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ABSTRACT
Containers are popular for deploying workloads. However, there are
limited software-based methods (hardware-based methods are ex-
pensive) for obtaining the power consumed by containers to facilitate
power-aware container scheduling. This paper presents WattsApp,
a tool underpinned by a six step software-based method for power-
aware container scheduling to minimize power cap violations on
a server. The proposed method relies on a neural network-based
power estimation model and a power capped container scheduling
technique. Experimental studies are pursued in a lab-based environ-
ment on 10 benchmarks on Intel and ARM processors. The results
highlight that power estimation has negligible overheads - nearly
90% of all data samples can be estimated with less than a 10% error,
and the Mean Absolute Percentage Error (MAPE) is less than 6%.
The power-aware scheduling of WattsApp is more effective than
Intel’s Running Power Average Limit (RAPL) based power capping
as it does not degrade the performance of all running containers.
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1 INTRODUCTION
Container technology is a lightweight virtualization technique that
has low overheads [19]. Therefore, it is becoming popular for de-
ploying workloads on clusters and clouds [20, 24] and for upcoming
edge computing systems [22, 23]. Container scheduling is an impor-
tant avenue explored in this context. Existing container scheduling
strategies consider resource demand, service level agreements and
hardware/software requirements [11, 26]. However, container sched-
uling needs to be power-aware so that the total power consumption
of a system does not exceed predefined power cap limits.
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Modern processors are equipped with power capping techniques,
such as Dynamic Voltage and Frequency Scaling (DVFS) and Run-
ning Average Power Limit (RAPL) [13, 14, 25]. These are hardware-
based and reduce the CPU frequency and voltage to lower processor
power consumption. However, this degrades the entire system per-
formance and consequently the deployed application.

It is valuable to gather the power consumption of individual con-
tainers running in a system to schedule them in a power-aware
manner. However, software-based methods, such as cWatts [17],
cWatts++ [18] and SmartWatts [7] are either CPU architecture
specific, do not capture all system components that contribute to
container power, and are intrusive methods. This paper develops
WattsApp underpinned by a six step software-based (hardware-
based are expensive and require hardware level changes), architec-
ture agnostic and a non-intrusive power-aware container scheduling
method. The aim is to estimate container power consumption and
schedule containers to stay within safe power budgets.

The contributions of WattsApp are as follows:
(i) A six-step software-based power-aware container scheduling

method with negligible overheads that accurately predicts container
power consumption. Additionally, nearly 90% of all data samples
can be estimated using the power model with less than a 10% error.
The Mean Absolute Percentage Error (MAPE) is observed to be
between 1%-6%, which is relatively low. WattsApp is the first
prototype that builds power models and enforces power capping for
parallel applications that execute on a cluster of containers.

(ii) A power capped scheduling approach for single and multi-
ple containers which is more beneficial than when no power cap
or Intel’s RAPL power cap is employed (the performance of all
running containers on the system is not degraded, only containers
that violate the budget are penalized). The power cap is achieved by
migrating the container to another server or deallocating resources
of the container that violates the power cap.

This paper is organized as follows. Section 2 discusses the moti-
vation for WattsApp. Section 3 proposes the WattsApp method
and presents the underlying power model and the power capped con-
tainer scheduling approach. Section 4 presents experimental studies.
Section 5 discusses the related work. Section 6 concludes the paper.

2 BACKGROUND
Predicting container power is complex because it depends on the
resource allocated and the workload running in the container. It
is different to the power prediction of VMs, other processes and
hardware (processors, memory etc) because of the limited availabil-
ity of resource utilization data and hardware performance counters
specific to containers. This is because containers create multiple
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Table 1: Scientific workloads used in this paper

Name Description Type
KMEANS Clustering algorithm DCBench
FUZZY-KMEANS Clustering algorithm DCBench
KPCA Principal component analysis DCBench
PCA Principal component analysis DCBench
BFS Graph mining breadth-first DCBench
MD Molecular dynamics MPI-C
HEATED Steady heat equation solver MPI-C
POISSON Poisson equation solver MPI-C
PRIME Counting prime MPI-C
SGEFA Linear algebra solver MPI-C

processes on the host operating system. The number of processes
varies depending on the activity within the containers.

This paper observes that containers with more allocated resources
consume more power for the same workload than on containers with
fewer resources. However, in all cases the power does not correspond
to the increase in resources (CPU cores, memory). For example, the
average power of an application running on twice the resources, may
not necessarily directly correspond to a factor of two.

This hypothesis is verified on 10 different scientific workloads
that are listed in Table 1. These workloads are obtained from: (i)
DCBench [10] from which five MPI based workloads are chosen,
and (ii) A collection of C/C++ based scientific programs1 that are
a combination of CPU-bound, I/O-bound and memory-bound sci-
entific workloads. This paper does not consider alternate classes of
workloads, such as Internet-of-Things, stream processing, or sensor-
based applications. The workloads considered in this paper may
have different power consumption patterns during execution. This is
captured in the resource utilization and power data that is collected
at a fine granularity and used for building the power model. This
ensures that estimation is carried out for different workload phases.

