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Abstract—Modulation classification is an important component
of cognitive self-driving networks. Recently many ML-based
modulation classification methods have been proposed. We have
evaluated the robustness of 9 ML-based modulation classifiers
against the powerful Carlini & Wagner (C-W) attack and showed
that the current ML-based modulation classifiers do not provide
any deterrence against adversarial ML examples. To the best
of our knowledge, we are the first to report the results of the
application of the C-W attack for creating adversarial examples
against various ML models for modulation classification.

Index Terms—Adversarial machine learning, Modulation clas-
sification.

I. INTRODUCTION

The success of machine learning (ML) in computer vi-
sion and speech processing has motivated the networking
community to consider deploying ML for the automation of
networking operations. Recently, new networking paradigms
like cognitive self-driving networks [5] and most recently
knowledge defined networking [10] have also emerged that de-
pend on and facilitate the extensive utilization of ML schemes
for conducting networking tasks. Recently ML has success-
fully applied on different cognitive self-driving networking
tasks such as modulation classification [14] and representation
learning of radio signals [12].

Although, ML schemes especially deep neural networks
(DNN) have outperformed traditional networking schemes in
many networking tasks, it has been shown recently that DNN
and other ML schemes lacks robustness against “adversarial
examples”, which are defined as inputs to the ML model
specially crafted by an adversary to cause a malfunction in
the performance of the ML model. These adversarial examples
are generated by adding small typically-imperceptible pertur-
bations to the legitimate examples for the express purpose of
misleading the ML model towards the production of wrong
results and to increase the prediction error of the model.

Based on the adversary’s knowledge, adversarial attacks are
classified into two major categories: white-box attacks and
black-box attacks. In white-box attacks, it is assumed that
the adversary has perfect knowledge about the victim model,
whereas in black-box attacks it is assumed that adversary has
no information about the victim model and the adversary can
only query the deployed ML model for a response and to later
use this information for crafting adversarial examples.

More formally, an adversarial example x∗ is crafted by
adding a small imperceptible perturbation δ to the test example
x of the deployed trained classifier f(.). The perturbation

δ is computed by approximating iteratively the nonlinear
optimization problem given in equation 1 until the crafted
adversarial example gets classified by the trained ML classifier
f(.) in a wrong class t.

x∗ = x+ argmin
ηx
{‖η‖ : f(x+ η) = t} (1)

Adversarial examples are a direct consequence of an unsafe
assumption in ML that distribution encountered by the ML
model in training phase will also be encountered in the test
phase of the ML model.

The effects of adversarial ML examples in cognitive self-
driving networks have not been explored properly in the
literature. In this paper, we have performed an adversarial
attack on ML classifiers performing the task of modulation
classification, which is an important application in cogni-
tive self-driving networks. Our results clearly highlight that
a small optimally-calculated adversarial perturbation for the
test example can cause a serious drop in performance of
the classification output of the ML model. This paper also
highlights the vulnerability and brittleness associated with the
ML models used in the cognitive self-driving networks.

The major contributions of this work are:

• We have performed an adversarial ML attack on 9 ML-
based modulation classifiers to highlight the vulnerability
of these modulation classifiers to adversarial perturbation;

• We demonstrate the transferability phenomenon in the
setting of modulation classifiers by showing that an
adversarial example compromising one ML scheme will
also be to evade other ML schemes with high probability;

• To this best of our knowledge, this is the first experiment
where the Carlini & Wagner (C-W) attack [3] has been
used to attack the modulation classification task.

The rest of the paper is organized as follows. In the next sec-
tion, we will provide a brief review of the related research that
focuses on ML-based modulation classification and adversarial
attacks on modulation classification. Section III describes the
methodology where we have discussed the assumed threat
model, ML-models used for modulation classification, and the
utilized adversarial attack for crafting adversarial examples.
Section IV provides the performance evaluation of the ad-
versarial attack on the modulation classification. Section V
concludes the study and provides future directions.
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II. RELATED WORK

A. Modulation classification using ML schemes
The recent success of ML in computer vision and cyber-

physical systems has inspired a surge in the utilization of ML
schemes in wireless and data networks. It is conceived that ML
will be the backbone of future cognitive self-driving networks.
Modulation classification is an important problem in dynamic
spectrum allocation of cognitive self-driving networks. There
are few ML-based modulation classification schemes available
in the literature. Wong et al. [17] used a combination of
genetic algorithm and multi-layer perceptron for digital modu-
lation recognition. Aslam et al. [1] used genetic programming
with K-nearest neighbor (KNN) for modulation classification.
Although genetic algorithms provides a good heuristic-based
solution but these algorithms do not scale efficiently with the
increase of the sample population.

