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Abstract—In recent years Kubernetes has become the de
facto standard in the realm of service orchestration. Despite its
great benefits, there are still numerous challenges to make it
compatible with decentralised cloud computing platforms. One of
the challenges of mobile edge computing is that the location of the
users is changing over time. This mobility will constantly alter the
proximity of the users to their connected services. One solution
to this problem is to regularly move services to computing nodes
near the users. However, distributing the services in edge nodes
only subject to user movements will result in the fragmentation
of active nodes. This leads to having active nodes that do not use
their full capacity. We have proposed a method called Mobile-
Kube to reduce the latency of Kubernetes applications on mobile
edge computing devices while maintaining energy consumption at
a reasonable level. An experimental framework is designed on top
of real-world Kubernetes clusters and real-world traces of mobile
users’ movements have been used to simulate the users’ mobility.
Experimental results show that Mobile-Kube can achieve similar
energy consumption performance to a heuristic approach that
focuses on reducing energy consumption only while reducing the
latency of services by 43%.

Index Terms—Resource Management, Energy-Efficiency,
Cloud Computing, Edge Computing, Reinforcement Learning

I. INTRODUCTION

Nowadays containerised services are ubiquitous. They pro-
vide a modular way of packing a single or set of functionalities
in separate isolated environments. The containerisation of
services provides agile development of software with DevOps
practices by easing testing, modularisation and fully automat-
ing the integration and delivery process. From the cloud
provider’s point of view, containerisation provides lightweight
and scalable deployment of cloud services. This interest in
using containerised software has led to the implementation
of production level container management and orchestration
systems. Kubernetes has become the most popular orchestra-
tion system as it provides automated solutions to tasks that
previously required numerous technologies working together
with lots of human provisioning [1].

One of the main challenges with centralised cloud com-
puting clusters is the distance of the infrastructure from the
end users [2]. Time-sensitive, real time and location-aware
services are some examples of the services that are hard to

deploy on distant cloud servers. To address this challenge, the
fog and edge computing paradigms [3] have been proposed to
distribute the computation so that it is closer to the mobile
devices. Mobile edge servers are typically smaller nodes
deployed near base stations. Typically users connected to the
services on edge nodes can access them directly rather than
through the network core. Services deployed on the edge are
highly available and usually do not suffer from the commu-
nication overhead of centralised clouds [2]. Edge clusters are
highly distributed and have limited resources compared to the
centralised clouds. Therefore, their resource management is
more difficult and requires more automated provisioning meth-
ods. Migrating services and Virtual Machines (VMs) subject to
users’ mobility is one of the objectives that has been the topic
of some previous literature [4]–[11]. This problem is studied
in a subset of edge computing called Mobile Edge Computing
(MEC) that deals with making edge computing paradigms
more accessible to mobile device users. The mobile users are
typically connected to the core network of fog devices through
base stations close to them. The edge server is placed near the
base station and can expose the service to users with lower
latency. However, mobile users typically are not static users.
Thus, the base station to which they have connected changes
over time based on their mobility. Previous works in this area
have mainly ignored the challenges of deploying their methods
on real-world orchestration frameworks like Kubernetes.

The primary focus of architectures such as mobile edge
computing [12], cloudlets [13] and fog computing [14] has
been minimizing the latency or maximizing the throughput of
services to mobile users without considering the energy con-
sumption of the edge cloud and the associated environmental
impact. Recently, however, cloud services with large providers
such as Microsoft and Amazon have increased their focus on
reducing their environmental impact by committing to carbon
neutrality by 2030 and 2040 respectively [15], [16]. It is likely
that the increasing pressure from government organizations
will result in edge clouds also considering their operating en-
ergy consumption [17]. There has been considerable research
on minimizing the energy consumption of centralized cloud
services including work on consolidation [18], geographical



load balancing [19], the management of workloads that do not
have strict deadlines [20], consensus mechanisms for Vehicular
Ad-hoc NETworks (VANETs) [21] and the choice of cloud
architecture that should be used to support services [22].
Thus, we propose the Mobile-Kube system that considers both
overall energy consumption and the latency of service users
to provide a MEC platform with good performance for its
services and a reduced environmental impact.

