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Abstract—We present a vision for the automatic optimisation of
distributed stream processing programs. StrIoT — a distributed
stream-processing framework built using purely-functional pro-
gramming — enables a set of validated logical optimisation rules
to generate a set of possible deployment plans. A cost model
then filters and ranks the plans before the best is automatically
deployed across the cloud and edge devices. We describe StrIoT’s
functional operators for writing stream-processing programs;
the design, implementation and performance of StrIoT’s logical
optimiser; and the cost model, which filters and ranks re-written
programs and deployment plans in terms of two non-functional
requirements: bandwidth and cost. The StrIoT vision is being ex-
plored through an open-source proof-of-concept implementation.
We present our initial results with a motivating example before
outlining the success criteria for future work in this area.

I. INTRODUCTION

Extracting value from streams of events generated by sen-
sors and software is the key to success in many important
problem domains, including wearable medical sensors, smart
cities and the Industrial Internet. However, writing streaming
data applications is not easy. Developers are confronted with
major challenges, including processing events arriving at high
rates, distributing processing over a set of heterogeneous plat-
forms ranging from sensors to cloud servers, and meeting non-
functional requirements such as energy, networking, security
and performance. Current approaches leave almost all the
responsibility for overcoming these challenges to application
programmers.

We have been exploring an alternative approach to overcome
these difficulties automatically. Our vision is of a system where
developers write a stream-processing program in terms of a set
of purely-functional operators. They focus on the functional
requirements of their application, without conflating it with
non-functional requirements such as deployment concerns.
This is then combined with a description of the deployment
environment and the non-functional requirements to which the
application should be optimised (Figure 1). As the program
is written in a purely functional framework, using a small

set of operators that have clear, well-understood semantics,
the application written by the programmer can be optimised
to generate a set of possible deployment options. A cost
model is then used to select the one that best meets the non-
functional requirements. The set of optimisation rules we have
developed have all been formally checked for correctness. This
part of the system —- the focus of this paper — has been
implemented and explored through StrIoT (Stream processing
for IoT)— an opensource proof-of-concept implementation,
with the framework automatically deploying applications to
the cloud and fog/edge devices.

II. StrIoT

Fig. 1. StrIoT system architecture

StrIoT is implemented in the purely-functional language
Haskell [1] and available as open-source [2]. The source
includes a range of example programs which can be built,
optimised, deployed and executed. The run-time implementa-
tion makes use of Docker [3]-format containers to package the
sub-programs for deployment.

The run-time and adaptivity aspects of the system have
been described in [4]. This paper focusses on: the design of



the operators provided for composing programs; the Logical
Optimiser and the Cost Models.

We model a stream in Haskell as a (possibly infinite) list of
events:� �
data Event a = Event { time :: Maybe Timestamp

, value :: Maybe a }

type Stream a = [Event a]� �
Event has been designed to be as general as possible: it can

hold data of any type (e.g. integers, strings, tuples, lists, trees,
graphs and even functions). An Event can also optionally
hold a timestamp1.

From the perspective of the operators described below, the
Stream type is opaque: the user writes their program in terms
of functions which operate on the payload data within a stream
and are not directly burdened with manipulating the stream
type itself.

A. Functional stream-processing operators

Based on an analysis of the literature on both stream
processing and Complex Event Processing [5] and by experi-
menting with the implementation of a range of applications
(available at [2]), we have provided application developers
with the 8 pure stream-processing operators to compose their
applications (described later in this section).

Our approach to designing the operators was to provide a
balance between defining a small core set with the simple,
clear semantics needed for analysis by our Logical Optimiser,
described in Section III, while providing a sufficiently ex-
pressive programming environment for the application writer
(by directly supporting the main operations found in stream
processing applications).

We are confident that any stream-processing problem
that can be described in a conventional, non-pure stream-
processing system can also be implemented in StrIoT; A range
of example programs is provided within the StrIoT source
repository, including a solution [6] to the DEBS 2015 Grand
Challenge [7].

We now give an overview of the stream-processing opera-
tors, and demonstrate their use in an example program which
we build up, one operator at a time. This example is based on
a real-world medical use-case from PATH2iot [8], a relational
declarative stream-processing framework developed as part of
a precursor project to StrIoT .

