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A proactive energy-aware auto-scaling solution for

edge-based infrastructures

Angel Cañete, Karim Djemame, Mercedes Amor, Lidia Fuentes, Abdullah Aljulayfi .

Abstract—Proactive auto-scaling mechanisms in edge-based
infrastructures can anticipate user service requests by allocating
computing resources while supporting the quality of service needed
by a vast range of applications requiring, e.g., a low latency or
response time. However, managing the dynamic needs of user
service requests is challenging due to the edge infrastructure’s
heterogeneity and dynamic nature. Also, minimizing global energy
consumption is a must in today’s systems, which should be
addressed inherently as part of any resource scaling solution. This
paper presents a proactive horizontal auto-scaling framework
for edge infrastructures, which takes into account both the
base (idle) and dynamic (due to application execution) energy
consumption of edge nodes, as well as of the node scaling
mechanism. Simulations were performed with the EdgeCloudSim
simulator with a workload provided by Shanghai Telecom and
the results show up to a 92.5% decrease in energy consumption,
a failed request rate of up to 0%, and reasonable execution times
of the auto-scaling process for different problem sizes.

Index Terms—energy efficiency, proactive auto-scaling, hori-
zontal auto-scaling, Edge Computing, B5G

I. INTRODUCTION

In a near future, B5G networks are expected to support

a variety of vertical services demanding ultra-low latency

and high data rates. It is the responsibility of the network

infrastructure to efficiently allocate the available (and limited)

resources to the service requests of mobile users meeting certain

Quality of Service (QoS) requirements while accounting for

their energy footprint cost.

Edge computing, which delivers and distributes computing

and storage to nodes close to the end user, can help significantly

reduce service response times and increase reliability, security,

and sustainability compared to cloud computing. To achieve

this, it is required efficient management of the infrastructure

resources. Auto-scaling allows management and improves

infrastructure resource availability while optimizing energy

consumption when the services demand or workload varies

dynamically. Horizontal auto-scaling, which enables increas-

ing/decreasing the number of nodes of edge infrastructures,

allows reducing the energy consumption (EC) of the nodes

themselves, where non-IT appliances such as cooling and

lighting can consume around 33%-52% of the total energy of an

infrastructure of up to 500 nodes [1]. In addition, for dynamic

workloads that require frequent scaling up and down, reactive

auto-scaling solutions can be costly and consume a significant
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amount of time, resources and so energy. Alternatively, predic-

tive methods can perform better in minimizing response time,

satisfying service latency objectives, and reducing the auto-

scaling interventions, as they can forecast future workload and

anticipate resource provision or de-provision. Proactive auto-

scaling solutions for Edge Computing systems are scarce. The

heterogeneity of a limited set of computing resources makes

proactive auto-scaling more complex and time-consuming than

in cloud systems [2], [3]. In addition, the risk of failed requests

can increase due to wrong workload predictions. Thus, the

development of predictive auto-scaling policies under dynamic

workloads involves important challenges when they are put

into practice in edge infrastructures.

This paper presents a proactive horizontal auto-scaling

framework specially well suited for edge infrastructures with

different configurations that address these challenges, being

capable of reducing the EC of dynamic workloads in edge

environments. This solution takes into account both the base

(idle) and dynamic (due to application execution) EC of the

nodes, as well as the EC of node scaling. The approach

has been connected to the open source EdgeCloudSim edge

environment simulator [4], which serves real dynamic edge

workload provided by Shanghai Telecom [5], and tested in three

different workload scenarios. Experimentation has been used

to analyze, following the goal-question-metric methodology,

the feasibility of using our auto-scaling approach to reduce the

EC in edge-based infrastructures. The results show a decrease

of up to 92.5% in EC, a failed request rate of up to 0%,

and reasonable execution times of the auto-scaling process for

different problem sizes.

The rest of the paper is structured as follows: Section II

reviews the related work. The proposed orchestration and auto-

scaling approach is presented in Section III. The pro-active

auto-scaling module is detailed in Section IV, alongside the

EC model and workload predictor, the latter being responsible

for future workload forecast to be submitted to the edge

infrastructure. Section V presents the research questions,

outlines the experimental design that will address the research

questions, demonstrates the feasibility of the proposed approach,

and presents the experiment results with a discussion on their

significance. It also reflects on the research outcomes and any

limitations encountered. Finally, Section VI concludes with a

summary of the research findings and suggestions for future

work.