The main contributions of this research work are:
• We present the Mobile-Kube system that integrates with

Kubernetes to reduce the latency of service users on
edge clusters based on users’ mobility while considering
energy consumption. Mobile-Kube models the problem of
service placement while maintaining a reasonable energy
consumption as an optimization problem and solves it
using a reinforcement learning algorithm.

• We compare several reinforcement learning methods to
determine the best reinforcement learning algorithm to
achieve a reasonable trade-off between the two aforemen-
tioned objectives. Our experiments show that IMPALA
is the best Reinforcement Learning (RL) method for this
scenario based on its data efficiency and fast convergence.

• We evaluate Mobile-Kube on the Google Cloud Platform
using a mobile user movement emulator that is based
on real-world traces. Our results show that Mobile-Kube
can achieve similar energy consumption performance to
a heuristic approach that focuses on reducing energy
consumption only while reducing the latency of services
by 43%.

II. MOTIVATING SCENARIO

In MEC networks, users are typically connected to a base
station that connects them to one of the edge servers. In most
scenarios users are typically connected to their closest base
station. As the users of mobile edge cloud move around they
might transfer from one base station and connect to another
base station that is closer as it provides a better signal. The
problem is that the service that they are connected to may
be closer to the former base station and this can result in
increased latency. One solution to this is to move the service
from their previous location to a place closer to a new base
station that the users of that service are connected to. A
greedy algorithm that just moves the service immediately to
an empty server closest to the base station can be utilised.
However, the problem with that approach is that the new
placement might result in switching on a new node which
will increase energy consumption. In this work, we try to
learn a service placement algorithm that can achieve a balance
between keeping the number of active nodes to a minimum
while providing a reasonable Quality of Service (QoS) to the
mobile users through moving services to nodes closer to the
users.

III. RELATED WORKS

Mobility Aware Service Orchestration at Edge With
the advent of 5G and Long-Term Evolution (LTE) networks

over the past few years, the need for mobility driven service
placement methods has become more evident. Ouyang et al.
[4] have proposed a method for migrating the services to
nearby servers to the users while maintaining a reasonable
migration cost using Lyapunov optimisation. While it is not
evaluated experimentally they still have provided a strong
theoretical analysis to achieve an optimised service placement
subject to latency and a long term cost budget. Badri et
al. [23] examined the trade-off between energy consumption
and reducing the latency for QoS with service migration
through a stochastic optimisation approach. The method is
able to handle non-deterministic user movements. The cost
of relocating a service is also considered in their simulations.
Due to the Markovian nature of the service placement problem
reinforcement learning and bandit based methods have also
been used in recent years. Wang et al. [24] models the problem
as a Markov decision process under different scenarios of 1-
D and 2-D mobility. Real-world datasets have been used by
Wang et al. in [7] to show the effectiveness of an offline
reinforcement learning based approach to reduce the overall
service delay. The most similar papers to our work are [5],
[10] which have used different variations of RL for placement
of cloud services subject to the user mobility while achieving
a trade-off in energy consumption. Tang et al. [5] have used
a variation of reinforcement learning namely Q-learning to
model user movements as a Markov decision process and
have considered migration costs into account. Despite their
precise modeling of the cost and delay in edge nodes, their
implementation is not yet on the real-world production-ready
orchestration frameworks like Kubernetes. They have used
Checkpoint/Restore In Userspace (CRIU) for implementation
of the real-world containers migrations for comparison of
migration time between VMs and containers. The resource
consumption and delay are modeled and the RL algorithm
can maintain a balance between the two objectives of re-
ducing the delay and power consumption [25]. However,
their experiments have only been tested in a trace-driven
simulation environment and no integration with real-world
service orchestration systems is presented. To solve the large
state space of the MEC placement problem Brandherm et
al. and Liu et al. [6], [9] have used Multi-Agent version of
the RL algorithms in distributed settings. However, they have
used different Multi-agent algorithms. the former has used q-
learning and the latter uses actor-critic networks.

Kubernetes Limitations Ignored in previous works Other
than the lack of the real-world implementation of the con-
tainer migration, there is another problem in the theoretical
assumptions of the previous works when it comes to deploying
them in real-world systems. Kubernetes resource models work
through the request and limit model. The request is the
amount of the resource reserved for a Kubernetes container
in each node and the limit is the maximum resources that
could be used from the cluster. The problem with some of
the mentioned previous works [8], [23] is that the requested
computational resource is reserved from the user side and a
new container is started for each user task. However, most of



the time in reality a container could be serving many users
at the same time. Therefore, the number of containers in the
nodes for each service is determined by the cloud provider, not
the cloud user. While there have been some efforts to address
this problem when autoscaling [?], [26], to our knowledge our
approach is the first to address this for MEC applications by
considering services with multiple connected users.