Muller et al. [11] employed a combination of discrimina-
tive learning and support vector machines (SVM) for mod-
ulation classification. Mendis et al. [9] utilized deep belief
networks (DBN) for modulation classification, although DBN
has produced very impressive results but they are known
to be very difficult to train and scale. O’Shea at al. [14]
used convolutional neural network (CNN), VGG, and ResNet
for performing modulation classification schemes where they
have compared the deep ML-based modulation classification
with the conventional modulation schemes under different
configuration and noise levels and showed that ML-based
schemes performed better even in low signal to noise ratio
(SNR). Using ML schemes have produced very good results
but they are vulnerable to adversarial examples crafted by the
adversary to fool the ML-based classifier to perform incorrect
classification.

B. Adversarial attacks on ML-based modulation classification
There has not been much work available on exploring the

threat of adversarial ML examples on modulation classifica-
tion. Sadeghi et al. [16] used a variant of fast gradient sign
method (FGSM) [7] to perform an adversarial ML attack on
CNN-based modulation classification and successfully showed
a considerable drop in classification accuracy. FGSM is a
technique for crafting adversarial example where one step
gradient update is performed in the direction of the sign
associated with the gradient at each feature in the test example.
The FGSM perturbation (η) is given as:

η = εsign(∇xjθ(x, l)) (2)

Flowers et al. [6] provided an evaluation framework for
testing modulation classifiers against adversarial ML attacks,
they have tested the modulation classifier against FGSM and
Gaussian random noise base adversarial attacks and showed
that FGSM causes more destruction than the random Gaussian
noise. Similarly, Kokalj et al. [8] used the FGSM attack
to demonstrate the vulnerability of modulation classification
against adversarial examples. Bair et al. [2] highlighted the
limitations of the targeted adversarial attack on modulation
classification in white-box settings.

Most of the results of the adversarial attacks reported on
modulation classification have used FGSM attack without con-
sidering that FGSM was not designed to generate the optimal

amount of adversarial perturbation, it was only designed with
an absolute motivation of generating adversarial perturbations
quickly rather than optimally [3]. In this paper, we have
performed C-W attack [3] on modulation classification to
compute the optimal adversarial perturbation.

III. METHODOLOGY

In this section, we describe our procedure for performing an
adversarial attack on modulation classification. To the best of
our knowledge, there is no standardized ML-based solution for
modulation classification in the cognitive self-driving networks
available yet in the literature, so for completeness we have
used both conventional and deep ML schemes for modulation
classification. Before delving deep into the details of the
ML-models used for modulation classification and adversarial
attack on it, we describe the threat model and a few related
assumptions.

A. Threat model
This subsection describes the major assumptions considered

for performing adversarial attack on modulation classifier.
1) Adversary Knowledge: We have assumed a white-box

settings for performing an adversarial attack on DNN based
modulation classification, which means adversary has the
complete knowledge about the model architecture, related
hyperparameters, and the test data. This assumption is fairly
standard in the adversarial ML domain. We have transferred
the adversarial examples for DNN-based modulation classifier
to other conventional ML-based modulation classifiers. In this
paper, we have only assumed test time adversarial attacks.
Poisoning attacks are left for future considerations.

2) Adversarial Goals: Our goal in this experiment is to
compromise the integrity of the modulation classifier through
adversarial examples and the success of the adversarial attack
in this paper will be measured by the comparison of the
accuracy before and after the adversarial attack.

B. Modulation Classification Models
We have used DNN, KNN, SVM, Naı̈ve Bayes (NB), linear

discriminant analysis (LDA), Decision Tree (DT), random
forest (RF), and ensemble methods for modulation classifi-
cation. To the best of our knowledge, this is the first paper
that uses almost all the famous ML schemes for modulation
classification and then performs adversarial ML attack on these
schemes to highlight that conventional ML, deep ML, and
ensemble methods do not provide robustness against small
carefully-crafted perturbations.

For the DNN classifier, we have used four dense hidden
layers network with rectified linear units as a nonlinear
activation in hidden layers and softmax for calculating the
classification probabilities of each class. Stochastic gradient
descent (SGD) has been used as an optimizer and categorical
cross-entropy as the associated loss function for training the
DNN based modulation classifier. For the KNN classifier, we
have used 15 neighbors as an optimal number of neighbors for
performing the classification. We have used radial basis func-
tion (RBF) kernel for performing the SVM based modulation
classification. For the NB classifier, we have assumed Gaussian
distribution as the underlying modulation data distribution. For
the LDA-based classification, we have used singular value



decomposition (SVD) solver as an SVD solver can better
handle a large number of modulation data features. For the
DT classifier, we have used maximum unfolding depth of 12
for achieving good classification result. For the RF classifier,
we have a maximum of 10 trees forest for estimating the
classification results. For ensemble methods for modulation
classification, we have employed AdaBoost and Gradient-
Boosting algorithms. The obtained classification results are
provided in section IV.