Figure 1 highlights the average, minimum and maximum power
consumed by a container with 3 CPU cores and 4GB RAM. Figure 2
provides results for the same workloads for twice the resources (6
CPU cores and 8GB RAM) Although the resources allocated are
doubled the average power consumed does not necessarily double
for all workloads (for example, refer to the workloads HEATED,
MD, POISSON, PRIME and SGEFA).

Similar trends are obtained when the power consumption is noted
for the above workloads over time (the results are exhaustive and
are not presented in this paper). When more resources are added
parallel workloads (applications running within a single container)
execute faster, but reach their peak power consumption at different
times. This paper does not aim to explain individual power profiles of
workloads, but notes that a server that executes multiple containers
could violate the power cap; specifically, when multiple large size
containers are multi-tenant on a server. These large containers may
consume high power and when they are multi-tenant their combined
total power consumption could be higher and close to the maximum
power consumption of the server.

Power cap violations are undesirable and need to be effectively
managed on servers running different workloads. They occur when
the total power consumed by a server exceeds a threshold defined
by the server administrators. When power cap violations occur, the

1http://people.sc.fsu.edu/~jburkardt/c_src/c_src.html

Figure 1: Power consumption (Watts) of workloads deployed in
containers with 3 CPU Cores and 4GB RAM.

Figure 2: Power consumption (Watts) of workloads deployed in
containers with 6 CPU Cores and 8GB RAM.

server performance starts degrading since power management tech-
niques like Dynamic Voltage and Frequency Scaling (DVFS) that are
bundled with processors come in to play. DVFS reduces the server
power consumption by using two power saving techniques, namely
dynamic voltage scaling and dynamic frequency scaling [14]. Power
is saved by lowering the frequency/voltage of the CPU and other
system resources. This reduction negatively impacts performance
of workloads executed on the server (performance of a container
running on a server will drop when there is a power cap violation).

A power aware container scheduling strategy is required to avoid
the above. Power/energy saving benefits of techniques like DVFS are
diminishing because of the complexity of multi-core processors and
memory [14]. Therefore, a software-based power capping technique
is desirable in addition to specific hardware-based techniques.

3 THE WATTSAPP METHOD
This section presents a method for software-based power aware
scheduling of containers to minimize power cap violations on a
server, which is fundamental in developing WattsApp. Power aware
container scheduling is the distribution/consolidation of containers
such that the total power consumed by a server does not cross a
predefined threshold (or cap) specified by an administrator.

A primary requirement for the WattsApp scheduling approach
is to obtain information on the power consumed by a container. Re-
source utilization statistics of each container is used to calculate its
power consumption. This information is used for container schedul-
ing, such that the maximum power consumed does not violate any
power restriction on an individual server.

Currently, there are no hardware methods for obtaining the power
consumed by containers. Moreover, there are a few software meth-
ods to measure the container power consumption and these methods
have concerns like they are architecture specific, ignores essential
system resources or intrusive as discussed in Section 5. This article
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aims to bridge this gap. Hardware-based methods will require modi-
fication of the hardware (such as additional probes) resulting in more
expensive processors. Hence, a software-based method is adopted to
develop a model of container power consumption that depends on
resource utilization information of the container. The model uses lin-
ear regression-based neural network to correlate container resource
utilization statistics with system power consumption information to
estimate the container power consumption (refer Section 3.2).

The WattsApp method relies on two activities: (i) Container
power prediction, which is estimating the power consumed by an
individual container using software-based methods, and (ii) Power
capped container scheduling, which is using the estimated power
values to place containers equitably on a server.

Any power cap violation is periodically detected on each server
by observing the total power consumption of the server. If the power
consumed is above a threshold, then power capping is performed on
the server without significantly affecting the run time performance
of all running containers. Power capping in WattsApp is performed
using two approaches, namely container migration and container
resource (CPU cores) reduction (considered in Section 3.2). The
method firstly attempts to migrate a container causing the server
power cap violation onto another server. If no servers are available
to migrate a container, then the resources allocated to the container
are reduced (the processor consumes nearly 85% power of the total
system power [16]). Hence, the CPU cores allocated to the container
are firstly reduced one at a time until the power cap limit is restored.
Commands, such as docker update, are used to change the cores
allocated to a container; the change is immediately reflected.

The proposed method of WattsApp shown in Figure 3 comprises
six steps: namely Data Collection, Model Building, Power Estima-
tion, Power Capped Allocation, Violation Detection and Power Cap-
ping. The first three steps are for container power prediction, and the
remaining steps are for power capped container scheduling.

Step 1 - Data Collection: The training data for supervised learn-
ing is collected to estimate container power consumption. It collects
system power consumption and resource usage statistics for each
container from the host OS. This is correlated with system power
consumption to obtain container power consumption. The system
power information is necessary as the regression techniques require
labeled data for building a model.

System power consumption data is collected from Watts Up .net
hardware power meter. It facilitates the power consumption sam-
pling at a one second granularity. Real time system power con-
sumption data can be obtained by connecting it through a USB
interface. It is reported that the accuracy of this hardware meter is +/-
1.5%+0.3W2 [9]. The readings provided are also considered to be
generally reliable although a high error rate is observed for readings
below 1 Watt [9]. A series of power meters from Watts Up are used
in research reported in the literature [15][1][4][3].