Reinforcement Learning for Resource Management
Problems that can be expressed as a sequential decision mak-
ing process can be modelled as a Markov Decision Processes
(MDPs). MDPs are the core mathematical formalization that
is used in most of the sequential decision 1 making problems.
An MDP is a model of sequential decisions that are an
abstraction of an agents’ behavior in a fully or partially
observed environment. An agent is an entity that makes the
actions. For example, in a video game, the player who moves
the controller is the agent. At each step of decision-making,
the agent receives a reward from the environment after the
action has been taken. This reward indicates the value of the
taken action. If a learning method is associated with the MDP
then this reward is a measure that is used to learn to take better
actions over the subsequent steps. The main property of the
MDPs is that the action taken at each timestamp depends only
on the current state of the environment and not any state(s)
before that. Mathematically speaking, an MDP consists of a
trajectory of states S, actions A and rewards R in the following
order:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (1)

Dynamic Resource management can be considered an example
of sequential decision making since in almost all of its
forms it involves deciding which task should be allocated to
which resource. Therefore, it can be expressed as an MDP.
This gives us robust modeling of the resource management
problem that can be used alongside methods for solving the
MDPs to allocate resources effectively. After the success of
the DeepRM [27] there is a line of research pursuing the
problem of resource allocation with RL to optimize classic
system problems. The successes of reinforcement learning
in playing games and solving control problems [28] have
motivated many researchers to take it to their domain of
interest. Some examples are device placement optimization
[29], video streaming bitrate adaptation [30], and Internet con-
gestion control [31]. As noted before, the resource allocation
problem can be expressed as an MDP. This gives rise to the
idea of using reinforcement learning in this context which is
naturally a learning model designed to solve MDPs. Other
than the modeling capabilities of the RL it is adaptable to the
incoming workload. One of the drawbacks of RL methods is
that they require a large amount of training data. Thus, the
abundance of training historical data in resource allocation
logs makes them a good fit for the problem [32].

TABLE I
NOMENCLATURE AND NOTATIONAL CONVENTIONS.

cc
Key Concept Definition

E Edge Node Set

m Number of Nodes

Ei ith node (i ∈ [1,m])

El
i Location of node i

EC
i CPU capacity of node i

EM
i Memory capacity of node i

pi Power consumed by node i

pidlei Idle power of node i

pmax
i Max power of node i

C Container Set

n Number of Containers

Cj jth container (j ∈ [1, n])

t Time interval

T Total time interval in each training episode

Cl
j(t) Location of container j at time t ((clj(t) ∈ {F})

Cr
j (t) CPU requirement of container j at time t

Cm
j (t) Memory requirement of container j at time t

Cm
j (t) List of mobile applications on container j at time t

M Mobile User set

o Number of mobile users

Mk kth mobile user (k ∈ [1, o])

M l
k Location of mobile userk at time t

Mr
k Container request of mobile user k at time t

dMk
Distance of user Mk from its connected service

dtotal Total system delay

dnet Network delay

dq Delay due to a lack of available resources

prtotal Total Power consumption

ut
i Resource request of node i at time t

Ct Total Cost

IV. PROBLEM FORMULATION

Let E = {E1, E2, . . . , Em} be the set of edge nodes,
C = {C1, C2, . . . , Cn} be the set of containers which host
mobile applications and M = {M1,M2, . . . ,Mo} be the set
of mobile users which connect to these applications. Each
edge node i has a location El

i , a CPU capacity EC
i and a

memory capacity EM
i . Each container j has a location at time

t which is denoted as Ct
j ∈ {E}. The resource requirements

and allocation can change with time. Thus, let Cr
j (t) and

Cm
j (t) represent the containers’ CPU resource requirements,

the containers’ memory resource requirements respectively.
We also need to consider the location of the mobile user which
can change over time and that they may use different mobile
applications at different times. Thus, let M l

k(t) represent

1In the context of reinforcement learning these decisions are referred to as
actions.