B. Filtering

Basic stateless filtering is achieved with streamFilter
(there is a corresponding operator – streamFilterAcc
– for stateful, history-based filtering). The user provides a
predicate which operates on values from the input stream and
returns a boolean to signal whether the event should be emitted
on the output stream.� �
streamFilter :: (a -> Bool) -> Stream a -> Stream a� �

1Maybe is a Haskell datatype that can contain a value, or Nothing

For example, if a wearable device provided a set of
sensor readings, we could filter the events to only those
where a desired property held with a predicate function
vibrationModuleActive provided by the user:� �
streamFilter vibrationModuleActive getWearableData� �
C. Mapping

The function streamMap is used to transform the values in
a stream. The programmer supplies a transformation function
which is applied to every event in the input stream.� �
streamMap :: (a -> b) -> Stream a -> Stream b� �

Continuing the previous example. Consider that the sensor
readings include movement data from motion sensors and
the user wishes to calculate the magnitude of the vector of
movement by applying a Euclidean function: 2� �
streamMap euclideanDistance

$ streamFilter vibrationModuleActive
$ getWearableData� �

streamMap is memoryless: the user-supplied function
operates on a single event at a time and does not have access to
the value of earlier events in the stream. Where it is necessary
to take into account previous events, for example to build
stateful aggregations, we provide streamScan:� �
streamScan :: (b -> a -> b) -> b -> Stream a

-> Stream b� �
Here, the user-supplied function takes a second parameter,

the accumulator. When the function is invoked, the value
returned by the previous invocation of the streamScan is
provided. In addition to the user-supplied function, the user
also provides an initial value for the accumulator.

D. Filtering with memory

streamFilter is memoryless. For situations where
knowledge of prior filtering decisions is required, we designed
streamFilterAcc.

Much like streamScan, streamFilterAcc and the
predicate function are extended to operate with an accumu-
lator. Unlike streamScan, the accumulator value is not
emitted on the output stream. The accumulator could, for
example, be a list of previously seen values. In addition to the
filter predicate, streamFilterAcc requires an accumulator
update function to be supplied.� �
streamFilterAcc :: (b -> a -> b)

-> b
-> (a -> b -> Bool)
-> Stream a
-> Stream a� �

Continuing the running example. Suppose the user wishes
to filter out events which describe a movement which is below
a threshold relative to the previous event.

2The $ Haskell operator is used to sequence evaluation. When there is a
series of functions separated by $, evaluation reads right-to-left.



� �
streamFilterAcc (\_ new -> new) 0 thresholdCheck

$ streamMap euclideanDistance
$ streamFilter vibrationModuleActive
$ getWearableData� �

In the above example, the accumulator update function sim-
ply returns the most recently seen value and the accumulator
is initialised to 0.

E. Windowing

streamWindow collects together incoming events and
batches the data from them into lists to be emitted.
streamWindow must be provided with a window maker
function which implements the criteria for which events to
group together.

The user can write their own window maker or use one
of a set of common ones provided by StrIoT . These are:
sliding, for overlapping windows of fixed length; chop,
for fixed-length, non-overlapping windows; and two variants
which operate on time intervals calculated from the timestamp
field of incoming events (discarding any events without a
timestamp): slidingTime and chopTime.� �
type WindowMaker a = Stream a -> [Stream a]
streamWindow :: WindowMaker a -> Stream a

-> Stream [a]� �
In our running example, the user is now interested in col-

lecting together batches of events that occur within a specified
time interval. They can use the built-in window maker function
chopTime:� �
streamWindow (chopTime 120)
$ streamFilterAcc (\_ new -> new) 0 thresholdCheck
$ streamMap euclideanDistance
$ streamFilter vibrationModuleActive
$ getWearableData� �
streamExpand, the dual of streamWindow, receives

events which contain lists of some type and unpacks the list,
emitting each individual item separately.� �
streamExpand :: Stream [a] -> Stream a� �
F. Combining Streams

Many stream-processing programs receive input from multi-
ple sources and there is often a requirement to aggregate them
together. streamMerge takes a list of stream inputs (of the
same type), such as data from a series of IoT sensors, and
interleaves their events into a single output stream.� �
streamMerge :: [Stream a] -> Stream a� �

The final operator, streamJoin (sometimes called zip
in other systems) is used for combining exactly two inputs of
different types. streamJoin pairs events from each input
stream together and emits them as tuples.� �
streamJoin :: Stream a -> Stream b -> Stream (a,b)� �

III. LOGICAL OPTIMISER

The Logical Optimiser is responsible for transforming the
program supplied by the user in order to improve its perfor-
mance with respect to the specified non-functional require-
ments, such as performing more quickly or at lower cost,
whilst preserving its functional behaviour.

