, this is not always the case. Most of
the created SLA mappings can be directly used without caus-
ing any concern. However, in case an important parameter
gets deleted from the initial template, although the algorithm
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Table I
USER’S UTILITY PER SINGLE SLA PARAMETER

Utility Cause
0 The parameter does not exist in one of the SLA templates
A Both parameter properties differ in the SLA templates
B Only one parameter differs in the SLA templates
C SLA templates do not differ with respect to the parameter

Table II
USER’S COST PER SINGLE SLA PARAMETER

Cost Cause
0 User needs no new SLA mappings
D User must create new ad-hoc SLA mapping(s)
E User must create a new future SLA mapping
F User must rectify autonomically created SLA mappings

creates an adding wish to substitute this loss, a user might
not be satisfied by using a new version of the template, since
it might not reflect his requirements in an acceptable extent.
Therefore, in case of autonomic creation of adding wishes,
we must warn the user about the possible consequences.
Furthermore, in case a new SLA parameter has been added
into the public template, the algorithm cannot determine
whether the user needs the parameter or not. Namely, in case
a user’s private SLA template contains the same parameter,
but with a different property, we cannot recognize that those
are equivalents, due to the lack of semantic description of
SLA parameters. In this paper, we solve this problem by
keeping an adding wish to add the parameter from the private
SLA template and creating a deleting wish to delete a newly
introduced parameter from the new public SLA template.
Furthermore, the market notifies the user and warns him
about the possible consequences of the adaptation process.

V. EVALUATION

A. Utility and Cost Model

To assess the benefits of our approach, we define a utility
and cost model. The model quantifies the advantages of the
approach, as well as the costs it incurs. In this paper, we
modify the model mathematically formalized in [4].

The utility and cost functions define utility and cost for a
single user per one SLA parameter and they are calculated
for all parameters contained by user’s private SLA template
or by the newly created public SLA template associated
to the user’s service. Overall utility and overall cost are
calculated by summing utility and cost for all users and
for all SLA parameters. The difference between the overall
utility and overall cost determines the overall net utility of
the users and is used for the evaluation of the approach.

Simplified representation of the utility function is given in
Table I. As stated, a user has no utility for an SLA parameter
if the parameter does not exist in user’s private SLA template
or associated public SLA template, since the user cannot
utilize such parameter. If the parameter is contained by
both SLA templates, but with different properties (parameter
description and metrics), the user has utility A. If only one

Table III
VALUES FOR THE UTILITY AND COST MODEL USED FOR SIMULATION

Variable A B C D E F
Value 1 2 3 1 2 5

of the properties differs in the templates, the user has utility
B. Finally, if the parameter does not differ in the two SLA
templates, the user has the maximum utility C.

The cost function depicted in Table II states that a user has
no cost for an SLA parameter if he does not have to create
any new SLA mappings before utilizing the parameter. This
occurs when parameter properties are the same in the user’s
private template and in the new public SLA template, or
if they differ, but SLA mappings bridging the differences
already exist. The latter might happen if the new public SLA
template does not differ from the initial public template in
respect to the parameter, so that the user has already created
the mappings in the last iteration, or if it changed, but the
mappings were autonomically created for the user. If a user
must create one or two ad-hoc SLA mappings, due to the
differences between one or both parameter properties, user
has the cost D. If he must create a future SLA mapping, i.e.,
an adding or a deleting wish for a missing SLA parameter,
the cost is equal to E. Finally, the user has the cost F if
he must rectify his SLA mappings. This might happen if
the new public SLA template has a new SLA parameter
existing in the user’s private SLA template, but with a
different property. In this special case, the autonomic SLA
mapping manager cannot recognize that the user’s parameter
is the same as the newly added parameter in the public SLA
parameter and instead of creating ad-hoc SLA mappings, it
creates a deleting wish for the newly added SLA parameter
and an adding wish for the parameter existing in the user’s
private SLA template. As mentioned in Section IV, this is
the only scenario in which autonomic modification of user’s
SLA parameters fails to satisfy user’s needs.

Note that the more similar SLA templates are, the more
a user is attracted to the market and gets higher utility.
Considering the cost, we assume that creating a future
SLA mapping incurs more cost than creating an ad-hoc
SLA mapping, due to the mapping complexity. Therefore,
although the values for the utility and cost functions are not
strictly defined, considering effort or benefit, it should hold
that 0 ≤ A ≤ B ≤ C and 0 ≤ D ≤ E ≤ F . In our
simulations, we used the values depicted in Table III.

B. Simulation Environment

For the simulation purposes, we designed a framework for
automated management of SLA mappings and generation
of SLA templates. The framework is built out of three
main components, implemented in Java: market repository,
frontend services, and market modification component.