Step 2 - Model Building: The collected data is used to train data
and build a neural network for individual containers running on the
server. A model is built for each container as different applications
exhibit different properties. The models are used during run time for
predicting the power consumed by the container. The input to the
neural network is container resource utilization statistics (including

2https://www.vernier.com/files/manuals/wu-pro.pdf

Figure 3: WattsApp method for power-aware scheduling.

the host CPU and memory the container is using, the total memory
used by the container and the maximum allocated memory, the data
the container sent/received on its network interface, and the amount
of the data read from/written to the block I/O devices) and system
power consumption. The model was developed using Keras3.

Step 3 - Power Estimation: Consider there are 𝑛 containers (𝐶1,
𝐶2,𝐶3, · · · 𝐶𝑛) running on a server. The resource utilization statistics
(CPU usage, memory usage, amount of block I/O and network data
transfer) are collected for each container. The models developed
(previous step) and the run-time statistics are used to predict the
power consumed by the container.

Step 4 - Power Capped Allocation: The models are used for
power capped container scheduling. It uses the predicted power
consumption of the container and current total power consumption
of the server before scheduling the container on the server. The
power consumption information of the containers are obtained by
using the power estimation model that uses the power profile of each
container for power capped allocation.

Step 5 - Violation Detection: Power capped container scheduling
is performed when a power cap violation is detected. After initial
scheduling, this step is executed at a five minute interval to check
the server for any power cap violation. If there is a violation, then
the final step enforces the power capping limit on the server.

Step 6 - Power Capping: This final step adopts two techniques
to enforce power capping. The first is migration - another server
that can accommodate the container causing the power cap violation
on a current server is identified; migration should not violate the
power cap of the recipient server. If such a server is available, then
the power cap violating container is migrated to the identified server.
If no such server is identified, then a second technique, referred
to as resource deallocation, is performed in which the number of
CPU cores allocated to the container is reduced until the power cap
limit is reached. This first prototype of WattsApp only considers a
single container causing power cap violations. However, if multiple
containers cause power cap violation, then a priority based container
selection approach is required (not considered in this paper).

3https://keras.io/
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Algorithm 1: Data Collection
Input :Container name
Output :Combined resource utilization and power

consumption data

1 while workload in container is running do
2 Obtain resource utilization from docker stat command

once per second
3 Add time stamp to the output of docker stat
4 Collect Watts Up power data once per second
5 end
6 Combine resource utilization and power data on the basis of

the timestamp

The first three steps are presented in Section 3.1 and the last three
steps are discussed in Section 3.2.

3.1 WattsApp Power Estimation
This section describes Data Collection (Step 1), Model Building
(Step 2), and Power Estimation (Step 3).

The Data Collection step gathers (i) the system power consump-
tion data, and (ii) resource utilization data of running containers.
This is a black box technique as the data is collected from the host
operating system and no profiling data is obtained from within the
container. The other approaches (referred to as white box) collect
profiling information inside the container and should be avoided to
maintain the integrity of the containers [8].

Power consumption data is collected from the Watts Up .net
power meter. The data obtained contains the time stamp and power
consumption (in Watts). The resource utilization data of the container
is collected using the docker stats command, which provides the
following data: (i) Id of the container and the name of the container,
(ii) Percentage of host CPU and memory the container is using,
(iii) Total memory the container is using and the maximum allotted
memory, (iv) The amount of data the container has sent and received
on its network interface, (v) The amount of the data read from and
written to the block input/output devices, and (vi) The number of
processes/threads created by container.

Resource utilization and system power consumption data are
obtained once per second during benchmark execution. The sequence
of steps is presented in Algorithm 1.

In the Model Building step, a neural network is used that takes as
input the container resource utilization (including percentage of host
CPU and memory the container is using, total memory the container
is using, maximum allotted memory, amount of data the container
has sent and received on its network interface, amount of the data
read from and written to the block I/O devices), and system power
consumption. The output is container power consumption.

In the Power Estimation step, the power consumption of contain-
ers is firstly modeled by WattsApp. The power consumption of a
server (𝑃𝑠𝑒𝑟𝑣𝑒𝑟 ) comprises static power and dynamic power. Static
power (𝑃𝑠𝑡𝑎𝑡𝑖𝑐 ) is defined as the power consumption of system when
there is no active container. This power is measured by the Watts Up
.net power meter. If there is only one running container then the total

power consumption is sum of idle power and dynamic power con-
sumption of the server. The dynamic power consumption (𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 )
is defined as the power consumption of the running container.

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (1)

If there are 𝑛 active containers on a server, then the dynamic
power consumption is the aggregate power of all the containers.

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =

𝑛∑
𝑘=1

𝑃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑘 (2)

where 𝑃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 is the power consumption of the container.
The dynamic power consumption of the system is the sum of the

power consumed by the CPU, memory, disk and network.