the location of the mobile user k and Mr
k (t) represent the

application that the mobile user k is accessing.
The overall goal of the system is to minimise the energy

consumption of edge cloud and maximise the performance
of mobile applications. Maximising the performance of the
mobile applications is achieved by minimizing the total delay
of the system and the migration of containers. Its goal can be
formulated as:

minimise Ct = w1dtotal + w2ptotal (2)

subject to
∑

Ct
j∈Ei

Cr
j ≤ EC

i ∀i (3)

∑
Ct

j∈Ei

Cm
j ≤ EM

i ∀i (4)

Where w1 w2 are weights used to indicate the relative im-
portance of each sub goal. The conditions of the optimisation
problem are used to represent the resource capacities of the
edge servers.

The total delay is comprised of delays due to the network
dnet and delays due to a lack of available resources for
computation dq . It can be formulated as:

dtotal = dnet + dq (5)

dnet will vary depending on the location of the containers and
the mobile users.

dnet is computed by averaging each individual users’ expe-
rienced latency:

dnet =

o∑
k=1

dMk
/o (6)

dq will always be zero as the optimisation conditions prevent
overloading an edge server. Further work will explore relaxing
these constraints to achieve better service consolidation and
how this affects service performance.

The power pi consumed by node i is based upon the
resource request of the at node ui(t). The power consumed
by node i can be calculated as:

pi(t) =

{
(pidlei + (pmax

i − pidlei ))× ui(t)), if ui(t) > 0
0, if ui(t) = 0

(7)
If the utilization is zero then the system switches the node off
and it consumes no power which is why pi(t) = 0 if ui(t) = 0.
The total power ptotal can then be calculated as:

ptotal =

m∑
i=1

pi(t) (8)

V. PROPOSED REINFORCEMENT LEARNING SOLUTION

As the user mobility and the movement of services in our
problem are a sequential decision making problem preserving
the Markov [5] property, deep reinforcement learning solutions
are a good approach for them. In deep reinforcement learning
an agent tries to learn a policy π(s) that maximise the
discounted reward received from the environment. To achieve
this, it first tries to find the value of the states which is the sum

of the observed rewards from the starting state until the termi-
nal state vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s].
Saving all the state values in a table is not feasible in problems
with large state-space. In deep reinforcement learning a neural
network is used to save all the values of states and at each
timestamp of the reinforcement learning algorithm, the weights
of the neural network are updated based on the received reward
from the environment. In value based reinforcement learning
the neural network receives the state of the environment as the
input and returns the state-value as the output. A maximisation
or a greedy policy step is done afterward to choose the
appropriate action from the output state values received from
the neural network. However, in policy gradient methods the
neural network returns the action directly to the output. [33]
The general scheme of the used RL algorithms is shown in
Algorithm 1. The πθold/new

on line 6 depends on whether the
old or new policy is used based on whether the method is an
on policy or off policy RL algorithm. In our case, PG and
PPO are on policy and IMPALA is off policy.

Algorithm 1 Migration Algorithm
1: for iterations = 1, 2, . . . , N do
2: for episodes = 1, 2, . . . ,M do
3: Rb ← 0
4: Rl ← 0
5: for timesteps = 1, 2, . . . , T do
6: Run a trajectory πθold/new

for T timesteps
7: Compute the timestep latency reward rl
8: Compute the timestep binpacking reward rb
9: end for

10: Rb ← Rb + rb
11: Rl ← Rl + rl
12: end for
13: R← w1Rb + w2Rl

14: Optimize the RL Agent policy π based on R
15: Move the containers based on π
16: end for

Agent We have used three different RL agents in our
experiments:

• PG Vanilla Policy Gradient (PG) is considered as the ba-
sis of all policy gradient RL algorithms. At each iteration
of the standard policy gradient method, an episode τ (or
a batch of episodes) is performed. Each timestep t ∈ T
of an episode is comprised of a state st, action at and
a reward received from the environment for that state-
action pair r

(
sit,a

i
t

)
. The series of all these state, action

and reward triplets constitute a full episode trajectory
τ ∼ {s1, a1, r2, ..., sT−1, aT−1, rT }. The sum of all the
rewards in a sample episode r(τ) =

∑
t r

(
sit,a

i
t

)
is used

to update the policy network π sets of parameters θ. To
reach this goal first an objective function is computed
using the logarithm of the gradients of the policy neural
network log πθ(τ) based on the policy gradient theorem



[33].