A. Rewrite rules

StrIoT is built in a purely-functional programming lan-
guage, Haskell. Purely-functional expressions are referentially
transparent, and can be substituted for any other expression
which evaluates to the same value for the same inputs. This
enables equational reasoning, a technique for transforming
functions through a process of substitution by applying laws,
or rules [9]. Rewrite rules have been successfully deployed as
an optimisation tool within GHC [10], the principal Haskell
compiler.

The combination of purely-functional semantics and the
restricted set of operators with well-understood semantics
enables the application of a rewrite system to logical opti-
misation.

1) Designing rewrite rules: In order to develop the rewrite
system we systematically considered all 64 pairings of the 8
StrIoT operators. For each pair, we considered what transfor-
mation could be applied if that pairing of operators occurred in
a stream-processing program: could we combine the operators
together, or swap their order, or eliminate one or both?� �
streamFilter q . streamFilter p
= streamFilter (\x -> p x && q x)

streamFilterAcc f a q . streamFilter p
= streamFilterAcc (\a v-> if p v then f a v else a)

a (\v a -> p v && q v a)

streamFilter q . streamFilterAcc f a p
= streamFilterAcc f a (\v a -> p v a && q v)

streamMap g . streamMap f = streamMap (g . f)

streamScan g a . streamMap f
= streamScan (flip (g . flip f)) a
where flip f a b = f b a� �

Fig. 2. Example of rewrite rules implementing Fusion

This process yielded 22 distinct, semantically-preserving
rewrite rules for use within the rewrite system. A sample
of rules is provided in Figure 2. During this process, we
attempted to classify the rules according to established cat-
egories of stream-processing optimisations [11]. Of the ten
categories, five are for logical optimisations, and we matched
rules to three: Operator re-ordering, Fusion and Operator
separation. We realised however that even if a given rule was
not obviously advantageous on its own, by transforming the
program it may open up a further rewrite opportunities from
successive rule applications. We therefore kept these rules in
our rule-set.



� �
streamFilter f (streamMerge [s1, s2]) =
streamMerge [streamFilter f s1, streamFilter f s2]� �

Fig. 3. The filter ”hoisting” rule

In order to have assurance that the rules we derived were
sound, we used the QuickCheck [12] tool to generate large
volumes of test data to feed into operator pairings before and
after applying each rule.

This approach helped us to discover that some rules we
initially thought were sound actually altered the output stream.

For example, the rule in Figure 3 describes a case where a
filter occurs downstream from multiple input streams merged
together. The rule moves the filter upstream of the merge, du-
plicating it to each incoming stream. This could be beneficial
by reducing the volume of events that need to be transmitted
over an expensive network link.

By moving the filtering earlier in the stream, the order of
events emitted by the merge operator differs: the sequence of
events that arrive at the merge operator are different due to the
filtering taking place. However, it is clear that minor changes
in event ordering are unimportant for many practical stream
processing systems. We designed seven such rules that could
improve performance despite event re-ordering and we decided
to make them optionally available to the application developer
who wanted to take advantage of their performance-enhancing
potential.

B. Rule Application

The Optimiser applies all matching rewrite rules to the
supplied program, yielding a set of program variants. It then
repeats this process for each variant. Since the rule-set doesn’t
guarantee convergence or termination, we limit the process to
five successive applications. This was chosen by experimenta-
tion to provide a balance between deriving sufficient variants
and the required processing time.

C. Partitioning

The types of non-functional requirement that we wished
to support in StrIoT could depend upon properties of the
distributed environment, such as the cost of the set of cloud
nodes required to support the program or the bandwidth
between edge and cloud devices. Our Cost Model (described
in the next section) needs to consider not just the program
but also the deployment plan: the mapping of operators from
the program to the distributed nodes upon which it will be
executed. We therefore needed to generate sets of deployment
plans for each program variant, to be costed as a pair.

In our trial implementation we opted for a simple combina-
torial approach (more scalable standard optimisation methods
could be added later where this exhaustive approach is too ex-
pensive). The number of partitionings of a program consisting
of n operators is therefore equal to the number of compositions
of a positive integer: 2n−1.