𝑃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑘 = 𝑎𝑘 ∗𝑈𝑐𝑝𝑢𝑘+𝑏𝑘 ∗𝑈𝑟𝑎𝑚𝑘+𝑐𝑘 ∗𝑈𝑑𝑖𝑠𝑘𝑘+𝑑𝑘 ∗𝑈𝑛𝑒𝑡𝑘 (3)

where 𝑎, 𝑏, 𝑐, and 𝑑 are constants, 𝑛 is the number of running con-
tainers, 𝑙 represents the number of CPU cores allocated, 𝑈𝑐𝑝𝑢 is the
CPU utilization factor (𝑈𝑐𝑝𝑢 =

∑𝑙
𝑖=1𝑈𝑐𝑝𝑢𝑐𝑜𝑟𝑒𝑖 ),𝑈𝑟𝑎𝑚 is the RAM

utilization factor,𝑈𝑑𝑖𝑠𝑘 is the disk utilization factor, and𝑈𝑛𝑒𝑡 is the
network utilization factor.

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 +
𝑛∑

𝑘=1
𝑎𝑘 ∗𝑈𝑐𝑝𝑢𝑘 +

𝑛∑
𝑘=1

𝑏𝑘 ∗𝑈𝑟𝑎𝑚𝑘

+
𝑛∑

𝑘=1
𝑐𝑘 ∗𝑈𝑑𝑖𝑠𝑘𝑘 +

𝑛∑
𝑘=1

𝑑𝑘 ∗𝑈𝑛𝑒𝑡𝑘 (4)

A single workload can be executed across a cluster of containers.
In this case, the workload’s power consumption is the aggregate
power consumption of all containers of the cluster.

𝑃𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 =

𝑛∑
𝑖=1

𝑃𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑘 (5)

where𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑘 is element of𝐶, the set of containers in the cluster
𝐶 = {𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟1, 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟2, · · · 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑛}.

3.2 WattsApp Power Capped Scheduling
This section presents the use of the estimated power values at run
time for the power capped container scheduling method. The ap-
proach is to initially allocate containers using a best fit strategy, and
when there is a power cap violation on the server, migrate the con-
tainer elsewhere or reduce the allocated CPU cores of the running
containers until the power cap is not violated. Power Capped Allo-
cation (Step 4), Violation Detection (Step 5), and Power Capping
(Step 6) from Section 3 is considered in this section.

Power Capped Allocation uses the estimated power to schedule
containers by calculating the total power consumption of the candi-
date server after adding the estimated power of the container ready
for deployment. If the power consumed by the server is anticipated to
be below the power cap, then the container is placed on the candidate
server. This is repeated for all containers that are ready for placement.
Algorithm 2 highlights this and Table 2 presents the notation used
by the algorithms presented in this section. It is assumed that there
are 𝑛 servers, and each server may have up to𝑚 containers.

Algorithm 2 executes for all containers ready for placement (line
1). The flag variable is initialized to false (line 2); this variable

4
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Algorithm 2: Power Capped Scheduling of Containers
Input :𝑆 , 𝐶𝑖 𝑗 ,𝑚𝑑

1 for ∀ 𝑐𝑖 𝜀 𝐶 do
2 𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒

3 for ∀ 𝑠𝑖 𝜀 𝑆𝑖 do
4 𝑃𝑆𝑖 = 𝑃𝑆𝑖 + 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑖

5 if 𝑠𝑒𝑟𝑣𝑒𝑟𝑃𝑜𝑤𝑒𝑟𝑖 < 𝑐𝑎𝑝 then
6 allocate(𝑐𝑖 , 𝑠𝑖 )
7 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒

8 else
9 do nothing

10 end
11 end
12 if 𝑓 𝑙𝑎𝑔 == 𝑓 𝑎𝑙𝑠𝑒 then
13 Power Capped allocation is not possible

14 Select the 𝑖𝑡ℎ server with minimum 𝑃𝑆𝑖 to place the
current container

15 end
16 end

Table 2: Notation used in the Power Capping Method

Notation Description
𝑆 Set of all the servers 𝑠𝑖 𝜀 S for 𝑖 = 1, · · · , 𝑛
𝐶𝑟𝑖 Number of CPU Cores in server 𝑠𝑖
𝑀𝑖 Available memory in the server 𝑠𝑖
𝐶𝑖 𝑗

List of m containers deployed in server 𝑆𝑖
𝐶 List of all the containers ready to be placed

𝐴𝐶𝑟𝑖 List of CPU core allocated to containers
𝐴𝑀𝑖 List of memory allocation to containers
𝑚𝑑 Power consumption model
𝑃𝐶𝑖 𝑗

Power consumption of container 𝑐𝑖 𝑗
𝑃𝑆𝑖 total power consumption of server 𝑠𝑖 , 𝑝𝑠𝑖 𝜀 PS

𝑐 𝑗 , 𝑝𝑐 𝑗 candidate container causing server power cap violation and its
power consumption

cap Power cap

will be used to identify the case when no suitable server for power
capped placement. Each server is checked one by one whether it
can accommodate the container under consideration (line 3). The
container power consumption is added to the candidate server power
(line 4) to check if it can accommodate the container (line 5). If the
candidate server can deploy the container, then it is allocated to the
server (line 6). When container placement is successful, the flag is
updated to true (line 7). If it is not possible to allocate on a given
server, then the remaining servers are processed. When no suitable
server is found for power capped placement (line 12), the container
is allocated to the server with the lowest power consumption (line 13
and 14). Algorithm 3 detects the possibility of power cap violation,
and if required, the power cap is applied using Algorithm 4.