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log πθ(τ)r(τ) (9)

A gradient ascent step updates the weights of the policy
network:

θ ← θ + α∇θJ(θ) (10)

• PPO RL algorithms are of high variance by nature. This
means that the output actions can change in different
training iterations depending on the received random sam-
ple. The Proximal Policy Optimization (PPO) algorithm
solves this issue by constraining the next action within a
certain range at each timestep. It does so by clipping
the objective function and using a surrogate objective
function instead of the equation 10 [34].

• IMPALA is a distributed deep RL method [35]. It pro-
poses a distributed training method for one of the former
Deep RL methods named A2C. The naive policy gradient
method is a high variance method and it is not stable for
environments with high fluctuation in the reward signal.
This is because the sum of rewards r(τ) used in equation
9 are only sampled from a single episode. But due to
environment dynamics, this single episode return might
not be a good indicator of the states’ worthiness. One
of the techniques used for reducing the variance is to
have another neural network called critic which acts as
an estimator for the reward function. In each timestep, the
parameters ϕ of another neural network are also trained
for estimating a value function:

V π (st) =

T∑
t′=t

Eπθ
[r (st′ ,at′) | st] (11)

This value function will be a better estimate since it is
an approximation based on a series of episodes rather
than a single episode roll out. substituting the r(τ) with
V π (si,ai) the equation 9 will update to:

∇θJ(θ) ≈
∑
i

∇θ log πθ (ai | si)V π (si,ai) (12)

The update rule of the algorithm will stay the same as
equation 10. At each timestep of the A2C, it distributes
the computation of the advantage values into several
learners. IMPALA improves the training procedure by
distributing the learner into several learners. In former
distributed versions of the A2C named A3C, the updating
happens through passing the gradient to a central learner,
however, this can produce a large communication over-
head. Instead of the gradients, IMPALA directly sends the
trajectory of experiences received from multiple actors to
the central learner. The distributed actors continuously
update their policy with the latest updated policy in the
learner and then send them to the learner. This approach
increases the exploration and throughput rate. Each of
the learners does the actions based on its version of
the policy network not the latest updated version of the

policy. To solve this problem, IMPALA uses a correction
step using importance sampling called V-trace. Training
another policy µ other than the policy π that the agent
is using to act in the environment is referred to as off
policy methods. To fix the inconsistency of the actors’
policy µ with the learner policy π, in IMPALA the
value function in Eq 11 is substituted with another value
function with importance sampling to make the learners’
policy consistent with the actors’ policy.

States Each state is derived by concatenation of two arrays
1. An array of size n, U =< u1, u2, ..., un > which the
indexes are the users’ id and each entry value indicates the
corresponding user connected station id and is a value from
the set of all available stations ui ∈ [s1, s2, ..., sm]. 2. Another
array C =< c1, c2, ..., cm > which the indexes represent the
containers and the items represent the node that the container
is placed on, and the values are from ci ∈ [n1, n2, ..., nk]. All
the discrete values are then encoded using a one-hot encoding
before being fed to the RL model. The final observation will
be the concatenation of these two parts O = U

⋃
C.

Actions The action map is represented as an array of the size
of the containers where each of the indices represents one of
the hosts and each of the values at that index represents the id
of the host that this container is placed at the next timestamp.
This is exactly like the U part of the observations.

Reward The reward at each timestep is calculated per each
objective according to Equation 4. For minimizing the network
latency we have Rl = 1/dtotal, and for maximizing the
number of empty servers we set the binpacking objective to
Rb = ptotal. Both of the values are then normalised according
to the network size (see Section VII for more information).
The two values are then summed up according to two weights
w1 and w2.

R = w1Rb + w2Rl (13)

RL helper Due to the large state space of the problem,
the RL agent will face many illegal actions that try to place
containers to hosts without enough space. If we want to end
the training episode every time we face an illegal action then
we stop the agent from learning longer episodes and it makes
the training slow. To solve this problem during the training,
we assigned a negative reward to the illegal actions but we
continued the simulator traces to the next timestep. In the test
phase on the real-world Kubernetes servers, if an illegal action
is received, we skip that action and keep the servers at their
place until the next timesteps’ action.