The Partitioner outputs pairings of program variants from
the Logical Optimiser with each of the deployment plans as
inputs for the Cost Model.

IV. COST MODELS

The Cost Model is a critically important component of
StrIoT as it is responsible for selecting the best pairing of
program variant and deployment plan to satisfy the specified
non-functional requirements.

The two non-functional requirements that we have initially
focused on are deployment cost and bandwidth.

To achieve this we have applied queueing theory [13] [14]
to derive a model from the input stream-processing program
in order to predict properties of the program during execution.

To build this model we require information about properties
of the program: For each source, a mean average event arrival
rate (λ); For every operator, the mean average time taken to
service each event (µ) and for each filter, the mean average
selectivity (

ffl
).

In our current implementation we require the user to pro-
vide estimates for these properties. Future work will enable
StrIoT to measure values for these properties at run-time and
continually update them based on changing circumstances.

The vision for StrIoT’s architecture (Figure 1) includes a
Resource Catalog describing properties of the deployment
environment as inputs to the system. In our current imple-
mentation these properties are an aggregate node utilisation
limit and an inter-node bandwidth limit.

A. Bandwidth

The event arrival rate for each operator is modelled by
propagating the source arrival rate estimates and applying the
selectivity estimates (

ffl
) for the program’s filter operators.

The bandwidth between nodes in a deployment plan is
calculated by combining this event arrival rate information
with the size of individually serialised stream events for the
data-types used at that junction in the program. This estimate
is limited to fixed size data-types and cannot presently estimate
the bandwidth of variable-length data such as lists.

We also apply a user-configurable weighting to represent
the cost of starting up a network connection.

The cost model rejects any plans where this calculated inter-
node bandwidth exceeds the user-specified limit.

B. Deployment cost

To calculate and minimise deployment cost, we first calcu-
late the utilisation ρ of every operator in the program using
the formula ρ = λ

µ .
StrIoT uses this information to identify programs where any

operator is determined to be over-utilised (ρ > 1). In this
scenario, events are arriving at the operator at a faster rate than
the operator can process them, and the queue of unprocessed
data would grow indefinitely.

In addition to considering operators individually, StrIoT
sums the operator utilisations for each node in a deployment
plan. If the sum of utilisations for a node exceeds the user-
specified threshold (e.g. 70% utilisation), the plan is not viable.



Any programs deemed not viable, including the original
supplied by the user, are rejected. If no viable programs re-
main, the user is informed and must reconsider their approach,
by either raising the user-specified thresholds or adjusting their
program.

The remaining options are assigned a cost based on the num-
ber of nodes required for the deployment, with fewer nodes
considered better, since this corresponds to commissioning,
maintaining and paying for fewer cloud resources. The lowest
cost option is chosen for deployment.

V. ILLUSTRATIVE EXAMPLE

In this section we describe the performance of the Logical
Optimiser and Cost Model applied to the running example
program from Section II-A.

The complete example program is provided in Figure 4.� �
streamSink
$ streamMap length
$ streamWindow (chopTime 120)
$ streamFilterAcc (\_ new -> new) 0 thresholdCheck
$ streamMap intSqrt
$ streamMap euclideanDistance
$ streamFilter vibrationModuleActive
$ getWearableData� �

Fig. 4. Example PATH2iot program

The developer supplied the additional information outlined
in Section IV: an inter-node bandwidth limit of 30 kB/s and
an aggregate node utilisation limit of 90%.

A. PATH2iot program

Let us first explore the performance of the unmodified input
program. The Cost Model is applied to each pairing of the
program with one of 127 potential deployment plans generated
by the Partitioner.

The Cost Model calculated the estimated bandwidth re-
quired at the egress of every operator in the program. This was
determined to exceed the user specified threshold of 30kB/s
until the streamWindow operator, which occurs relatively
late in processing. All plans which placed a node boundary
prior to the window operator were therefore ruled out on the
basis of the bandwidth requirement.

The remaining plans necessarily place all the operators prior
to the window onto a single node. The total utilisation of all
the operators placed on that node exceeds the user-specified
aggregate node utilisation limit of 90%, and are also rejected.

StrIoT has thus determined that there are no valid deploy-
ments for the original program under the constraints supplied
by the user.

