
FIWARE Lab: Managing Resources and
Services in a Cloud Federation supporting

Future Internet Applications
Theodore Zahanadis , Andreas Papadakis , Federico Alvarez , Jose Gonzalez , Fernando Lopez

Federico Facca , Yahya Al-Hazmi

Abstract — Real-world experimentation facilities accelerate the
development of Future Internet technologies and services,
advance the market for smart infrastructures, and increase the
effectiveness of business processes through the Internet. The
federation of facilities fosters the experimentation and innovation
with larger and more powerful environment, increases the
number and variety of the offered services and brings forth
possibilities for new experimentation scenarios. This paper
introduces a management solution for cloud federation that
automates service provisioning to the largest possible extent,
relieves the developers from time-consuming configuration
settings, and caters for real-time information of all information
related to the whole lifecycle of the provisioned services. This is
achieved by proposing solutions to achieve the seamless
deployment of services across the federation and ability of
services to span across different infrastructures of the federation,
as well as monitoring of the resources and data which can be
aggregated with a common structure, offered as an open
ecosystem for innovation at the developers' disposal. This solution
consists of several federation management tools and components
that are part of the work on Cloud Federation conducted within
XIFI project to build the federation of cloud infrastructures for
the Future Internet Lab (FIWARE Lab). We present the design
and implementation of the solution-concerned FIWARE Lab
management tools and components that are deployed within a
federation of 17 cloud infrastructures distributed across Europe.

Index Terms — cloud computing; federation management;
open innovation.

I. INTRODUCTION

Open Innovation [1] is one of the most active trends in
innovation processes during the last years. In short, Open
Innovation is about creating and profiting from technologies
by providing open ecosystems or platforms that foster the easy
and open exchange of ideas to produce innovative products or
solutions. As shown by many recent attempts [2], cloud
capacity and services are of great value to support Open
Innovation and facilitate start-up incubation through
infrastructure resources. How to create a large distributed

cloud to boost innovation across European regions? This
requires either large investments by a single player or an
agreement among many players that team-up together to build
such a cloud. Of course, when different players team up
together, they do not want to lose all the control on their own
infrastructure. For example, a given infrastructure owner may
not want to share all its monitoring data, or may prefer to use a
specific solution to provide network connectivity to the user
accessing it, or may request the user to be registered in an
infrastructure proprietary Identity Management solution. These
are some of the challenges and motivations behind a federated
cloud architecture [3].
This paper presents the work on Cloud Federation conducted
within XIFI project [4] to build the federation of cloud
infrastructures for the Future Internet Lab (FIWARE Lab) [5]:
an open innovation platform to develop Future Internet
applications. FIWARE Lab offers a rich catalogue of services
available either in SaaS or PaaS modality, the so called
Generic Enabler implementations (GEis) and a wide offer of
Future Internet facilities (e.g. sensor networks, 4G networks,
etc.). The GEis, developed within FIWARE project [6], are
conceived to be building blocks that can be easily composed to
create complex applications. In this perspective, the Future
Internet facilities provide advanced experimental capacities to
developers that are able to link their applications with actual
infrastructures and test them in real world settings.
Currently, the cloud federation backing FIWARE Lab consists
of a community of 17 cloud infrastructures spanning multiple
regions across Europe [7]. The variety and heterogeneity of
such context raise several challenges to the harmonization of
the cloud offering to developers. To reap the rewards of
adopting a cloud federation approach, the appropriate
management of such complex environment and the associated
resources are key elements in the provision of cloud services.
This paper presents some innovative components that, working
in an orchestrated manner, perform core operations within the
federated management of FIWARE Lab. More specifically, in
the context of this paper we present the components that deal
with the management of resources and services from an
application developer viewpoint, in particular: i) the capacity
to deploy multi-tier applications across the federation; ii) the
provisioning of real-time information by the services (GEis)

offered by the community, supporting prompt responses and
accommodating different accessing policies; iii) the design and
implementation of a centralized mechanism to handle large-
scale monitoring data gathered via the federated underlying
resources, by establishing a well-defined and standardized API
for storing, aggregating and publishing such data.
The rest of the paper is structured as follows: Section II
provides current state-of-the-art solutions and challenges that
have been tackled for the realization of FIWARE Lab. Section
III presents an overview of the cloud federation management
architecture adopted in FIWARE Lab, along with the
description of the components functionality. Moreover,
Section IV presents a real-case scenario, discussing
appropriate actions for managing the whole life-cycle of a
multi-tier application within FIWARE Lab. Finally, the main
conclusions and future work are presented in Section V.