II. RELATED WORK

Although in the literature, a plethora of approaches addresses

auto-scaling in cloud-based infrastructures to minimize EC (or

its associated cost) [3], the feasibility of applying cloud-native

auto-scaling techniques in Edge Computing environments has

not been evaluated nor compared taking into account the

heterogeneous nature presented in edge infrastructures [2],

[3], [6]. The reason is that, unlike cloud servers, edge servers

have limited computing resources due to their size and power

constraints, making efficient resource management crucial

and resource allocation a complex task. This phenomenon

is aggravated when the tasks delegated to the edge require

peripherals that only some of the devices have (e.g., a specific

network card, or a GPU). Furthermore, users demand low

latency, and then transferring workloads across edge servers

inevitably incurs additional latency costs that conflict with edge

computing’s low-latency goal.

Few works address proactive auto-scaling in Edge Computing

environments as this work, and most of them focus on

the horizontal scaling of the number of instances (VMs or

containers) according to a prediction of user requests and

the surplus or deficit of resources used by deployed services

(service scaling) [3]. In addition, most of them do not consider

EC when deciding between different scaling options. Regarding

resource scaling works in edge environments (among which

is our proposal), in [6] authors provide a model to energy-

efficiently attend to the edge resources demand. It is a proactive

auto-scaling solution that uses a very simple EC model based

on the consumption per unit of time and considers some node

characteristics (such as switching EC) as homogeneous for the

entire infrastructure. Authors report up to 57% decrease in EC

when compared with other allocation techniques. Chen et al.

[7] present EdgeDR, an online market mechanism to achieve

cost efficiency in edge demand response programs. Using a

primal-dual-based, polynomial-time approximation algorithm,

it obtains a near-optimal cloudlets switching solution. The

model used by the authors simplifies resource management by

considering that services use a fixed percentage of the nodes’

total resources, regardless of the node’s capacities, and without

distinguishing between CPU (Central Processing Unit), memory

or disk. EdgeDR gets around 30% of energy saving compared

with other similar mechanisms. Song et al. [8] present an

online task scheduling algorithm for distributing workloads

among clusters in a way to ensure the energy reduction goal of

EDR. Authors declare up to 49.8% of energy saving with an

acceptance rate of up to 95%. So, an adequate energy reduction

goal in edge environments can be set in the range between

30% and 50%.

However, in contrast to previous similar approaches [6]–[8],

our proposal considers device capabilities and runtime impact

independently, making it applicable to high heterogeneous

infrastructures. Our approach also characterizes separately

the workload requirements in terms of CPU, memory, disk,

peripherals, etc., which can be considered separately for task

allocation. Therefore, although these approaches attempt to

optimize EC in edge environments, they fail to provide a

flexible solution to dynamic workload scenarios (one of our

contributions) as they simplify the problem by considering

resources or workload requirements as homogeneous, or do

not take into account the characteristics of the devices in the

impact on the QoS.

III. OUR APPROACH

This section presents our auto-scaling and placement ap-

proach to minimize EC.

Figure 1 shows a full overview of the proposed framework

modules and processes. The user requests of applications/VNFs

are served by an edge infrastructure. Applications and VNF

are implemented as containerized workloads and services, and

are contained in a repository (e.g., DockerHub). The edge

infrastructure is composed of a set of nodes, which can be

master or worker nodes. Master nodes (there may be more than

one to avoid a single point of failure [9]) are responsible for

assigning the workloads to the Worker nodes–master nodes can

also be worker nodes at the same time. The Master node

includes an orchestrator (e.g., Kubernetes [9]), a platform

that facilitates the declarative configuration and automation of

the deployment, management, coordination and availability of

services, and the scaling of nodes.

Each user request requires instantiating an application/VNF,

which is assigned on demand by the Energy-aware orchestrator

to an edge node, where it is executed in a packaged form

inside a container (e.g., Docker). To minimize the EC of

the task execution, the default scheduler of the orchestrator

(i.e., in the case of Kubernetes, kube-scheduler) has been

modified to assign tasks/applications to the most energy-

efficient nodes capable of running the application/VNF. This

placement decision is performed with the help of the Proactive

auto-scaling module, which can be running on a master node

in the infrastructure or even in an external node (even in the

cloud). Periodically, the Master node (or one of them) requests

the Essential Node Identifier (ENI) component to perform

the proactive horizontal auto-scaling process. This component

receives the expected workload (number of requests) from the

Workload predictor and the current state of the infrastructure

and determines which nodes should keep active to serve user

requests the next time interval (defined by the infrastructure

administrator). It also accesses the application requirements

(detailed in the Application repository (e.g., memory, disk,

computational cost, peripherals, etc)–see Figure 1. The ENI

component prioritizes the nodes with the lowest EC and the

sufficient resources available to serve the expected workload

while minimizing the number of active nodes (and therefore,

EC). Once the Master node receives the information on the

nodes to be kept active, it deactivates (puts into sleep mode)

those that are not required.