A process to determine any power cap violation is executed on the
servers, five minutes after initially scheduling containers (profiling
data is collected for the first five minutes). This process uses the
power prediction model to estimate the power consumption of each
running container. If the power consumption of any server (sum of
power consumed by all running containers) is beyond the power cap,

Algorithm 3: Power Cap Violation Detection
Input :𝑆 , 𝐶𝑖 𝑗 ,𝑚𝑑

1 for ∀ 𝑠𝑖 𝜀 𝑆 do
2 𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑖 = 0
3 for ∀ 𝑐 𝑗 𝜀 𝐶𝑖 𝑗 do
4 data = collect_stats(𝑐 𝑗 )
5 𝑃𝐶𝑖 𝑗 = md.predict(data)
6 𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑖 = 𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑖 + 𝑃𝐶𝑖 𝑗
7 end
8 end
9 for ∀ 𝑠𝑖 𝜀 𝑆𝑖 do

10 if 𝑡𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝑖 > 𝑐𝑎𝑝 then
11 powerCap(𝑐 𝑗 , 𝑝𝑠 𝑗 ,𝑠𝑖 , 𝑃𝑆)
12 else
13 do nothing
14 end
15 end

then there is a violation due to the newly placed container). This
container is considered for migration or core reduction.

Power capping is achieved in two ways. The first is by migrating
the candidate container from the source to a destination server whose
power consumption is below the cap. A stateful migration method,
namely ‘CRIU (Check-point/Restore In Userspace)’ is employed
for migrating containers. The second is by reducing the resources
allocated to the candidate container, specifically the number of CPU
cores (reduce one at a time) as CPU usage significantly affects the
power consumption of Docker containers [21]. The Docker update
command is used to change the number of allotted CPU cores to the
container. The performance of the container will be degraded when
using this approach (further considered in Section 4).

Currently, there is support for power capping on the hardware.
However, most hardware power capping techniques tweak the volt-
age and processor frequency, which affects the potential performance
of the entire system and is detrimental to all containers running on
the system [14]. However, the proposed software power capping
technique achieves the power cap without significantly affecting
the entire system’s performance and only negatively impacts the
container that causes the power cap violation.

Violation Detection detects a power cap violation and runs Algo-
rithm 3 on each server. When a violation is detected, Algorithm 4
performs power capping. The model used to compute the power con-
sumption of the container at run-time is considered in Section 3.1.

The detection algorithm firstly computes the power consump-
tion of each server (line 1) indirectly by calculating the power con-
sumption of every container (line 3) deployed on the server. This is
achieved by collecting the resource usage statistics for each container
(line 4) and then passing the data to the power model for predicting
power consumed (line 5). The power consumption of all containers
running on a server are summed to obtain server power consumption
(line 6) after which power cap violation (if any) is checked for on
each individual server (line 9 and 10). If a server crosses the power
cap limit then Algorithm 4 is performed with the required inputs. If
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Algorithm 4: Apply Power Capping
Input :𝑆 , 𝐶𝑖 𝑗 , 𝑐 𝑗 , 𝐴𝐶𝑟𝑖 , 𝑐𝑎𝑝, 𝑃𝑆 ,𝑚𝑑

Output : true if power capping is successful, false otherwise

1 for ∀ 𝑠 𝑗 𝜀 (𝑆-𝑠𝑖 ) do
2 if 𝑃𝑆 𝑗 + 𝑝𝑐 𝑗 < 𝑐𝑎𝑝 then
3 migrate(𝑐 𝑗 , 𝑠 𝑗 )
4 return true
5 else
6 end
7 while 𝑝𝑠 𝑗 > 𝑐𝑎𝑝 do
8 reduceCoresByOne(𝑐 𝑗 )
9 data = collect_stats(𝑐 𝑗 )

10 predictedpower=md.predict(data)
11 if 𝑝𝑠 𝑗 < 𝑐𝑎𝑝 then
12 return true
13 end
14 end
15 return false

the power consumed by all containers on the servers is below power
cap, then no changes are made (line 13).

The last step is Power Capping that uses Algorithm 4 (input
provided by Algorithm 3). The container that violates the power cap
on a source server is migrated to a destination server (whether such
a server is available is checked by a network process; lines 1-3). If
no candidate destination servers are found, the algorithm reduces the
cores allocated to a container until the server power consumption
drops below the power cap (line 7). The cores are first reduced one
by one (line 8) and then the power consumption is predicted (line 9,
10). Again, if the power consumption does not fall below the power
cap (line 11), then the above process is repeated.

CPU core reduction to achieve power capping will degrade per-
formance of the selected container. This can be compensated for by
increasing the CPU cores at a later stage when it may be feasible
to do so without exceeding the power cap. This scenario is consid-
ered in experimental studies to demonstrate that the impact of CPU
core reduction of a container can be compensated when running the
parallel component of an application in a cluster.