II. STATE OF THE ART AND CHALLENGES

Plenty of academic research and industry standardization
activities are related to the concept of cloud federation. The
IEEE intercloud is an initiative that focuses currently on
standardization for cloud interoperability and federation [8].
Additionally, the OpenStack as a widely-used cloud
management framework, adopted by FIWARE Lab, has some
means of federation aspects focusing on the federation of
identity management across the federated clouds through the
Keystone [9]. The survey in [10] discusses many aspects
motivating the concept of the cloud interoperability or
federation, categorizes and identifies multiple possible
scenarios and architectures for cloud interoperability.
Papazoglou in [11] presents a reference architecture for cloud
integration together with an approach for integration and
management environment capable of offering integration-as-a-
service functionality. Moreover, the authors in [12] show the
added value of the federation of multiple independent cloud
providers, through the adoption of a layered cloud service
model (of SaaS, PaaS, IaaS), mediated by a broker, specific to
the concerns of the parties at that layer. Moreover, several
European activities focus on cloud federation such as EGI
federated cloud [13], Contrail [14] and BonFIRE [15].
Nevertheless, in federated clouds, many challenges concerning
resource provisioning, orchestration, monitoring require
thorough investigation. Authors in [16] introduce a data-
centric approach for orchestration of cloud resources where
resources are modeled as structured data that can be queried
by a declarative language as well as updated with well-defined
transactional semantics. In [17], the authors propose
technology-neutral interfaces and architectural additions for
handling placement, migration and monitoring of Virtual
Machines (VMs) in federated cloud environments. However,
this work does not take into consideration the specificities of
gathering and consuming data of the federation through a
uniform API. In [18], the advantages of adopting a
heterogeneous federation approach are discussed and a high-
level architecture is presented regarding the Future Internet
Experimentation Facilities, where the monitoring component
are introduced to cater for providing information about the
infrastructure resources for experimenters. As it is an ongoing

work, this federation approach is still in its specification and
implementation phase. The BonFIRE multi-site cloud testbed
facility [15] supports large-scale testing of applications,
services and systems over multiple, geographically distributed,
heterogeneous cloud testbeds. In order to ease the setup and
deployment of an experiment in BonFIRE, the JSON-
formatted experiment descriptor is used [19]. A user submits a
single document to the BonFIRE experiment manager
interface that is able to orchestrate the cloud resources
provisioning taking into consideration their dependencies.
However, the aim of this federated infrastructure is not to
provide a production environment for cloud applications; this
makes the adoption of this architecture improper for the needs
of FIWARE Lab. Last but not least, a cloud federation
platform demands a standard API to manage, in a
homogeneous manner, the performance monitoring data
collected from the multiple resources spread across the
federated domains. To accomplish such a duty, the data-set to
be handled requires uniform representation at federation level.
We already give in our prior work [20] an overview on the
state-of-the-art on cloud monitoring and introduced the
concept of Federation Monitoring together with its description,
which is enhanced in this document.
From the efforts introduced so far, it is evident that a number
of challenges regarding the management of cloud federation
still remain unsolved. Additionally, particularly in the case of
FIWARE Lab, one has to deal with specificities introduced by
the adoption of the GEi concept that are not addressed by
cloud platforms, such as OpenStack which has been selected
by FI-Lab as the basis for its cloud federation environment. It
is highlighted that through the selection of OpenStack,
FIWARE Lab is also aligned with the standardized Open
Cloud Computing Interface (OCCI) specifications [21]. In the
following, we present the challenges related to the
simplification of activities to be performed from an application
developer's point of view, covering the whole life-cycle of an
application, as well as the proposed solutions adopted by
FIWARE Lab to address these challenges:
• Deploying an application in a cloud federation is not a
trivial task for an application developer, due to several
reasons. First, he must be capable of deploying multi-tier
application, given that due to regulatory or security reasons
each tier may need to be deployed in different infrastructures
comprising the cloud federation. Second, he must be able to
select among a set of configuration tools that will help him to
minimize chronophage operations, such as upgrade, etc. To
resolve this issue, a Platform-as-a-Service instantiation has
been developed, namely Pegasus, which is a reference
implementation of the PaaS developed within FIWARE and
offered in FIWARE Lab, catering for the minimization of the
effort needed for deploying and adapting applications, while
offering the ability to deploy multi-tier applications within the
cloud federation in an easier manner.
• The application developer must be given the opportunity to
check the GEis already available in the cloud federation, in
order to be able to combine them and develop complex
applications timely and easily. The Deployment and
Configuration Adapter (DCA) is a component, deployed
within FIWARE Lab that gathers and correlates information

Master node

Resource Catalogue/
Recommendation tool

«R
- - G -

User

FIWARE Lab Cloud
Portal

3 R»

Federation
Monitoring

RT

Deployment and
Configuration

Pegasus
«R Generic Enablers

Repository

R»6

Federation
Monitoring

I
i

) R i

IMM !

Q R T

2 R*

Federation
Monitoring

Q R T

<R

Slave nodett 1

Virtual Machine
Runtime Execution

Container

(J)RA

MM !

-

Virtual Machine
Runtime Execution

Container

R»
--C--

Slave node# n

Figure 1 - Architecture overview and federated management approach.

on GEis offerings throughout the cloud federation, providing a
standardized, RESTful API to execute complex queries
regarding the provisioned services across the cloud federation.
• An application developer must be able to monitor the
performance of the federation resources that he is willing to
use, regardless of the heterogeneity arising from different
monitoring tools installed by each infrastructure node. In order
to accomplish the challenge of a unified and scalable
monitoring framework across the cloud federation, a
Federation Monitoring system (along with specific adapters)
has been implemented and integrated in FIWARE Lab,
offering a standard API to manage, in a homogeneous manner,
aggregated and real-time monitoring data.
The aforementioned components are described in detail in the
next section.