IV. PROACTIVE AUTO-SCALING MODULE

A. Energy consumption model

The energy consumption model is used by the auto-scaling

module to estimate two types of EC: dynamic EC, which

depends on the workload of nodes and idle EC, which is the EC

of a node for remaining active [10]. Our solution decreases the
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Fig. 1: Full overview of our approach.

global EC at two different points: at the scheduler, prioritizing

the allocation of computational load to energy-efficient nodes

(reducing the dynamic EC); and at the auto-scaling process,

putting on sleep mode those nodes that are considered non-

essential (decreasing the idle EC).

In dynamic EC, the model associates an EC to computation

and communication separately. The computational EC is

influenced by several factors, such as the usage of CPU,

storage, and RAM (Random Access Memory), being CPU

usage the most influential factor and the one in which most

Edge Computing approaches base their EC models [10].

Equation bellow contains the expressions used to calculate

the EC (J) associated to computation (eComp), as well as

the EC for remaining nodes active (eIdle), for being inactive

(eSleep), for switching on and off nodes (eSwitch) [7], and

for data sending and receiving (eSend and eRcpt) [10], [11]:

eCompn,i = (1− αn)eMaxnυi

wi

CPUn

ewn + eDeployn

eIdlen = αneMaxnewnt

eSleepn = βneMaxnewnt

eSwitchn = sneSOnn

eSenddataUpi,n
= P

Tx
n

(1 + pR)dataUpi

RTx
n

ewn

eRcptdataDowni,n
= P

Rx
n

(1 + pR)dataDowni

RRx
n

ewn

where αn, whose value is between 0 and 1, represents the

fraction of the idle EC (e.g., 40%) of node n [10]; eMaxn is

the EC of node n when it is fully-utilized (in terms of CPU);

υn its CPU utilization ratio (0-1); wi the CPU instructions

required to compute task i (obtained on practice using tools

like perf [12]); CPUn the CPU frequency of node n. This

model is based on the observation that the EC is linear to the

CPU utilization ratio which depends on the computation load

[11]. eDeployn is the (fixed) amount of energy (J) required

by node n to create the container of the task, and t is the

time (s). βn, which is part of the expression that denotes

the EC of a node when sleeping, is the fraction of the sleep

EC of node n. Regarding switching EC, sn is 1 if the node

was sleeping before the switching, 0 on the contrary, being

eSOnn the EC for node switching on [7]. eSend and eRcpt

denote the EC for data sending and receiving (the amounts

of data (bits) dataUp and dataDown) respectively–being pR

the probability of retransmission due to packet loss. PTx and

PRx represent the transmission powers, while RTx and RRx

represent the data sending and receiving transmission rates

[10]. The variable ew (energy weight), presented in all the

expressions, allows the selection of the priority of saving energy

in each node separately. Thus, if the goal is to focus the EC

reduction on some specific devices, this variable is set to 1 for

those devices and 0 for the others. This weight-based EC model

makes more flexible the deployment and eases the definition of

policies according to the infrastructure necessities. An example

of practical use would be to prioritize the execution in devices

powered by solar panels, thus reducing the carbon footprint.

B. Workload Predictor

The workload predictor component is responsible for fore-

casting the future workload based on historical data. This

component is implemented within the Context-aware Prediction

Framework presented in [13], [14] and integrated as part

of our solution. This framework applies different machine

learning algorithms according to the context: Linear Regression,

Support Vector Regression, and Neural Networks. The context

is identified by the Context Analyzer according to the workload

pattern (i.e. decreasing, increasing, and fluctuating workload);

the Selector Algorithm decides to select one of the machine

learning algorithms that provides the best prediction of the

future workload according to the current workload pattern. The

main benefits of using this prediction framework are: (i) it has

been shown to fit at least 10% better than other approaches; (ii)

it adapts its mode of operation to the changing context of the

type of system; and, (iii) has been tested with real workload

[14]. Nevertheless, our approach is flexible enough to allow

other predictive models, simply replacing the implementation

of the workload predictor module component with another one.