C. Adversarial attack
We have performed C-W [3] attack on ML-based mod-

ulation classifiers to demonstrate the lack of robustness of
the ML-based modulation classification scheme in cognitive
self-driving networks. Carlini et al. [3] proposed three very
powerful adversarial ML perturbation crafting techniques by
using three distance matrices (L0, L2, and L∞) and these
attacks have successfully evaded the defensive distillation
method [15] (a popular early scheme for defending against
adversarial examples).

We have used L2-based C-W attack for crafting adversarial
examples. Instead of formulating the adversarial ML problem
as in equation 1 (which is highly nonlinear formulation that
is difficult to optimize), an alternative formulation (provided
in equation 3 where g(x∗) is the new objective function such
that g(x∗) ≤ 0 iff g(x∗) = t here t can be any label but the
true label) is used by the the C-W attack that can be solved
by gradient descent. The best performing objective function
g(.) used for crafting adversarial examples for modulation
classification is provided in equation 4, where Z denotes the
softmax function.

minimize
η

‖η‖P + c.g(x∗)

such that (x∗) ∈ [0, 1]n
(3)

g(x∗) = max{0,max
i 6=t
Z(x∗)i −Z(x∗)t} (4)

We have only opted to use an L2-based adversarial attack
because we want to keep the perturbation η to a minimum
while minimizing the squared error between adversarial mod-
ulation example and the original modulation example.

Many defenses against adversarial examples have been
proposed in literature but this powerful attack has beaten all
of them [4] and to the best of our knowledge there does not
exist any defense that ensures robustness against L2-based C-
W adversarial attack.

In our experiments, we wish to achieve the following
objectives:
• Objective 1: Do the ML schemes used for modulation

classification in the literature provide necessary robust-
ness against adversarial perturbations?

• Objective 2: We want to experimentally verify that the
adversarial examples breaching one ML schemes will
breach other ML models with high probability even if
the deployed ML model is unknown.

Before explaining how we have met these objectives through
our experiment in the next section, we provide a detailed
description of the dataset used for performing the experiments.

D. Dataset
We have used highly cited GNU radio ML RML2016.10a

dataset [13] for our experimentation, the reason for selecting
this dataset is its public availability and utilization in the
literature. Dataset consists of 220000 input examples, where
each example is associated with a modulation scheme at a
specific SNR. Dataset has 11 modulation schemes namely:
AM-DSB, AM-SSB, WBFM, PAM4, BPSK, QPSK, 8PSK,
QAM16, QAM64, CPFSK, and GFSK. Out of these 11 mod-
ulation schemes, 8 are digital modulations and 3 are analog
modulation schemes.

For this experiment, we have used eight digital modulation
schemes and excluded three analog modulation schemes. The
excluded schemes are AM-DSB, AM-SSB, and WBFM. The
total number of examples used in these experiments is 160000.
Each example is a 256 size vector with 128 in-phase and 128
quadrature-phase components. This dataset was generated for
20 different SNR levels from -20 dB to 18 dB. More details
of the dataset preparations can be found in [13].

IV. PERFORMANCE EVALUATION

In this section, we have provided a detailed evaluation
of the ML-based modulation classifiers against adversarial
perturbations.

A. Performance Impact
We have evaluated the ML-based modulation classification

before and after the adversarial attack. We have used the
accuracy as the performance metric the decay in the modu-
lation classification describes the adversarial attack success.
Figure 1 provides a detailed comparison of accuracy and SNR
before and after the adversarial attack. The clear drop in the
accuracy of the classifiers with increasing SNR fulfills the
first objective of this experiment where we set out to show
that the ML-schemes proposed in the literature for modulation
classification does not provide the necessary robustness against
adversarial examples.

B. Transferability of Adversarial Examples
Here we want to note that adversarial examples were only

crafted for DNN-based modulation classifier under white-
box assumptions. The adversarial examples compromising
the integrity of the DNN classifiers were transferred to the
rest of ML classifiers under black-box assumptions and it
turns out that modulation classifiers based on conventional
ML techniques are also equally vulnerable to the adversarial
examples which fulfill the second objective we wanted to
achieve through this experiment.

V. CONCLUSIONS

In this paper, we have highlighted the lack of robustness
of ML-models utilized in modulation classification by suc-
cessfully evading 9 different ML-based modulation classifiers.
We have also successfully shown that transferability of the
adversarial examples from one model to another model for
performing the adversarial attack. This work has also provided
a glimpse of the security and robustness issues associated
with the utilization of ML models in cognitive self-organizing
networks. Designing new defenses against adversarial attacks
on cognitive self-driving networks are left as a future direction.



Figure 1. The accuracy of ML models used for modulation classification before and after adversarial ML attack is provided in the figure. A clear drop in the
accuracy with improving SNR after the adversarial attack clearly indicates the lack of deterrence against small carefully crafted adversarial perturbations.
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