III. ARCHITECTURE OVERVIEW AND FEDERATED

MANAGEMENT OF RESOURCES AND SERVICES

This section presents an overview of the cloud federation
management architecture and the connections between
corresponding components, comprising the federation layer of
FIWARE Lab, as depicted in Figure 1. It is noted that although
the architecture includes a plethora of components, this paper
will focus on those related to application developers and end-
users. In the next paragraph, the main functionality and the
interactions of the main components are exemplified through a
typical deployment and monitoring scenario. Prior to
describing the basic functionality of each component depicted
in Figure 1, it is important to mention that the FIWARE Lab
platform architecture consists of a Master Node, that includes
the components responsible for supporting the federation
management and the provisioning of resources and services

across the federation in a unified fashion, and several Slave
Nodes, i.e. the different Cloud infrastructures taking part to the
federation, offering their resources and services.
As aforementioned, in this paper, we focus on the perspective
of an application developer, in the FIWARE Lab context, as a
user of the cloud federation platform. To access the cloud
resources, the developer, after authenticating through the
Federated Identity Manager (IdM-OAuth), logs into the
FIWARE Lab Cloud Portal. The portal enables the user to see
the list of available services and resources according to their
location in the federation or even retrieve on demand
information (in the form of ratings) regarding the provided
services already deployed and used by other users, via the
Resource Catalogue. At this point, the user, willing to deploy
his own application in the cloud federation, may select one or
more services (including all GEis stored in the Generic
Enablers Repository), either through pre-built images or
dynamically composed recipes and blueprints, provided
through the Pegasus which represents a PaaS GEL Pegasus
offers the ability to the application developer to deploy a
multi-tier application where each tier is deployed in a different
Slave Node (multi-node deployment of multi-tier
applications). To support the deployment, Pegasus
communicates with the Data Center Resource Management
(DCRM) GEi, i.e. the Cloud IaaS manager, and deploys the
requested appliance, either being a simple VM, a single GEi or
multiple GEis. When the deployment of the new application is
completed, there are two activities that take place (in an
automated fashion, transparent to the user) within the cloud
federation environment: the first activity is the real-time
gathering of information regarding the newly deployed

application by the Deployment and Configuration Adapter
(DCA), that maintains information related to all services
deployed within the cloud federation environment and
provides an API for information retrieval by the Resource
Catalogue; the second activity is the collection of monitored
data information from each federated cloud infrastructure
through the Infrastructure Monitoring Middleware (IMM)
component and a set of probes, enabling application
developers to access monitoring data of their deployed
applications through a properly defined API, offered by the
Federation Monitoring component.

Although the components in the dotted boxes have been
depicted for the sake of completeness, they will not be further
discussed in this paper. However, the interested reader may
refer to [22] for extended description of their functionality. In
the next section, we describe in detail the functionality of the
components accommodating the application developers'
needs, depicted in solid boxes in Figure 1, namely, Pegasus,
DCA and Federation Monitoring.

A. Platform-as-a-Service Component (Pegasus)

Pegasus [23] orchestrates the provisioning of the required
virtual resources at infrastructure level and the installation and
configuration of the whole software stack of an application,
taking into account the underlying virtual infrastructure. It
provides a flexible mechanism to perform the deployment,
enabling multiple deployment architectures: all components in
a single server, in several servers, or elastic architectures based
on load balancers and different software tiers. Collectively,
Pegasus enables a user to deploy easily any kind of
application, be a single VM, a single GEi or multiple GEis in
the FIWARE Lab federated infrastructures. Most importantly,
Pegasus offers the opportunity to the user to deploy multi-tier
applications, where each tier can be accommodated by a
different infrastructure of the federation as shown in Figure 2.

• — o - Pegasus
R»

- O - Sagitta

- O —

- O —

Virtual
Machine

Slave node # 1

«R
- - O -

«R
— O -

Virtual
Machine

Slave node #2

Figure 2 - Pegasus architecture overview.