There may be a delay in enforcing the power capping limit since
the detection algorithm is only executed every five minutes (this
is a configurable parameter; experimentation on the impact of this
limit is not presented in this article). It was empirically observed that
after a violation was detected, time was required for migrating the
container to another server due to: (i) Creating checkpoints - freeze
a running container and save its state on disk, (ii) Compressing
the checkpoint and transferring it to the selected server, and (iii)
Creating a new container and restoring the checkpoint. The majority
of the migration time (depends on the container image size) is for
transferring the checkpoint to the destination server.

4 PERFORMANCE EVALUATION
The experiments highlight that for WattsApp: (i) the overheads for
data collection to estimate power do not significantly impact system
power consumption, (ii) there is limited error in estimating power

Figure 4: Data collection overhead for 89 seconds on Intel Xeon.

using the model, (iii) WattsApp operates across multiple proces-
sors, and (iv) the proposed power capping method is more effective
for scheduling than alternate methods, such as Intel’s RAPL.

The experiments are carried out on two systems with different
form factors. The first is workstation Dell Precision 3630 with an
Intel Xeon E-2174G processor and 16GB memory. The second
is a small form factor Odroid N2 Board with a quad-core ARM
Cortex-A73 CPU cluster and a dual core Cortex-A53 cluster and
4GB memory. The system power data is collected using Watts Up
.net hardware power meter. The systems run Ubuntu 18.04. The
containers are created with Ubuntu 18.04 LTS image. Each container
is allocated three CPU cores, 4GB memory on workstation and 2
CPU cores and 2GB memory on Odroid. Docker 17.12.0-ce version
is used to deploy the containers. Keras 2.2.0 that runs on TensorFlow
1.8.0 is used to build the power model. The hardware power meter
Watts Up .net is used to obtain system power consumption in real-
time. Watts Up .net power is used to collect instantaneous power
readings using USB from the host OS.

The workloads defined in Table 1 are used for evaluating WattsApp.
These are scientific workloads that execute to completion. This
paper does not consider Internet-of-Things, stream processing, or
sensor-based applications. The experiments are carried out for sin-
gle workloads on single containers, multiple workloads on multiple
containers, and single workload across multiple containers (a cluster
of containers) to thoroughly evaluate the WattsApp method.

Results: The data collection overheads and estimation error in
container power prediction is firstly presented. Then, the results
from scheduling for power capping obtained for single and multiple
containers are considered. The average system power consumption
overhead when collecting data (CPU, memory, and disk utilization
along with power) for a 89 second time period is shown in Figure 4.
The blue plot shows the average system power consumption when
only power data is collected, and the orange plot shows when both
resource utilization and power metrics are collected. On an average,
nearly 0.2 Watts are spent. The graph illustrates that the overhead
in terms of system power is negligible (less than 1% of system
power consumption). This is an indicator that Step 1 of the proposed
power-aware scheduling method is feasible. Figure 5 shows the data
collection overhead on ARM to be nearly 1.7% of the system power.

Figure 6 shows the error distribution on the Intel processor in the
power estimated for 444 samples using the neural network model.
In this experiment, data collected from all workloads (Table 1) is
consolidated to build the model that is validated using repeated
random sampling by splitting data into 75% and 25% as training and
testing dataset respectively. More than 90% of the samples have an
error of less than 10% and nearly 49% of the samples have less than
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Figure 5: Data collection overhead for 89 seconds on ARM.

Figure 6: Error distribution for 444 data samples on Intel Xeon.

Figure 7: Mean Absolute Percentage Error (MAPE) in estimat-
ing system power for workloads running in containers on Xeon.

a 6% error. This highlights that the power model built in Step 2 of
the method will have a reasonable accuracy for prediction in Step 3.

Figure 7 highlights the Mean Absolute Percentage Error (MAPE)
of the model for estimating power of individual workloads executing
in a container on Intel Xeon. For this experiment each workload
is executed in a single container and the power is estimated for
each container. MAPE indicates the average of percentage errors (a
lower value means the model estimates with a higher accuracy). The
average percentage error is between 1% and just over 6%.

Similar experiments are performed on the ARM processor using
six workloads from (Table 1) (FUZZYKMEANS, KMEANS, KPCA
and PCA are from DCBench with the binaries for the x86 platform).
Figure 8 shows the error distribution of estimating power values for
400 samples using the neural network model. In this experiment,
data collected from the six workloads is consolidated to build the
model that is validated using repeated random sampling by splitting
data into 75% and 25% as training and testing dataset, respectively.
Over 80% of the samples have an error of less than 15% and over
60% of the samples have less than a 10% error. This highlights that
the power model will have a reasonable prediction accuracy.

Figure 9 highlights the MAPE of the model for estimating power
of individual workloads executing in a container on the ARM pro-
cessor. For this experiment each workload is executed in a single

Figure 8: Error distribution for 400 data samples on ARM.

Figure 9: Mean Absolute Percentage Error (MAPE) in estimat-
ing system power for workloads running in containers on ARM.

Figure 10: Time taken to migrate containers and deallocate re-
sources for different sizes of containers.

container and the power is estimated for each container. MAPE indi-
cates the average of percentage errors (a lower value indicates that
the model estimates the power consumed with a higher accuracy).
The average percentage error is between 1% and just over 4%.