Policy Networks We have used a similar structure for the
policy neural network across all the reinforcement learning
agents. We have used a two-layer fully-connected network
with 64 neurons at each layer. We chose this simple architec-
ture as we did not see a meaningful difference in using more
complicated architectures when we experimentally evaluated
them.
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Fig. 1. The design of the system including of five parts (a) the controller in charge of making decisions about the placement of the services (b) The real
world Kubernetes cluster (c) Kubernetes Python API connection to the Kubernetes cluster (d) Python mobility simulator (e) Simulated connection of the users
to the services.

VI. SYSTEM DESIGN

We have designed a complete end to end experimental setup.
The implementation of the Kubernetes side is all done in real-
world Google Cloud cluster. However, the user mobility side
is simulation based on real-world data. This is due to the
difficulty of having real-world experiments with real moving
mobile users.

Kubernetes Internal Structure Kubernetes clusters are
deployed with a number of nodes. Nodes can be considered as
the equivalent of servers in other forms of computing clusters.
A node could be a bare metal server or virtual machine of any
kind. Once a computing resource is defined as a Kubernetes
node, all the nodes of different types will look the same
from the users’ perspective. Containers in Kubernetes are the
minimum isolation level of the applications, but the smallest
Kubernetes abstraction for representing containers is another
entity called a pod. Pods are the smallest deployable unit that
presents a set of containers that share the same networking
interface. All the containers inside a pod are always co-located
in the same cluster node. Pods are ephemeral objects and
are replaced and rescheduled constantly during their lifetime.
Kubernetes services are a way of building a consistent rep-
resentation of the Kubernetes pods networking for accessing
them. This is different from the concept of the service we have
used in this work, it is just the Kubernetes internal networking
tool that we have used to expose our applications which call
a unit of them a service. The state of the cluster and all
the internal Kubernetes communications are done through the

Kubernetes API server. The API server exposes the Kubernetes
API using a rest API. In order to be able to interact with
the API server, there are many options like the Kubernetes
CLI named kubectl or other client APIs available in multiple
languages. We have used the python client API for interacting
with the API server.

Our definition of Services Usually, real world cloud ser-
vices are made from a set of containers and stateful and state-
less microservices. For example, a streaming service consists
of a database system, authentication system, video analytic
service, and many other small decoupled modular objects. For
experimental purposes, we limit the definition of a service to
a single pod containing one single container inside it with a
Flask Python app for generating load on the container CPU
and RAM. The Flask Python app is exposed to the outside
world using Kubernetes’ service.

Load Generation Module To emulate artificial load on
the services, we have used a model with two containerised
Flask applications. One of them called the utilisation server is
deployed as a single Flask application in one arbitrary server
outside the cluster and the other one is an application running
on all the services. At each timestamp, the utilisation server
sends the resource usage of each application to them and the
applications on the services put the load on the CPU and RAM
of the application using a Linux tool named stress-ng.

Changes to the Kubernetes default scheduler Kubernetes
schedules pods at the beginning of their lifetime and there is
no builtin migration mechanism implemented in Kubernetes.
However, our design needs to constantly recreate services



based on the users’ mobility. In our design, we do the
scheduling outside Kubernetes through our RL agent and
other types of decision making agents and then pass the
next pod placement to the Kubernetes cluster through the
Kubernetes Python client API. Future work will use a more
sophisticated implementation that will leverage the Kubernetes
scheduler plugin to add the scheduler as a plugin to the core
Kubernetes scheduler instead of doing the scheduling outside
the Kubernetes cluster.

Service Migration Model Currently there is no live migra-
tion scenario implemented in Kubernetes. Once a Kubernetes
pod is scheduled on a node it cannot be moved to another node.
The solution here is to stop and restart the pod in another place.
If we want to move pod 1 from node 1 to node 2 we first start
pod 1 in node 2 Once we are sure pod 1 is up and running in
node 2 we delete its previous version from node 1. The reason
for this waiting is to make sure that the user will have access to
the service during the pod replacement process. In our design,
we schedule pods one by one instead of using a multi-threaded
version of scheduling. This is because the Kubernetes default
scheduler itself does not suggest the multi-threaded movement
of pods and advises scheduling them with a single scheduling
queue. There have been some research efforts to implement
migration mechanisms for container orchestration systems [36]
and we will explore integrating these into our system in future
work.