The infrastructure, that an application needs to execute their
logic, can be manually deployed in the cloud. But this is a
time-consuming and repetitive operation ad eternum. Opposite
to it, Pegasus helps to improve the efficiency of IT resources
and processes that form part of any application delivery. It
facilitates the creation of applications and services without the
complexity and cost of provisioning of the required resources
and the management of the traditional application platform

stack. Just in a few minutes, the developer can use his
applications by instantiating the infrastructure template defined
for his applications. In the same time, Pegasus configures the
VMs deployed in order to allow the monitoring of its resources
and help to identify the GEi installed on it with the
configuration of metadata associated to it (see section IV for
more details) together with the identification of the
infrastructure in which it is deployed. This configuration is
made through the use of the metadata service functionality
offered by OpenStack [24], All this information is important in
order to provide traceability of the deployment of the different
GEis. The Deployment and Configuration Adapter (DCA)
takes the information of these metadata in order to identify
which GEis have been installed around the federation (more
details about DCA can be found in section III.B).
All these automatic operations help to increase the benefits of
Agile Software Development [25] and DevOps [26]
methodologies through the reduction of expended time to
delivery software application projects. Once the developer
defines the infrastructure of his applications through the
definition of its template, it can be reused each time the
developer needs to deliver a new instance of it. Additionally,
and due to the use of DevOps concepts, Pegasus reduces the
architectural complexity and allows adapting the applications
and IT services to answer quickly to new conditions market
and organization changes. Any changes on them is promptly
translated to the description of the application infrastructure
via the redefinition or update of the infrastructure template.
But the functionality offered by Pegasus does not end with
these characteristics. Pegasus prepares the images to connect
automatically with the federated monitoring architecture and
install the required software on it. There are two alternatives to
resolve this issue. The first one consists in the installation of
any client that the developer could need on his VM, such as
Chef Client, Puppet Agent, Monitoring client. The problem of
this solution is that one needs to have all Operating System
versions with all the preconfigured clients already installed
which brings an exponential growth in complexity due to the
different number of versions and operating systems. The
second alternative is to make use of the cloud-init [27] scripts.
It is a set of python scripts and utilities that allows the
developer to install everything that he might need. It is the
genuine multi-distribution package that manages early
initialization of a VM instance and all FIWARE Lab images
have it pre-installed for relaxing developer from time-
consuming configuration activities.

The next step is the installation and execution of the Chef or
Puppet recipes, through the cloud-init. The VM should
connect to the Sagitta in order to know the recipes that should
be installed on this VM. Sagitta [28] is another FIWARE Lab
component, out of scope of this article that allows registering
which software should be installed on each VM, using puppet
or chef recipes. This GEi allows the automatic installation and
modifications to a system through a configuration management
system and system's rules as code which resolves lots of
manual intervention of IT manager [29]. Pegasus informs
Sagitta about which software should be installed on a VM
instance in order to have control of what the developer needs
to install on each VM. Additionally, the monitoring recipe

includes a post-installation section which is used to inform
which operations should be done in order to connect the
monitoring client with the Orion CB and so inform of the state
of the new VM instance.
Finally, the last functionality that Pegasus offers is the
automatic provisioning of VPN between different nodes when
a template is deployed in different clouds. This operation is
performed in a transparent way where the FIWARE Lab user
does not need to know anything about network configuration
between different infrastructures. Nowadays, we have seen
references to Andromeda (Google) [30] that attempts to offer
the same functionality for their well-known cloud services.

B. Deployment and Configuration Adapter (DCA)

Cloud federation management is not only related to the
deployment of applications, but also includes the provisioning
of the appropriate components offering the opportunity, on one
hand to service providers to publish available services (GEis),
along with their detailed descriptions, and on the other hand to
application developers to discover and utilize these services.
However, in order to be able to advertise and make use of
these services (GEis), all required information has to be
gathered from the cloud federation environment, leveraging on
the advantages offered by the Pegasus service deployment. In
this perspective, Deployment and Configuration Adapter
(DCA) is the component that caters for the persistency of all
pertinent information related to the whole lifecycle of services
(GEis), seen as an advanced cloud federation caching
mechanism, providing the following functionalities:
• Capable of storing the deployment commands performed
by the application developers and the respective responses of
the cloud federation and correlating it with a particular GEi,
• Properly collects and correlates all services deployed and
offered in the cloud federation, even in the case that the
application developer has not used the functionality of DCA to
deploy an application, but instead used other FIWARE Lab
components (e.g. FIWARE Lab Cloud Portal),
• Offers to application developers and other interested users
real-time responses to complex queries related to information
and statistics of available services (e.g. where a specific GEi is
deployed, what is the down-time of this specific GEi, how
many users are using it, which services are offered by a
specific infrastructure, etc.).
However, in order to fulfil the above functionality, two
technical barriers had to be overcome.
The first one was to find a technical solution that would allow
the DCA component to access each individual infrastructure,
as depicted in Figure 3, in order to collect information
regarding offered services and resources, respecting potential
stringent access policies applied by the infrastructure owners
(Slave Nodes) not willing to provide administrative privileges
to external parties. In order to satisfy this requirement, a
software component has been developed (Python script), that
is able to collect respective information through the OpenStack
Nova and Glance components. This is achieved by offering the
opportunity to the infrastructure administrator to edit and
customize the parameters of the Python script before installing
it on the controller of the infrastructure (DCRM) and thus
allowing infrastructure owners to preserve access privileges.