Figure 10 shows the overheads associated with the two techniques
adopted in power capping, namely migration and deallocation of
resources for different sizes of containers. The time taken to migrate
using the Checkpoint/Restore in Userspace approach provided by
Docker is directly proportional to the size of the container as the
container needs to be checkpointed and migrated to an alternate
server. However, using the time taken to deallocate resources on
a container on the server takes approximately 180 milliseconds.
Although migration is a potential option to achieve the power cap,
the results show that deallocating resources is a more viable option
given the inherent overheads in container migration. In the next
set of experiments, power capping results based on only resource
deallocation is presented. Migration using containers is a less viable
option based on existing technology (if a critical application has
to be executed) given large migration overheads although it may
be lower than VMs (also not suited for single parallel application
executed across a cluster of containers).

In another experiment, a cluster of containers (four on Intel and
two on ARM) was created for running the MPI applications from
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Figure 11: MAPE of estimating system power for parallel work-
loads running across a cluster of four containers on Intel Xeon.

Figure 12: MAPE of estimating system power for parallel work-
loads running across a cluster of two containers on ARM.

(a) BFS (b) POISSON (c) MD

Figure 13: Average power estimation error (%) for different in-
put configurations of benchmarks on a single container.

Table 1. Figure 11 shows the results on Intel to demonstrate the
feasibility of container power prediction for parallel applications
executed across multiple containers. The average MAPE is 3 with
error between 1 % and around 5.5%. Figure 12 show the MAPE on
ARM. The average MAPE is 2.6 with error between 1 % and 4 %.

The accuracy of WattsApp power estimation is considered for
different input parameters when the benchmark is executed in a sin-
gle container (Figure 13) and in cluster of two containers (Figure 14).
Only three benchmarks (BFS, POISSON, MD) are presented with
three different input parameters (P1, P2 and P3). The input to BFS
is the parameter scale for which P1, P2, and P3 values are 8, 12,
and 16 respectively. POISSON takes as input the number of interior
vertices in one dimension, for which we chose P1, P2, and P3 as 16,
32, and 64 respectively. MD requires parameters: spatial dimension,
number of particles, number of time steps and time step size; P1 =
{2, 500, 500, 0.2}, P2 = {3, 500, 500, 0.2}, and P3 = {3, 750, 500,
0.2}. The data for the input parameters were not used during training.
The results highlight that the average error percentage is between
0.8% and 4% for both Intel and ARM processors.

Two further experiments were carried out on Intel Xeon to identify
benefits of the scheduling approach when compared against no power
caps or Intel’s RAPL. The first experiment is when a single container
executes on the server with a given workload; only one container
running on the server is likely to violate the power cap. The second

(a) BFS (b) POISSON (c) MD

Figure 14: Average power estimation error (%) for different in-
put configurations of benchmarks across two containers.

(a) For DCBench programs from Table 1

(b) For MPI-C programs from Table 1

Figure 15: Execution time when a single container executes us-
ing the power cap technique on Intel Xeon.

experiment is when multiple (three) containers that run the same
workload execute on the server; any container may violate the power
cap. All containers executes the same workload.

Figure 15 shows the results for the first experiment in which a
single container executes on the server with a given workload. The
graph shows the workload execution time for the proposed power
cap method, no power cap, and RAPL’s power cap is adopted. The
proposed power capping method is more effective since the total
workload execution time is lower than RAPL’s power cap.

Figure 16 shows the peak power consumption on the Intel Xeon
processor of applications (from Table 1) when there is no power
capping, under the WattsApp power capping regime and the RAPL
power capping technique. This experiment uses the power cap limit
of 55W. The average peak power consumption of the proposed power
capping technique is 56.4W which is close to the power cap limit
where as the average peak power of RAPL’s power cap is 60.2W and
significantly higher than the power capping limit. The peak power
consumption for WattsApp is 60.3W in comparison to the peak
power consumption of RAPL’s power cap is 65.9W.

Similar experiments are carried out on ARM using six workloads
from Table 1. As RAPL is specific to Intel, these experiments only
compare the WattsApp power cap with no power cap.

Figure 17 shows the results when a single container executes on
the ARM processor. The workloads running under WattsApp takes
slightly longer time and executes within the power budget of 7W.
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Figure 16: Peak power under power cap techniques on Xeon.

Figure 17: Execution time when a single container executes us-
ing the power cap technique on ARM.

Figure 18: Peak power under power cap techniques on ARM.

Figure 19: Effect of power capping with compensation on par-
allel workloads on Xeon.

Figure 18 shows the peak power consumption of six workloads
when there is no power capping and under the WattsApp power
capping regime. A power cap limit of 9W is used. The average peak
power of the proposed power capping technique is 8.1W (below the
power cap limit), but is 9.2W when there is no power cap.

Figure 19 and Figure 20 show performance gain when a single
MPI application is executed across a cluster of containers. This
experiment considers that workloads are running on a cluster of two
or more different servers. When the CPU cores of the workload need
to be reduced on one server, then it is compensated for by increasing
the CPU cores allocated on the other server for the workload. Power
capping on one server with compensatory allocation on another
server does not significantly impact performance.