Market repository is a publicly available and searchable
directory used for storing and managing public SLA tem-
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Figure 5. Simulation results: overall net utility

plates and SLA mappings. Frontend services are market
services publicly available to the users. The services are used
for administration (e.g., creating SLA templates), accounting
(e.g., creating consumer accounts), querying (e.g., finding
an appropriate SLA template), and management of SLA
mappings (e.g., defining mappings for a user). Market mod-
ification component includes mechanisms for autonomic
creation and management of public SLA templates and
adaptation of users’ SLA mappings.

The simulation is conducted as described in Section III.
After new SLA templates have been derived and users’ SLA
mappings adapted, the overall net utility is measured to
evaluate the process. In our simulation, the initial public
SLA template is static and contains 8 SLA parameters.
Users’ private SLA templates are generated randomly at the
beginning of the evaluation process and can contain up to 11
SLA parameters, where for each SLA parameter users can
choose between 5 predefined parameter descriptions and 4
metrics. Table IV summarize the simulation settings.

Table IV
SIMULATION SETTINGS

Parameter Value
Number of service providers 1
Number of service consumers 500
Number of initial public SLA templates 1
Number of parameters in initial public SLA template 8
Number of parameters in private SLA templates ≤11
Size of the set of possible descriptions per SLA parameter 5
Size of the set of possible metrics per SLA parameter 4

C. Evaluation Results

In this section, we measure and compare the overall net
utility achieved by both the approach introduced in this paper
and the one presented in [4], where the SLA mappings were
not autonomically created after the adaptation of the public
SLA templates, but manually by the users.

Figure 5 presents the overall net utility achieved by the
two approaches for each of the learning methods. As de-
picted, by autonomically modifying existing SLA mappings,
the overall net utility is significantly higher than when the
users must manually create new mappings. Note that the
overall utility does not differ in the two approaches, since
the newly created public templates are equal. Therefore,
the difference in overall net utility is caused only by the
reduction of the cost for creating SLA mappings.
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Figure 6. Simulation results: overall cost

The difference between costs incurred by the approaches
is depicted in Figure 6. Since in our new approach the
users are not required to create any new SLA mappings,
the overall cost for users is reduced almost to 0. The
cost still exists since not all of the autonomically created
SLA mappings fully satisfy users’ needs. In particular, as
explained in the definition of the utility and cost model,
the adaptation algorithm might not correctly recognize a
newly added parameter’s equivalent in a user’s private SLA
template. This, of course, incurs cost, since the user must
rectify created mappings. However, note that the new SLA
parameters are not added in public templates on a regular
basis, but rather seldom, in case of a large change in user
requirements. Therefore, the overall cost for users is in most
cases of the adaptation process equal to 0.

It is important to note that the cost for creating SLA
mappings has not vanished, but shifted from the users to the
market. However, the cost for creating SLA mappings is in
this case negligible, since they are adapted autonomically
instead of manually and therefore do not require human
interaction. Additionally, since the mappings are immedi-
ately updated, initial public templates can be deleted and
replaced by newly created SLA templates. This was not
possible in the previous approach, due to the necessity to
create new mappings before utilizing newly created public
templates. This was sometimes hard to achieve, since the
users preferred keeping the old public templates so to
avoid additional cost of creating new SLA mappings. By
dynamically replacing public SLA templates, the cost for
maintenance and storage of public SLA templates is reduced.

As depicted in Figure 5, the maximum method achieves
the highest rate of overall net utility, although it incurs more
cost than the threshold method, as depicted in Figure 6. This
is due to more frequent changes of parameter properties,
which increases the utility, but also the cost, since every
change requires a new SLA mapping.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach for cost-efficient
utilization of public SLA templates in autonomic Cloud
markets. Namely, we presented a method for autonomic
modification and creation of SLA mappings in order to
reduce the cost of creating SLA mappings for market partic-
ipants, allowing them to utilize new public SLA templates



representing the current market trends without any effort.
Furthermore, we investigated autonomic creation and man-
agement of public SLA templates both by their structures
and their SLO values. Our evaluation model based on the
simulation framework showed that our approach increases
the overall net utility of traders and market in general and
lowers the cost of market maintenance.

In our future work, we will investigate the possibilities of
reducing the cost of creating SLA mappings to the initial
public SLA templates. We will do this by introducing a
knowledge component managing the history of previous
private SLA templates and SLA mappings, and apply ma-
chine learning methods to advise users of possible mappings
to create. Furthermore, we will explore the methods for
measuring market liquidity and adapt public SLA templates
so as to increase the liquidity to its maximum point.
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