C. Essential Node Identifier (ENI)

The Essential Node Identifier (ENI) module is responsible

for deciding the nodes that must be kept active to satisfy the

expected workload and minimize the EC. For this purpose, it

uses the information on the predicted workload received from

the workload predictor, and the infrastructure’s current status

(see Figure 1). Using the energy model presented in Section

IV-A, it calculates the allocation of resources needed to meet

the expected workload. This module has two different operation

modes (OM), more and less resource-preserving. In the first

one (OM1), the ENI module can determine the deactivation

of nodes that are executing a task at the time when the auto-

scaling process is being performed if deemed appropriate. In

this case, nodes will be put into sleep mode after the ongoing

execution. While this is, a priori, the most energy-efficient



Module 1 Essential Node Identifier (ENI)
Data: Nodes; currentStatus; expectedWorkload (expWl); autoscalingInterval; operation-

Mode (OM1/OM2)

Result: actN

1 Nodes ← currentStatus

2 neededResources = getAssociatedResources (expWl)

// Parameters to optimize:

3 activeNodes (actN); computationEnergyConsumption (compEC); transmissionEnergyCon-

sumption (sendEC); receptionEnergyConsumption (rcptEC); idleEnergyConsumption

(idleEC); switchingEnergyConsumption (switchEC); expectedWorkload (expWl)

// Acronyms: freeResources (freeR); dataToUpload (dataUp);

dataToDownload (dataDown)

// Constrains:

4 sol = Optimize()

5 sol.addConst (aN ⊂ Nodes)

6 sol.addConst(activeResources ==
∑

n∈aN nfreeR)

7 sol.addConst(neededResources ≤ activeResources)

8 if operationMode == OM2 then

9 sol.addConst(∀n ∈ actN : if (n.isworking) then: n ∈ actN)

10 end

11 sol.addConst(compEC ==
∑

n∈aN eComp(n,expWl)

12 sol.addConst(sendEC ==
∑

n∈actN

eSend(n
RTx , nPTx ,avg(expWldataUp)

13 sol.addConst(rcptEC ==
∑

n∈actN

eRcpt(n
RRx , nPRx , nfreeR,avg(expWldataDown)

14 sol.addConst(idleEC ==
∑

n∈actN

eIdle(neIdle, autoscalingInterval)

15 sol.addConst(sleepEC ==
∑

n∈(N ̸⊂actN)
eSleep(neSleep, autoscalingInterval)

16 sol.addConst(switchEC ==
∑

n∈N

eSwitch(neSOn, neSOff , n.isworking, n ∈ N ))

17 sol.minimize(compEC + sendEC + rcptEC + idleEC + sleepEC + switchEC);

18 satisfiable = sol.checkSatisfability() // Checking the satisfacibility

19 if satisfiable then

20 result = sol.solve()

21 end

22 return(result.actN)

solution as just the needed resources are active, nodes take

some time to become active after being deactivated. Therefore,

it is possible to receive requests that demand resources that are

being activated, resulting in failed requests. To maximize the

number of successful requests, we define a second operation

mode (OM2) that is more resource-preserving than the previous

one. OM2 keeps active the nodes that are running an application

at the time the auto-scaling is performed.

Module 1 contains the ENI’s pseudo-code, which is posed

as a constraint satisfaction problem. First, the module updates

the nodes’ information with the current status and gets the

needed resources from the expected workload received as input.

The constraints that form the problem do the following: assure

that the set aN is a subset of Nodes (line 5); include the

resources of the active nodes in the activeResources set (line

6), and check that the resources included in activeResources

are enough to meet the expected workload (line 7); lines 8 to 10

include in the solution the nodes that are currently executing any

other delegated task (OM2); line 11 calculates the computation

EC, while lines 12-13 estimate the communication EC (sending

and receiving respectively); line 14 calculates the idle EC (using

the auto-scaling interval received as an input); line 15 estimates

the sleep EC, while line 16 calculates the switching EC; line

17 minimizes the EC; line 18 checks the problem satisfiability,

while lines 19-21 ask for the solution if so. Finally, line 22

returns the solution.

The ENI module is solved using Z3, an SMT (Satisfiability

modulo theories) solver [15]. Thus, (1) the algorithm always

returns a solution (unlike heuristic-based algorithms), which

guarantees that the deployment is feasible or the lack of

infrastructure’s resources if no solution is found (maintaining all

nodes active in this case); and (2) a large number of constraints

(required to solve the problem at hand) helps SMT-solvers to

reduce the search space and to find the solution faster [15].

Unlike solvers that use Integer Linear Programming or Mixed

Integer Linear/Nonlinear Programming [10], SMT solvers

neither restrict the variable types involved in the problem

formulation nor the degree of the equations [16]. Additionally,

it is proved that Z3, and concretely its optimization module

(νZ), returns optimal solutions [15]. Nevertheless, the flexibility

of our approach may allow the use of any other mathematical

model for optimization.

V. EVALUATION

This section analyses the feasibility of our approach in a

simulated edge-based infrastructure that serves real dynamic

edge workload.