Energy saving mechanism According to our energy con-
sumption objective we aim to have the minimum available
Kubernetes nodes in the cluster in order to be able to switch
them off. Since we are using virtual machines instead of
bare metal physical nodes we have not implemented a node
switching on/off mechanism. For a real-world implementation,
this can be achieved by draining the Kubernetes nodes to
release them from the Kubernetes cluster and then switching
off the physical host.

Network and Mobility In contrast to the node and service
side, the networking side is based on simulation. We have
used the location of the towers in the San Francisco area
[37] to generate the simulation network. We have considered
co-located nodes with the stations. The nodes are then con-
nected using a minimum spanning tree. The users are always
connected to their closest base station. The users’ mobility
simulator is implemented using a real-world taxi traces in
the San Francisco area from the cabspotting dataset [38]. We
extracted the location of taxis for each five minute interval.
The dataset does not contain the location of the taxis for all
time intervals. To interpolate the missing entries we used the
Euclidean distance and path between available points.

Training Training the system on the real-world Kubernetes
clusters is costly and time-consuming. RL agents need to be
trained on the environment in several timesteps. This makes it
infeasible to do the training on the real-world clusters. To solve
this problem, we implemented a simulator that can mimic the
dynamics of the real-world cluster during the training. We used
the trained agent outside the box in the real-world cluster.

Complete System As it can be seen in Figure 1, our design

consist of three main parts. The first part is the Kubernetes
cluster containing our Kubernetes nodes and services. The
mobility simulator is another part that is connected to the
cluster through a simulated connection that is a Python script
assigning the users to the nodes. The placement of the nodes
and the location of the users are passed to the controller. The
controller wraps the information received from both entities
into a single environment OpenAI gym [39] environment.
The gym environment is then used to calculate the reward
based on the current observation from the environment. This
information is then passed to the RL agent to decide the
next placement of pods in the nodes. We have used the rllib
[40] library for the implementation of the RL agents. This
placement is then passed back to the Kubernetes using the
Kubernetes Python API and the pods with be moved to a new
node in the cluster. All the codebase of this project is available
at https://github.com/saeid93/mobile-kube.

VII. EXPERIMENTAL SETUP

We used the Google GKE service to deploy our Kubernetes
cluster. Due to our computational budget, we performed the
experiments on eight Kubernetes nodes. All the nodes were
of e2-standard-4 type of the GKE platform with four cores
and 16 GB of Memory. We used 16 stateless containerised
services with the Flask app and the utilisation server explained
in section VI with some constant load on them2. We have
used pods of guaranteed QoS Kubernetes class which have
equal size requests and limits. All the services are of size
250 Mb RAM and 0.125 CPU. Due to the complexity of the
problem we have used constant load on the services running
on the nodes. This load is generated using the utilisation server
explained before. However, as we discussed in section VI, for
sensitivity analysis we conducted the experiments for 16, 32,
48, users3. In each scenario, a service is serving one, two,
and three users respectively. In our simulations, the station
and nodes were co-located, therefore, we have eight stations
proportional to the number of the nodes. The users move in a
radius of 37.72 and 37.78 for latitude and -122.45 to -122.38
in longitude. In Figure 2 you can see the initial placement
of nodes, servers, and users on the map. During the training
phase of the RL algorithms, we used the simulator explained in
section VI. The number of user movements available per user
in the cabspotting dataset (explained in Section VI) was not
sufficient for training the RL agent. Even with interpolation
between the locations in the dataset location of the taxis, we
ended up with 3453 locations for each taxi within five minutes
intervals. Therefore, for the training phase, we generated a
random user movements dataset within the same vicinity for
the training with 100000 user movements. However, the final
test results in Figures 7, 8, 9 and 10 are generated using the
real world cabspotting dataset with 3453 timesteps.

2As explained before the scheduling is based on the resource request and
not on the load of the containers. However, we put some load on them to
more closely emulate a real-world deployment.

3Scaling beyond this would require a multi-agent reinforcement learning
[6] instead of a single agent central scheduler and this will be explored in
future work.

https://github.com/saeid93/mobile-kube


Fig. 2. Placement of the users (16 users scenario) and stations/servers on the
map, we considered co-located stations and nodes (servers).
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Fig. 3. Comparison of scales of the two different rewards.