Of course, in the case that infrastructure owners are willing to
provide administrative access privileges to DCA, then
OpenStack Keystone API (through the respective endpoint)
can be used directly by DCA.
The second one was a FIWARE Lab specific issue, related to
the unambiguous identification of the deployment of a specific
GEi in several Slave Nodes. As an example, one can consider
that the same GEi (presenting the same service) has been
deployed in two separate FIWARE Lab nodes. How one will
be able to identify that the same GEi is deployed in these two
nodes? The first option is to use the name of the VM that the
user gave during deployment, but this option is not applicable
in this case since the user is free to use any name. The second
option is to correlate the same GEi (service) by retrieving the
image reference identifier, but again this option is not
appropriate since in a federated environment, each OpenStack
Glance module might use its own image identification
numbering scheme. So, since the options so far do not solve
this problem, DCA, leveraging on Pegasus functionality,
followed a different approach by inserting a specific value
(called NID) in the Glance metadata that uniquely and
unambiguously allows for GEi identification across the cloud
federation. The interested reader may refer to [31].

T user — I

: T : : . : : Master node

(" FIWARE Lab
Cloud Portal

Fw<¡5
Cat
nda'

I
Resource Catalogue /
Recommendation tool

R T

Deployment and
Configuration Adapter

R T

n r-C
E

¡ DCRM I
v >

GEi

— Slave node # 1

DCRM I
J

GEi

Slave node # n

Figure 3 - Deployment and Configuration Adapter architecture.

Collectively, DCA is a flexible component that accommodates
different accessing policies, following infrastructure owners'
requirements, while it provides all needed information to the
end-users. Additionally, DCA exposes a well-defined RESTful
API [32] that can be used by interested users to collect all
needed information regarding GEis available in the cloud
federation and utilize them appropriately.

C. Federation Monitoring

Monitoring the performance of a single cloud infrastructure,
both in terms of compute and network resources, is an
important task in any standard data center. Such activity allows
administrators to check the current status of the infrastructure,
determine where and when a fault occurred in order to resolve
it, and even prevent from forthcoming (undesired) events.

Normally, such monitoring activity is performed by a private
Network Management Systems (NMS) [33] that constitutes an
integrated vertical solution. However, it cannot be assumed
that each single infrastructure of the federation leverages the
same NMS. Since one of the main goals of the FIWARE Lab
federation is to accommodate new infrastructures to offer their
resources in the cloud federation, this requirement implies that
the overall architecture —and the monitoring in particular—
must be legacy-compliant. Hence, the establishment of a
unique NMS is not a recommended approach.
In order to accomplish a unified and scalable monitoring
framework capable of spanning multiple cloud infrastructures
within the FIWARE Lab federation, authors in [20] propose an
extended architecture where two layers are embedded in the
traditional single-domain monitoring approach.
Attached to the private monitoring systems configured by each
cloud infrastructure administrator, a cross-domain adaptation
mechanism, denoted as Infrastructure Monitoring Middleware
(IMM), standardizes —through a collection of common
Application Programming Interfaces (APIs) —the format of
and the accessibility to the data collected from the multiple
probes and/or systems beneath. Such data reveal the
performance of the compute and network-based resources of
the different infrastructures involved. Hence, such abstraction
layer establishes the basis of the common monitoring data
model for the whole federation. In addition, the IMM instances
include a distinctive feature which is not feasible with isolated
NMSs; a component capable of determining the inter-
connectivity status among the federated nodes. Such functional
block is not within the scope of this document, but a more
detailed description can be found in [34],
On top of this abstraction layer, the Federation Monitoring
component fulfils the next operational layer in the enhanced
architecture proposed. Such layer is in charge of storing and
publishing the unified data-set by defining a Federation
Monitoring API [35], This layer is able to elaborate the data
by leveraging on Big Data analysis techniques and providing
aggregation features.

This Federation Monitoring does not represent a stand-alone
system but a compendium of distributed modules as illustrated
in Figure 4. As a matter of fact, each single node hosts a part
of the Federation Monitoring system, as well as the IMM, but
only the above-mentioned Master Node hosts specific
federation-aware functionalities.
In the sequel, we briefly describe the components comprising
the federation monitoring solution adopted towards the
realization of FIWARE Lab:
• Context Broker (CB): FIWARE Lab's Context Broker is
based on the Generic Enabler implementation of Orion
Publish/Subscribe CB [36], This component enables
publication of context information by producer entities via
standard interfaces, so that published context information
becomes available to other consumer entities. In [34] authors
address how a specific adapter within the IMM is meant to be
in charge of standardizing raw monitoring data into NGSI
context format, and notifying such information into the
Context Broker. A dedicated CB instance shall be deployed in
each node of the federation to handle the data-set associated to
such domain, and update the metrics into the specific Hadoop

instance. Nevertheless, this CB also requires to be linked with
the instance deployed in the Master Node when real-time data
are requested by the API Server.

Figure 4 - Federation Monitoring architecture.