A. Research questions

The methodology used in this study is the goal-question-

metric approach as follows: ”Analyze the feasibility of using

our proactive auto-scaling approach to reduce the EC in edge-

based infrastructures”. To achieve this objective, we set the

following research questions (RQs):

RQ1: To what extent can our proposal reduce the energy

consumption in edge infrastructures? This question will reveal

whether our proposal results in a significant decrease in EC.

RQ2: Which policy performs best in decreasing energy

consumption and minimizing the number of failed requests?

This question is an extension of the previous one, but having in

mind that deactivating resources may result in failed requests

due to a lack of available resources.

RQ3: Is our approach fast enough to be feasible to be used

at runtime? This question evaluates the applicability of auto-

scaling at runtime in terms of the execution time of the modules

implemented. Since the critical point in terms of execution time

is the ENI module, the evaluation will focus on this module

for different problem sizes and operation modes.

RQ4: How important is it to adjust the mode of operation at

runtime? In which cases does it make sense? This will reveal

when the system can be fed back with information from current

deployments to modify its mode of operation.

B. Experimental setup

To answer the RQs, we have constructed an IoT scenario

using the EdgeCloudSim simulator [4]. EdgeCloudSim is

an open-source tool that provides a simulation environment

specific to Edge Computing. This simulator has been extended

to consider the nodes’ EC during the simulation, returning the

amount of energy consumed by each edge device at the end of

the simulation using the EC model presented in Section IV-A.

To ensure its correct operation the core of the simulator remains

intact and extensive validation work has been performed.

The Shanghai Telcom dataset [5], reported in [17]–[19]

has been used to simulate the edge workload. It contains six

months of mobile phone records accessing the Internet via base



stations which are distributed over Shanghai city (i.e. more

than 7.2 million records from 9481 mobile devices and 3233

base stations).

A previous data analysis [13] revealed that the workload of

June had the lowest percentage of records with missing data

and that the second day is representative of the rest days of June

(overall workload is periodic). In the same work, it is observed a

different trend in three different periods of June, 2: (1) a period

in which the number of requests increase over time, which

includes late night and early morning; (2) an interval of time in

which the number of requests decreases over time (morning);

and (3) a period in which the number of requests fluctuates,

which includes afternoon to evening. Thus, we will apply our

proposal to these three scenarios to evaluate their behaviour in

different workload contexts. As in [13], we also select one hour

from each period: the 2nd, 12th, and 14th hours simulating 14

minutes of each one that contains 107, 276, and 270 requests

respectively. The user requests will ask for the service provided

by eight different applications, with different requirements in

terms of CPU, memory, disk, peripherals, and data to transmit

and receive. Applications are equally likely to be requested by

users. Regarding the number of IoT devices (i.e., users) and

requests, these values are specified for each workload pattern

according to the number of devices and requests in the dataset.

Experiments consider an infrastructure of 20 edge devices with

randomized characteristics. Their maximal EC is between 20

and 300 Watts; the idle EC (α) between 20 and 50%, PTx and

PRx between 1-3 Watts; the sleep EC (β) between 0.01 and

0.5; the switching EC is between 10-50 Joules; the deployment

EC between 0.5-1 Joules; the instructions per second of the

CPU between 100000 and 300000 million; ew is 1 in all

cases; the disk’s capacity between 200-1000 Gb; and their

RAM’s capacity between 8-32 Gb [10], [11]. All nodes can be

deactivated. This randomization takes into account that the most

CPU-powerful nodes may also be the most energy-intensive,

as the CPU frequency is directly related to the EC [11], [20].

In the same way, the applications’ requirements (CPU, RAM,

disk, and data to send and receive) have been also randomized.

Experiments have been performed 30 times on one thread of an

AMD Ryzen 7 1700X processor, and a subsequent exhaustive

statistical study of the results has been carried out1.

C. Reduction in the energy consumption

This section evaluates to what extent our proposal reduces

the EC and its impact on the number of failed requests.

1) Dynamic energy consumption: Sometimes the nodes are

shared with other applications and users, and they cannot go

into sleep mode. In this case, the only way to reduce EC is by

assigning applications to the most energy-efficient nodes. Thus,

in this section, we focus on the reduction of (dynamic) EC

obtained through our new orchestrator policy, Green fit. This

policy compares the EC of running applications and selects,

from among the nodes that meet the application requirements,

with sufficient resources available and located within the user’s

reach, the one that consumes less energy. We compare the

1Results spreadsheet available at: https://doi.org/10.5281/zenodo.7248106

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

2nd hour 12th hour 14th hour

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 (
J)

Green fit Best fit First fit Radnom fit Fastest fit

3
.1

6
%

6
.4

3
%

1
.5

5
%

6
.7

7
%

5
.2

4
%

1
3

.8
9

%

6
.0

3
%

1
5

.7
8

%

4
.6

1
%

1
3

.8
8

%

6
.8

9
%

1
5

.9
2

%

Random

Fig. 2: EC for each orchestration policy.