Summary: The experimental results highlight that: (i) The data
collection overhead in the proposed power-aware container schedul-
ing method of WattsApp only affects the system power consump-
tion negligibly. (ii) Nearly 90% of data samples are estimated with

Figure 20: Effect of power capping with compensation on par-
allel workloads on ARM.

less than 10% error. (iii) The MAPE of power estimation using
the model that is employed by the proposed power-aware container
scheduling method of WattsApp is between 1%-6%. This is rela-
tively low and accurate estimations can be expected from the model.
(iv) The power estimation method of WattsApp is also validated on
the parallel applications across a cluster of containers. The proposed
model estimate the power consumption with MAPE between 1%
to 5.5%. The impact of power capping (CPU core reduction) for
parallel workloads is minimized during the workload runtime by
applying compensation. (v) Deallocation of resources are found to
be a more feasible approach than migrating containers for the power
capping technique given that the overheads for migration increase
with the size of the container. The overheads for deallocating re-
sources is negligible. (vi) When both single and multiple containers
are executed, the proposed power cap method is more beneficial
than when no power cap or RAPL’s power cap is employed since the
proposed method does not degrade the performance of all running
containers.WattsApp’s power capping is also effective since the
peak power allowed by WattsApp is less than RAPL’s power cap
and does not violate any soft power cap imposed by administrators.

5 RELATED WORK
Power modeling of processors and VMs are well explored, but power
modeling of containers is in early stages.

Container Power Modeling: SmartWatts [7] is a self calibrating
software power model for containers that relies on hardware per-
formance counters and RAPL’s power measurement of CPU and
DRAM for estimating power. RAPL limits the applicability of Smart-
Watts to Intel architectures. It also does not capture the impact of
disk access and network usage on power that may be the main activ-
ity of an I/O or a network application. WattsApp on the other hand
uses architecture agnostic parameters to model system power and its
feasibility on multiple hardware platforms is demonstrated.

Lightweight power models, such as cWatts+ [17] and cWatts++ [18]
are developed for containers. cWatts++ is a virtual power model that
has two components: a client back-end and a server front-end. The
client back-end is installed in the container and accesses the CPU
event counters. cWatts++ uses two models, namely an event-based
and RAPL-based models. The event-based model uses CPU perfor-
mance counters and RAPL-based models uses only RAPL event
counters. The evaluation shows that the two power models are useful
on workloads obtained from the PARSEC and in-house benchmarks.
However, cWatts only uses CPU related metrics to compute con-
tainer power from server power. CPUs are a major power consuming
component of a typical server (nearly one-third [6] and even up to
40% [16] of the total server power), but other components need to
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be considered. Hence, WattsApp considers memory, IO and the
network to account for container power. cWatts is also intrusive
requiring container access for client installations.

There is research that accounts for the power consumption of
individual threads and application containers [5]. The research relies
on power estimation of each CPU core obtained from Intel’s RAPL
and hardware performance counters (related to CPU events) obtained
from the OS. A power-aware consolidation technique based on a
model built using CPU utilization is presented [12]. Both approaches
are based on CPU-based metrics and do not account for the power
consumed by other components [16]). WattsApp considers CPU,
memory, disk and network related metrics.

Container Power Capping: Two power capping techniques are
proposed in literature. The first is a power capping technique (Dock-
erCap) for Docker containers [3]. The system power consumption is
obtained from the hardware power meter and RAPL. The CPU quota
of all the containers of different priority is reduced, thereby affect-
ing the performance of all the containers. The WattsApp method
however uses container migration and core reduction to achieve
power capping. The merit is that the overall container performance
is unaffected, but only the container that violates the power cap.

The second technique is proposed for Docker containers on the
Kubernetes platform [2] by relying on DEEP-mon power moni-
toring [5]. This technique relies on RAPL and DVFS to manage
power cap limits. It is demonstrated that RAPL affects the run-time
performance of all containers on a server. RAPL enforces a power
cap on the processor package and DRAM by reducing the CPU
frequency and thus degrades the overall system performance. How-
ever, WattsApp uses architecture independent metrics to measure
resource utilization (CPU, memory, disk, network) and is demon-
strated to be effective for both power-aware scheduling and capping.

6 CONCLUSIONS
This paper proposes WattsApp that is underpinned by a six-step
power-aware scheduling method for containers to minimize power
cap violations on a server in real-time. The method relies on a neural
network-based power estimation model. The trained model effec-
tively predicts over 90% of data samples with less than 10% error.
By testing on 10 representative benchmark workloads, the approach
is able to achieve a MAPE error of less than 6%, and displays mini-
mal overhead during run time scheduling. Unlike hardware-based
power capping techniques, such as Intel’s RAPL, which are indis-
criminate to workloads and degrade the overall performance of all
containers running on a server, this software-based approach is able
to target individual containers running workloads, minimizing over-
all processing degradation while maintaining a node’s power budget.
The proposed technique considers multiple scenarios, including (i)
single/multiple application, single container and single application,
multiple containers. WattsApp has been shown to be feasible and
outperforms existing techniques.

Future Work: WattsApp will be expanded for accelerator ar-
chitectures. The current method prioritizes the power budget of an
individual server, but not the performance of the container work-
loads. WattsApp will be explored for edge computing where power
is a critical concern and containers are increasingly used. Alternate
workloads (stream processing and sensor-based) will be considered.
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