• Hadoop: Apache Hadoop [37] is a framework that provides
scalable, reliable and distributed data processing and storage,
designed to span large infrastructures. By distributing storage
and computation across many servers, the combined storage
resources can grow with demand while remaining economical
at every size. Rather than rely on hardware to deliver high-
availability, the system itself is designed to detect and handle
failures at the application layer. Every FIWARE Lab node will
host a full-fledged Hadoop deployment, which includes the
Hadoop Distributed File System (HDFS) providing high
throughput access to application data, and MapReduce for
processing vast amount of data in a reliable and fault-tolerant
manner. Each one of these Hadoop instances shall perform
aggregating operations to the data coming from the
subscription with the Context Broker, and all of them will be
federated in order to maintain the service in High Availability.
However, only the Hadoop deployed in the Master Node is
allowed to perform operations with the relational database.

• Relational Database: A relational database is required to
store the elaborated data provided as previously described.
The API Server cannot afford, in terms of delay, to fetch the
data from all over the federated Hadoops. Hence, this
relational database (e.g. MySQL in the case of FIWARE Lab)
is meant to store the already processed data-set and provide it
in an easier and faster manner to the server.
• Federation Monitoring API Server: implementation of the
API [35] for accessing, from a user-driven layer in the
FIWARE Lab architecture, the processed monitoring data
stored in the relational database, and real-time data from the
federation. These resources are defined by a common
monitoring data model and point, among others, to VMs,
physical hosts and network elements. These API are capable of
performing diverse operations, ranging from listing all the
objects in a given node to retrieve the attributes of an inter-
domain connectivity link.

IV. MANAGING RESOURCES IN A MULTI-TIER APPLICATION: A

REAL-CASE SCENARIO

This section presents the functionalities provided by the
architecture discussed in the previous session through a real-
case scenario.
Consider an application developer willing to offer a weather
service by allowing subscribed users to check, via a website,
weather conditions or be automatically informed of sudden
weather changes. Weather information are collected through a
network including several environmental sensors. To minimize
the development and deployment effort, the developer browses
the FIWARE Lab Cloud Portal to discover possible GEis that
may assist him to create the weather service: he selects the
Orion Context Broker (Orion CB) [36] to publish the data
collected by the sensor; the Complex Event Processing (CEP)
GEi to process the information from sensors and to create
events through customized threshold; and finally the
WireCloud GEi to properly display this information in a
webpage, through the use of specific widgets.
Both WireCloud and CEP implementations are based on
Ubuntu OS, while Orion CB is based on CentOS. Considering
the architecture depicted in Figure 1, in order to reduce data
processing latency and to comply with national regulatory
constraints, the developer decides to deploy WireCloud on a
VM in Slave Node 1, and Orion CB as well as CEP on two
VMs in Slave Node 2 (two-tier, two-infrastructure
application). Finally, the developer decides to deploy
WireCloud and CEP through Glance images, and Orion CB
using Chef [36] or Puppet [39] recipes.
When these three GEis are deployed in the respective
infrastructures within the FIWARE Lab cloud federation, DCA
becomes aware of the NIDs of these deployments, being able
to unambiguously identify each GEi. However, there is a
difference between deployment through images and using Chef
recipes. In the former case, the NID of each GEi is pre-
configured during the process of populating the Glance
module of each infrastructure with the GEis, using the
following command:

$ glance image-create --name cep-image-R2.3
disk-format qcow2 --container-format ovf --size
4028891136 —min-disk 0 —min-ram 0 —is-public
True --is-protected False --property nid=146 --
file <name of the file of the corresponding CEP
image>

The same command is used by the infrastructure administrator
for each image in the Glance. In this perspective, NID value is
stored for each GE image (Table 1) and can be retrieved by
DCA, as explained in Section III. In the latter case, after the
instantiation of the VM using a recipe, Pegasus is using the
metadata service of OpenStack to introduce the NID metadata
of Orion CB.

Table 1 - List of MP's per GEi.
GEi

Orion Context Broker GEi

WireCloud GEi

Complex Event Processing (CEP) GEi

NID
344

513

146

the Infrastructure Monitoring Middleware (IMM) that caters
for automatically publishing performance data. Thus, once the
GEis under consideration are operational, the developer may
wish to inspect the current performance of a specific VM —for
example the one hosting the WireCloud— to check whether
such resource of the federation works in a proper manner. In
order to accomplish this task, the developer may request from
DCA to provide all VMs created by a specific user with the
following command [32]:

GET http://ip-
address:port/dca/servers/user/{user_id}

By issuing this command, the developer will be informed
about all VMs that he has developed, together with all related
information as shown below:

[{

c858d6

69753e

} ,
{

134eae

62643e

} ,
{

" id" : "6fda6be8-0e70-4d08-9731-
a27f50",
"name":"CEP",
" n i d " : " 1 4 6 " ,
" imageRef":"90d4865d-5e7b-4d95-af2c-
1740d6",
" f l a v o r R e f " : " 2 " ,

" c r e a t e d " : 1 3 900 518 80 0 00,
" t enan t Id" : "xxxxxx" ,
" u s e r l d " : " j o h n - s m i t h " ,
" r e g i o n " : " s l a v e node 2"

" id" : " f85c7ce6-e l25-4d90-b5dd-
56fc5a",
"name":"WireCloud",
" n i d " : " 5 1 3 " ,
" imageRef":"82d4877f-4c7b-4a45-a222-
1110e5",
" f l a v o r R e f " : " 2 " ,