EC obtained with Green fit with the obtained with the policy

Best fit [21], which selects the node with the most available

resources; First fit, which assigns the application to the first

node that meets the application requirements; Random fit (also

considered in other works [6]), that selects a random node

that accomplishes the application’s requirements; and Fastest

fit, that searches for the most powerful node in terms of CPU

capable of running the application.

Figure 2 shows the results in terms of EC for the three

periods of time considered and compares them with Green

fit. In all cases, our policy obtains the least EC (dynamic and

idle EC are considered). Specifically, experiments show up

to 15.9% of reduction in the EC (14th hour) when compared

with Fastest fit. As expected, the reduction in the EC is major

for the 12th and 14th hours (the ones with more requests),

since we focus on the dynamic EC and it is directly related to

workload. Regarding the execution time, predictably Fastest fit

obtains the lowest service time on average, having Green fit

and Random fit similar service times on average. Note that all

the assignments accomplish the applications’ requirements in

terms of QoS. The percentage of failed requests is 0% in all

cases, having the infrastructure resources enough to allocate

the user requests.

2) Dynamic and idle energy consumption: For the same

infrastructure, applications, and periods we apply our auto-

scaling approach. The auto-scaling interval has been set in one

minute, and the orchestration policy used is Green fit.

Some predictive models provide just the number of expected

requests, not the applications demanded–as is our case [5], [13].

As the resources needed to meet these requests will depend on

the demanded applications, we have elaborated four different

resource reservation policies. If we suppose that we expect

10 requests in the next period and we handle 8 applications

with a uniform probability of being requested, each application

would be requested 1.25 times, which is not feasible. Then

we consider that each application is demanded once while two

requests are uncertain. On this basis, we define four assignment

policies: Random, which would assign the two remaining

requests randomly; Oversizing, which would consider that

each application is demanded twice; and Most/Least resource

demanding, which would assign these two uncertain requests to

the most/least resource-demanded task. Note that our algorithm

gives a solution for the worst-case scenario, in which the entire

workload arrives at once right after performing the auto-scaling.
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Fig. 3: Energy consumption (left y-axis) and percentage of failed requests (right y-axis) applying our auto-scaling approach for

OM1 (left) and OM2 (right).
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Fig. 4: Comparison of average EC with and without auto-scaling (left), and EC reduction in the best case (right).

Figure 3 shows the average EC (left y-axis) and percentage of

failed requests (right y-axis) obtained with the different resource

reservation policies and operation modes. As shown in Figure 3

and as expected, the Least resource demanding policy is the one

that obtains the highest EC reductions. Regarding the number

of failed requests, in OM1 (left side of Figure 3), the second

hour is the period with the most failed requests, with 1.5%

in the best case (Most and Least resource demanding policies

respectively). Experiments show a 24.8% decrease on average

in the failed requests between using Most resource demanding

policy compared with Oversizing. Least resource demanding

is the policy with the highest number of failed requests–and

better EC. Nevertheless, in the 12th and 14th hours the Least

resource demanding policy obtains an affordable 1.5% (12th

hour) and 1.8% (14th hour) of failed requests, with a decrease

in the EC of 14% and 13% respectively when compared with

Random policy (the second best in terms of EC). This means

that this policy could be a good choice in some scenarios.

Regarding OM2 (right side of Figure 3), the percentage of

failed requests is 0% or almost 0% in most cases, being 3%

in the worst case (2nd hour and Least resource demanding

policy). Therefore, the results in terms of requests accepted are

better in some cases than in other proposals [3], [8]. Regarding

execution time, all resource reservation policies have obtained

similar times, since they use the same allocation policy (Green

fit).

Comparing the EC with and without auto-scaling, exper-

iments report an average reduction in the EC of 91.1%,

73.3%, and 66.2% in the 2nd, 12th, and 14th hours in the

case of OM1, and 90%, 53% and 52.6% respectively for

OM2 (left side of Figure 4). In the case of OM2, the EC

increases by 26% on average in comparison with OM1. The

greatest reduction in EC is obtained by OM1 in the Least

resource demanding policy, which achieves 92.5% energy

savings when compared with Fastest fit (right side of Figure

4), with better performance than other works (and applied to a

more heterogeneous infrastructure) [6]–[8] (see Section II).