The scaling of the training rewards between the two objec-
tives is a challenging task as the two objectives need to be
scaled so that the total values of the rewards in an episode are
roughly the same scale. We were able to achieve this using
experimental evaluation of different scaling methods. In Figure
3 you can see that scale of the rewards within a random 100
timestep episode is almost within the same range.

RL algorithms are very sensitive to variation of hyperparam-
eters [32], therefore using them for new problems requires lots
of hyperparameter tuning. By extensive simulation, we found
the following values as the optimal hyperparameters values for
each of the RL algorithms. The values are presented in Table
II.

In the testing phase, we averaged the results for 20 separate
episodes for each of the experiments.

We compared the results of the learning algorithms with two
greedy schedulers that focus on latency or energy consumption
only. As there is no work with a similar setting to ours we
chose two heuristic algorithms 1. Bestfit algorithm as the
ground truth value for energy consumption [18] and 2. A
latency greedy algorithm that moves the services to the closest
vicinity of the users as the ground truth value for latency [6].
We compared IMPALA with two other RL algorithms that

Neural Network
# Layers Layers size Activation function

2 64 Linear
PG

Train batch size Gamma Learning rate
1000 0.99 0.0003

PPO
SGD minibatch size train batch size learning rate

128 1000 0.0003
IMPALA

Train batch size Gamma Learning rate
1000 0.99 0.0003

TABLE II
HYPERPARAMETERS OF THE RL ALGORITHMS
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Fig. 4. Average number of empty servers during the RL algorithms training

have been widely used in previous scheduling works, Vanilla
Policy Gradient used in a paper with an approximately similar
setting [41] and PPO which is one of the state of the art
algorithms previously used in systems research and Kubernetes
scheduling [42].

VIII. RESULTS

We evaluated the result in terms of the two energy saving
and latency objectives. During the training phase of the algo-
rithm, we observed that among the three tested RL algorithms
IMPALA showed the most stable convergence. As you can see
in Figure 5 and Figure 6 the green line for IMPALA has fewer
variations during the training. This variation is not evident
in Figure 4 as all the algorithms converge to some optimal
value very quickly. IMPALA also shows a better convergence
in all scenarios to the optimal energy saving objective which
is 6 empty servers. There was not a consistent performance
difference between the Policy gradient and PPO during the
training.

For the test results, we also compared the results with the
latency and energy saving heuristic algorithms. From Figure
7 we can see that the PG and IMPALA can achieve the
best average latency in the network among the three tested
RL algorithms. However, the difference between the achieved
results in both IMPALA and PG cases is very close.

In the case of the energy saving objective, the IMPALA was
able to converge to the optimal result in all network sizes. This
is illustrated in Figure 8. This was not the case for the other
two RL algorithms.

Analysis of the timesteps (instead of the average of the
servers) of a test episode can also confirm similar results
to averaged results of multiple episodes (previously shown
test results). In Figures 9 and 10 we observe that during a
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Fig. 6. Average episode rewards for different RL algorithms during the
training
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Fig. 9. Number of empty servers of different algorithms during a sample
episode run
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Fig. 10. Average network latency of different algorithms during a sample
episode run

sample 200 timestamp episode the ordering is the same as
the averaged results. We can also see that IMPALA is able
to achieve similar performance with the heuristic method that
focuses on the energy saving objective only. It can achieve this
result while reducing the average latency of users by 43%.
This demonstrates the efficacy of the Mobile-Kube system
in providing MEC services in a sustainable fashion. From
these results, we observed that IMPALA is able to achieve
the best result in terms of achieving a trade off between the
two aforementioned objectives.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a deep reinforcement learning
solution for reducing energy consumption in containerised
clusters. Our results suggest that commonly used heuristic
algorithms like bin-packing can be replaced with learning-
based methods to achieve similar performance for the targeted
object while also improving performance in other areas. Some
directions for future works are:

Checkpointing of stateful services In this work we only
considered the case the case of stateless services that could
be turned on and off anytime without the need of preserving
their current state. However, this is not the case for many
real-world use cases. To this end, a checkpointing mechanism
that could preserve the current state of the service until it is
restarted can be implemented in future works.

Kubernetes full implementation Currently we have our
scheduling control loop completely out of the Kubernetes
cluster. Although Mobile-Kube can be deployed in a cloud
environment best practice would be to place the control loop
inside the Kubernetes cluster. Kubernetes custom resource and
operators can be used in future works to achieve this goal.
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