" c r e a t e d " : 1 2 30151137 0 00,
" t enan t Id" : "xxxxxx" ,
" u s e r l d " : " j o h n - s m i t h " ,
" r e g i o n " : " s l a v e node 1"

" id" :"135755e3-e378-6a63-b5ef-994e4e22c5a" ,
"name":"Orion",
" n i d " : " 3 4 4 " ,
" imageRef" :"22d4337f-4dla-8cca-a885-

24412dl991a7",

}]

" f l a v o r R e f " : " 2 " ,

" c r e a t e d " : 1 2 301511550 00,
" t enan t Id" : "xxxxxx" ,
" u s e r l d " : " j o h n - s m i t h " ,
" r e g i o n " : " s l a v e node 2"

Hence, the developer can identify the unique identification
number of the VM hosting WireCloud software and retrieve
the monitoring information of this appliance by leveraging the
Federation Monitoring API [35], e.g.:

GET
/monitoring/regions/slave_node_2/vms/f8 5c7ce6-
el25-4d90-b5dd-134eae56fc5a

Each GEi deployment, either through images or recipes,
embeds a pre-installed monitoring component which is part of

The response obtained includes some relevant performance
attributes, such as the memory utilization, free hard disk drive
and processor load:

http://ip

{ . . .
"regionid": "slave node 1",
"vmid": "f85c7ce6-el25-4d90
"ipAddresses": [

1
"ipAddress": "192.

}],
"measures": [

{
"timestamp" : "2014
"percCPULoad": {

"value": "25",
"description":

CPU Load"
i

"percRAMUsed": {
"value": "50",
"description":

RAM consumed"
i

"percDiskUsed":
"value": "10",
"description":

of Disk consumed"
},

• • • }

-b5dd-134eae5 6fc5a",

168.0.70"

-06-20 12.00",

"Current percentage of

"Current percentage of

{

"Current percentage

A wider plethora of monitoring data can be retrieved from the
Federation Monitoring API, although not shown in this
example due to space limitation. Once the deployment,
configuration and monitoring of the components are
completed, the weather service can be advertised through the
FIWARE Lab Cloud Portal and rated from users.

V. CONCLUSIONS AND FUTURE WORK

There are several challenges in the development of a cloud
federation to support generic services to be used by
developers. In this paper, we addressed some solutions to
overcome the seamless deployment of services across the
federation and ability of services to span across different
members of the federation, the monitoring of the resources and
data which can be aggregated with a common structure, and of
course to be offered as an open ecosystem for innovation at the
developers' disposal. The presented modules and the
architecture allow the management of the resources of the
federation and their control, a key element in the federated
cloud we are presenting in the paper. To deploy multi-tier
applications across the federated platform is one of the cases
presented, which is supported by the proposed architecture and
modules, such as the federated monitoring as a centralized
mechanism to handle large-scale monitoring data gathered
throughout the federated underlying resources, Pegasus as a
specialized PaaS, or the deployment and configuration adapter.
In the future it is planned to increase the number of cases
where we apply these modules and improve the capabilities to
offer an improved federated cloud to offer Future Internet
services useful for developers.

REFERENCES

[1] H.W. Chesbrough, "Open Innovation: The new imperative for creating
and profiting from technology", Harvard Business Press, Boston, 2003.

[2] IBM, Catalyst Startup Program, http://www.sofilayer.com/catalyst.
[3] A. Celesti, F. Tusa, M. Villari, A. Puliafito, "How to Enhance Cloud

Architectures to Enable Cross-Federation," in Proceedings of the 3rd
IEEE Intern. Conf. on Cloud Computing, pp.337-345, July 2010.

[4] XIFI EU Project, https://www.fi-xifi.eu/home.html.
[5] FIWARE Lab, http://lab.fi-ware.org.
[6] FIWARE, http://www.fi-ware.org.
[7] FIWARE Lab Federation Members: https://www.fi-xifi.eu/about-

xifi/federation-members .html.
[8] IEEE P2302 - Standard for Intercloud Interoperability and Federation

(SIIF), Online: oasis-open.org/committees/download.php/46205/p2302-
12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf.

[9] OpenStack Federated Keystone,
https://wiki.openstack.org/wiki/iCeystone/Federation/Blueprint.

[10] A. N. Toosi, et al., „Interconnected Cloud Computing Environments:
Challenges, Taxonomy, and Survey", ACM Computing Surveys
(CSUR), Vol. 47, Issue 1, July 2014.

[11] M. P. Papazoglou, "Cloud Blueprints for Integrating and Managing
Cloud Federations", Software Service and Application Engineering,
Springer LNCS, Volume 7365, pp. 102-119, 2012.

[12] D. Villegas et al., "Cloud federation in a layered service model", Journal
of Computer and System Sciences, Vol. 78, Issue 5, pp. 1330-13, 2012.