D. Execution latency

The time it takes for nodes to process a request depends

on the nodes’ capabilities. This section evaluates the response

times for the different modes of operation of the auto-scaling

system. Note that the allocation in our proposal ensures the

requirements in terms of QoS (including response time) in all

cases. Thus, on average, the time required to complete a request

with and without auto-scaling is very similar. Specifically,

experiments reveal that OM1 increases on average by 3.2%

the response time in the 2nd hour, while reducing it by 2.1%

and 2.7% for the 12th and 14th hours. In the case of OM2, the

response time increases by 2.8% in the 2nd hour, decreasing

by 2.8% and 2.6% in the 12th and 14th hours. Note that

using more energy-efficient nodes is not necessarily subject

to an increase in execution time, being possible to minimize

consumption and latency at the same time [16].

E. Scalability

The time needed by the ENI to provide a solution may vary

according to the problem size, which may compromise the

applicability of the proposal. Thus, this section evaluates the

ENI’s execution time for different problem sizes. With this

purpose, we develop a Benchmark version of our module, which

allows setting the number of nodes and expected requests. This

Section addresses RQ4.

A preliminary study revealed that, for infrastructures of

less than 20 nodes, the ENI returns the solution almost

instantly. Thus, the number of nodes has been set at 20 and

30 respectively, while the number of expected requests has

been increased to the limit of infrastructure resources: up to

330 requests in the case of 20 nodes and up to 410 for an

infrastructure of 30 nodes. The characteristics of the nodes

(CPU, RAM, storage, free resources, eMax, α, peripherals, etc)

and requests expected (requirements in terms of CPU, RAM,
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disk, data to transmit/receive, etc) have been randomized in

each experiment.

Figure 5 shows the results of the experiments, in which

we consider both operation modes of our solution.Regarding

OM1, for an infrastructure formed by 20 nodes, the ENI has

required about 11 seconds in the worst case (170 requests),

being just 0.4 seconds in the case of 90 expected requests. This

time decreases to 1.5 seconds when 210 requests are expected,

and to 0.02 when 290. The infrastructure’s capability is not

enough when the expected number of requests increases up

to 330, returning that the problem is not satisfiable in about

0.007 seconds. In the case of an infrastructure of 30 edge

nodes, the execution time is 0.1, 0.3, and 1.8 seconds when 10,

50, and 90 requests are expected. This time grows up to 175

seconds in the worst case (210 requests, about the 50% of the

infrastructure’s capabilities). Again, this time decreases when

the request requirements are greater than half the infrastructure

capacity, being 0.24, 0.009, and 0.01 seconds when 330, 370,

and 410 requests are expected.

In OM2, the number of nodes working (i.e., nodes that

are executing other tasks when auto-scaling is performed)

and their free resources have been randomly generated. To

provide a realistic scenario, we consider that the number of

nodes working is the number necessary to allocate 25% of the

previous workload (assumed like the current one). This time,

the ENI returns a solution almost instantaneously in most cases,

requiring around 0.02 seconds in the worst case (30 nodes

and 170 requests expected). This is because, once a node is

considered part of the solution, the ENI module will assign it

as many tasks as possible to reduce the idle EC. Thus, OM2

helps the ENI to reduce the search space.

Experiments reveal that the execution time is higher when

the amount of resources requested is about half of the nodes’

capabilities (see Figure 5). This is because as the number of

tasks demanded increases, so does the number of devices

involved in the solution and, therefore, the search space.

The peak of this phenomenon is found when half of the

infrastructure resources are demanded, decreasing gradually

until all the resources are needed. Experiments also reveal that

the execution time highly depends on the requests’ requirements

and nodes’ capabilities, finding a big difference between

executions of the same problem size. While the case of

an infrastructure of 20 nodes and 170 requests expected

requires about 11 seconds on average, in some executions

the time needed dropped to 0.4 seconds. That means that

the applicability of our solution in OM1 must be studied for

the target infrastructure and expected requests. Regarding the

difference between operation modes, experiments reveal that

OM2 helps the module to return the solution faster.

F. Answers to research questions

This section uses the results in Section V to answer the RQs

presented in Section V-A.

RQ1: To what extent can our proposal reduce the energy

consumption in edge infrastructures? When the nodes of the

infrastructure are shared and can not be put in sleep mode, we

have obtained up to 15.9% of reduction in the EC (see Figure

2). In this scenario, the more requests are received, the more

energy is saved (compared with other policies). The application

of the auto-scaling approach reduces the EC by about 44% in

the worst case, and up to 92.5% when using the OM1 and

the Least resource demanding policy. The EC reduction is

due to the time the nodes remain in sleep mode; the lower

the workload, the longer the downtime and the EC reduction.