B. Logical Optimiser

Now we analyse the behaviour of the Logical Optimiser
applied to the program. 57 program variants are derived. The
Partitioner then generates potential deployment plans for these
variants, emitting 5,718 deployment options to be filtered and
ranked by the Cost Model.

From these deployment options, all but 120 are determined
unviable and rejected by the Cost Model. A final 8 are
calculated to have the lowest deployment cost. One of these
plans is depicted on the right-hand side of Figure 5. For
comparison, the original program is depicted on the left-hand
side.

Fig. 5. PATH2iot program, before (left) and after rewriting and partitioning
(right). Edge labels indicate the estimated bandwidth between operators.

Each of the best-scoring plans have the same fundamental
transformation: the streamWindow has been moved earlier
in processing by two specific rewrite rules, illustrated in
Figure 6.� �
streamWindow w . streamFilterAcc f a p
= streamMap (reverse.fst)
. streamScan (\ (_,acc) a -> filterAcc f p acc a)

([],a)
. streamWindow w

streamWindow w . streamMap f
= streamMap (map f) . streamWindow w� �

Fig. 6. Rewrite rules which move streamWindow

The bandwidth required after the newly-positioned window
is calculated to be 30 kB/s, meeting but not exceeding the
user-specified limit. The chosen deployment plan requires two
nodes and places the node boundary at this point.



The Partitioner produced some alternative two-node deploy-
ment plans which placed the node boundary at an earlier point.
These plans were rejected by the Cost Model as the bandwidth
at those points exceeds the user-specified limit.

Plans which place the boundary later in processing, where
the bandwidth is determined to be even lower, result in the
first node (corresponding to the processing deployed on the
sensor) doing too much work: the sum of the utilisations of
the operators assigned to that node exceed the user-supplied
maximum node utilisation, and are likewise rejected.

VI. CONCLUSION

Our main achievement to date has been to demonstrate,
via an end-to-end proof of concept implementation, that the
architectural vision for a purely-functional stream-processing
system (depicted in Figure 1) is viable. We have made our
implementation available as open-source software [2] and
included several examples of stream-processing programs that
can be built, optimised and deployed.

The set of stream-processing operators have been carefully
designed to strike a balance between providing an expressive
environment for the developer and having clear and well-
understood semantics for formal analysis.

The focus of this paper has been on the Logical Optimiser.
Our chosen design takes advantage of referential transparency
provided by the purely-functional semantics of Haskell, com-
bined with restricting users to the specific set of operators
with well-understood semantics, to build a rule-based rewriting
system. We have demonstrated that this is a valid approach for
an optimiser and there is merit in continuing to fully exploring
its potential.

Although not the focus of this paper, StrIoT can also exploit
the clear semantics to enable run-time adaptivity, including
moving operators between the edge and the cloud. This is
described in [4].

One of the main outcomes from the work on designing
rewrite rules for the logical optimiser has been discovering
that rather than strictly preserving all of the semantics of the
stream-processing program, it is sometimes advantageous to
alter them in well-defined ways, such as by permitting some
re-ordering of stream events. We believe it is therefore a good
idea for systems to permit users to clearly indicate which
aspects of the semantics of their program are important, and
which can be altered and to what extent.

VII. SUCCESS CRITERIA AND FURTHER WORK

Our next step is to refine our proof-of-concept, completing
the implementation of the architecture depicted in Figure 1
and conduct further experimental evaluations on a range of
applications to demonstrate the efficacy of our approach.

Our proof-of-concept contains a run-time component (de-
scribed in more detail in [4]) but there is limited integration
between the Logical Optimiser and run-time components.
Run-time measurements could be used to provide values for
the properties of the cost-model as described in Section IV,
freeing the user from the burden of supplying estimated

values themselves. The existing support for run-time adaptivity
can be extended to include re-running the logical optimiser
and deploying an alternative deployment which better meets
the changed circumstances. Future work will also explore
extending the run-time for flow control and fault tolerance.

The current modelling of the deployment environment as-
sumes homogeneous nodes. Extending the Resource Catalog
to describe a range of different types of nodes for deployment
will allow the Cost Model to be extended to better support
optimising for more situations, for example edge nodes being
unable to perform work that requires hardware such as an FPU
or GPU, or describing a wider range of the possible cloud node
deployments and their cost.
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