[13] E. Carlini, et al., "Cloud Federations in Contrail", in Proceedings of the
Euro-Par Workshops (1), 2011, pp.159-168.

[14] EGI Federated Cloud, https://www.egi.eu/infrastructure/cloud.
[15] A.C. Hume, et al., "BonFIRE: A Multi-cloud Test Facility for Internet of

Services Experimentation", in Proceedings of the 8th Intern. ICST
Conf, TridentCom 2012, Thessaloniki, Greece, pp. 81-96, June 2012.

[16] C. Liu, et al., "Cloud Resource Orchestration: A Data-Centric
Approach", in Proceedings of the 5th Biennial Conference (CIDR'll) ,
Asilomar, California, USA, pp. 241-248, January 2011.

[17] E. Elmroth and L. Larsson, "Interfaces for Placement, Migration, and
Monitoring of Virtual Machines in Federated Clouds", in Proceedings
of the 8th IEEE International Conference on Grid and Cooperative
Computing (IEEE GCC), pp. 253-260, August, 2009.

[18] W. Vandenberghe, et al., "Architecture for the Heterogeneous
Federation of Future Internet Experimentation Facilities", Future
Network and Mobile Summit, Lisbon, Portugal, July 2013.

[19] K. Kavoussanakis, et a.. "BonFIRE: the Clouds and Services Testbed",
in Proceedings of the 5th IEEE Intern. Conf. on Cloud Computing
Technology and Science, Bristol, UK, pp. 321-326, December 2013.

[20] Y. Al-Hazmi, et al., "Unified Representation of Monitoring Information
Across Federated Cloud Infrastructures" in Proceedings of the
Workshop on Federated Future Internet and Distributed Cloud Testbeds
(FIDC), Karlskrona, Sweden, September 2014.

[21] OCCI, http://occi-wg.org/2012/07/18/occi-in-openstack.
[22] XIFI Components - http://wiki.fi-xifi.eu/Public:Software_Components
[23] Pegasus, http://catalogue.fi-ware.org/enablers/paas-manager-pegasus.
[24] OpenStack Metadata Service, http://docs.openstack.org/admin-guide-

cloud/content/s ection_metadata-service .html.
[25] T. Dingsoyr, T. Dybá, N.B. Moe, "Agile Software Development.

Current Research and Future Directions", ISBN: 978-3-642-12574-4
(Print) 978-3-642-12575-1 (Online), 2010.

[26] M. Sacks, "DevOps - Pro Website Development and Operations",
"DevOps Principles for Successful Web", pp. 1-14, 2012.

[27] Cloud-Init, http://cloudinit.readthedocs.org/en/latest.
[28] Sagitta, http://catalogue.fi-ware.org/enablers/software-deployment-

configuration-sagitta.
[29] D. Spinellis, "Don't Install Software by Hand", IEEE Software, Vol. 29,

Issue 4, pp. 86-87, July-August 2012.
[30] Google Andromeda, http://gigaom.com/2014/04/02/google-launches-

andromeda-a-software-defined-network-underlying-its-cloud.
[31] Deployment and Configuration Adapter - http://wiki.fi-

xifi.eu/Public:Deployment_and_Configuration_Adapter.
[32] DCA API - http://docs.dca.apiary.io.
[33] R. Khan, et al, "An Efficient Network Monitoring and Management

System", International Journal of Information and Electronics
Engineering, Vol. 3, No. 1, January 2013.

[34] J. Gonzalez, et al., "Inter-domain Monitoring and Software-Defined
Network Connectivity for Federated Infrastructures Management", The
IEE EuCNC, Bologna, Italy, June 2014.

[35] FIWARE Lab Fed. Mon. API, http://docs.federationmonitoring.apiary.io
[36] Orion Context Broker- http://catalogue.fi-

ware.org/enablers/publishsubscribe-context-broker-orion-context-broker
[37] Apache Hadoop. http://hadoop.apache.org.
[38] Chef, http://www.getchef.com.
[39] Puppet, http://puppetlabs.com.

http://www.sofilayer.com/catalyst
https://www.fi-xifi.eu/home.html
http://lab.fi-ware.org
http://www.fi-ware.org
https://www.fi-xifi.eu/about
http://oasis-open.org/committees/download.php/46205/p2302
https://wiki.openstack.org/wiki/iCeystone/Federation/Blueprint
https://www.egi.eu/infrastructure/cloud
http://occi-wg.org/2012/07/18/occi-in-openstack
http://wiki.fi-xifi.eu/Public:Software_Components
http://catalogue.fi-ware.org/enablers/paas-manager-pegasus
http://docs.openstack.org/admin-guide
http://cloudinit.readthedocs.org/en/latest
http://catalogue.fi-ware.org/enablers/software-deployment
http://gigaom.com/2014/04/02/google-launches
http://wiki.fi
http://docs.dca.apiary.io
http://docs.federationmonitoring.apiary.io
http://catalogue.fi
http://ware.org/enablers/publishsubscribe-context-broker-orion-context-broker
http://hadoop.apache.org
http://www.getchef.com
http://puppetlabs.com