The results show that our proposal has obtained a greater

reduction in EC than other works [6]–[8] (see Section II). This

energy savings is even greater when taking into account non-IT

appliances (e.g., cooling and lighting), which can consume

around 33%-52% of the total energy of an infrastructure of up

to 500 nodes [1].

RQ2: Which policy performs best in decreasing energy

consumption and minimizing the number of failed requests?

The greatest EC reduction has been obtained using OM1 and the

Least resource demanding policy (up to 92.5%). Although the

percentage of failed requests for one of the periods evaluated

(2nd hour) is high, the failed requests in the other periods

(1.5% and 1.8%) are affordable, being the one that works best

for such periods. Regarding the first period (2nd hour), the

policy that has worked best is the Most resource demanding,

with just 1.5% of failed requests and 92.5% of reduction in the

EC. When the service must have high availability, the ENI’s

resource-preservative operation mode (OM2) obtains 0% or

almost 0% failed requests in most cases. Compared to other

proposals [3], [8], our auto-scaling module can obtain better

results in request acceptance rate.

RQ3: Is our approach fast enough to be feasible to be used

at runtime? Experimentation (see Figure 5) shows that the ENI

execution time is longer when the services requested require

about half of the infrastructure capacity. The applicability of

ENI in OM1 will depend on the auto-scaling interval, as the

execution time should always be less than this. For 20-node

infrastructures, the average execution time obtained in the worst

case is 11 seconds. Since it does not make sense to perform

auto-scaling with a higher frequency, we can state that the ENI

in OM1 is usable for infrastructures of 20 nodes or less. For

larger infrastructures, the execution time may be higher than the

auto-scaling frequency, compromising the feasibility (although

there are large differences in execution time depending on the

application’s and infrastructure’s characteristics). In this case, it

is possible to decrease the auto-scaling interval, thus reducing

the expected workload. This can be done by the auto-scaling



system automatically, if detects that the execution time is too

long. Another solution would be to consider the infrastructure

as two separate infrastructures and divide the workload between

them. In any case, experiments reveal that the second operation

mode (OM2) reduces the search space and helps the algorithm

to find a solution almost instantaneously.

RQ4: How important is it to adjust the mode of operation at

runtime? In which cases does it make sense? The experiments

revealed that, when the number of failed requests is too high, the

Least resource demanding resource-allocation policy achieves

the greatest reduction in EC with acceptable failed response

rates. Nevertheless, in some cases, the number of failed requests

may be excessive. In such cases, modifying the resource

reservation policy when such a pattern is detected (e.g., to

Most resource demanding or Oversizing, see Figure 3), would

solve the issue. This illustrates the importance of providing an

auto-scaling solution with different modes of operation so that

its behaviour can be adapted to suit the changing context of

dynamic workloads. Concerning the auto-scaling’s execution

time, the feasibility of using the ENI module in OM1 for

infrastructures of 20 nodes or less has been demonstrated in

Section V-E. However, for larger infrastructures or when the

characteristics of the workload make the auto-scaling process

difficult, it is possible to modify the operation mode of the

algorithm at runtime. As discussed in RQ3, another solution

would be to increase the auto-scaling frequency (thus decreasing

the expected workload), which can be easily done at runtime.

VI. CONCLUSIONS AND FUTURE WORK

Edge Computing is becoming a key technology for B5G,

achieving significant reductions in service response times and

increased reliability, security and sustainability compared with

traditional cloud-based systems. Given the limited resources in

edge infrastructures, efficient resource allocation is essential.

Auto-scaling can help to achieve an efficient resource

allocation, particularly for edge-based infrastructures [3]. This

work provides a horizontal auto-scaling solution for edge

infrastructures with different operation modes to reduce energy

consumption, applicable to different contexts, and adaptable

to the needs of the infrastructure/service. Its effectiveness and

applicability are validated by applying it to a simulated edge

infrastructure that serves the real edge workload provided

by Shanghai Telecom in three different scenarios: increasing,

decreasing and fluctuating workload. Using the goal-question-

metric approach, the results are used to evaluate the impact

on energy consumption, how energy awareness affects auto-

scaling effectiveness (in terms of the number of failed requests),

and how the energy-efficient proactive scaling module behaves

to different problem sizes and operation modes. The results

show up to a 92.5% decrease in energy consumption, a failed

request rate of up to 0%, and reasonable execution times of

the auto-scaling process for different problem sizes. Therefore,

our proposal has achieved a higher energy saving than other

proposals [6]–[8] (although this value is indicative since they

have been applied to different datasets and infrastructures),

with a wider accepted request rate in some operation modes

[3], [8].

In future work, we plan to provide a self-adaptive solution

to the auto-scaling framework, so that it changes its mode of

operation according to the context.
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