

Jiang, H., Song, Q. and Le Kernec, J. (2020) Searching the Adversarial

Example in the Decision Boundary. In: 5th International Conference on the

UK-China Emerging Technologies (UCET 2020), Glasgow, UK, 20-21

Aug 2020, ISBN 9781728194882

(doi:10.1109/UCET51115.2020.9205320).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/221500/

Deposited on: 27 July 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/UCET51115.2020.9205320
http://eprints.gla.ac.uk/221500
http://eprints.gla.ac.uk/

Searching the Adversarial Example in the Decision
Boundary

Haoyang Jiang1, Qingkui Song2, Julien Le Kernec1,3,4

1School of Information and Communication, University of Electronic Science and Technology of China, Chengdu, China
2College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China

3ETIS – Signal and Information Processing lab, University Cergy-Pontoise, Cergy, France
4James Watt School of Engineering, University of Glasgow, Glasgow, UK

Haoyang.Jiang@std.uestc.edu.cn, sqk@stu.scau.edu.cn, Julien.lekernec@glasgow.ac.uk

Abstract—Deep learning technology achieves state of the art
result in many computer vision missions. However, some re-
searchers point out that current widely used deep learning
architectures are vulnerable to adversarial examples. Adversarial
examples are inputs generated by applying small and often
imperceptible perturbation to examples in the dataset, such that
the perturbed examples can degrade the performance of the deep
learning architecture.

In the paper, we propose a novel adversarial examples gener-
ation method. Adversarial examples generated using this method
can have small perturbation and have more diversity compare
to adversarial examples generated by other method.

I. INTRODUCTION

Deep learning architecture are widely used in machine
learning tasks and achieve state of the art result. In image
classification [1]–[3] and detection domain, they are able
to get near human performance. Deep neural networks are
also applied in natural language processing [4] and playing
games [5].

However, researchers recently discovered that existing deep
learning architecture are highly vulnerable to an attack called
adversarial examples [6]. That is, those neural networks will
misclassify examples that are slightly different from the ex-
amples drawn from the natural data distribution.

(a) Clean image (b) Adversarial example (c) Perturbation

Fig. 1. The original image is classified as panda with 99.65% confidence.
The adversarial example is classified as badger with 46.84% confidence.
Perturbation is the difference between two images; it is almost imperceptible,
so we scale it 10 times for visible.

After that, many adversarial examples generating method
are proposed for attacking deep neural network. For example,
[7] points out that the existence of adversarial examples is
related to the highly linear property of the neural networks
and proposed a fast gradient sign method(FGSM) to find
adversarial examples. [8] proposes an effective method to find

the minimal perturbations in L2 distance metric. [9] finds
the perturbations by solving a optimization problem. This
method can compute perturbations in Lp metric for any p.
[10] discover the existence of a called Universal adversarial
perturbations, which can cause the classifiers misclassify most
of the inputs from the database. [11], [12] find perturbations in
sparse form. [13] utilize the Generative Adversarial Networks
framework to generate perturbations, this method can generate
perturbation very fast once the generative network is trained.

On the other hand, some method of defensing against
the attack of adversarial examples are proposed. Defensive
distillation [14], [15] is proposed to reducing the success rate
of adversarial attack; [16] finds that adversarial examples tend
to generate noise in the feature layers of the neural network, so
filtering the features in the middle layers can protect network
from adversarial attack. [17] observes that unprotected neural
networks have a highly curved loss function, so it proposed
to train a neural network has less curvature loss function
to defense from attacking. [18] suggests using adversarial
examples generated from other model to adversarial train the
neural networks can improve the adversarial robustness. But
for the best of our knowledge, none of these methods can fully
defense from all kinds of attacking. Defensing method design
is still an open problem.

Some researches [19], [20] show that certain defense
method will cause a phenomena called gradient-masking or
obfuscated gradients, which is known to be an incomplete
defense to adversarial examples. When using some white box
attacking methods to attack such kind of protected neural
networks, Gradient-masking will provide usefulness gradient
around the sample points, so that attackers cannot find the
correct adversarial examples following the gradient direction.
However, these kind of methods do not push the decision
boundary away from the sample points, so the neural networks
are still vulnerable to adversarial attack.

In this paper, we propose a novel method to computed the
adversarial examples without accessing the gradient around
the sample points. We used experiments to demonstrate that
the adversarial examples generated by our method have small
perturbations and can fool the neural networks in high rate.

II. ATTACK METHOD

A. Build the Optimization Problem

Formally, for a given classifier F (·) and an input x, the
adversarial example of input x can be found by solving the
optimization problem

min ‖r‖p, s.t. F (x) 6= F (x+ r)

F (x) = argmax
k

fk(x), for k = 1, 2, . . . ,K (1)

where the fk(x) is the network output corresponding for the
kth class; the ‖ · ‖p is the Lp distance, defined as

‖v‖p =

(
n∑

i=1

|vi|p
) 1

p

(2)

In this paper, we choose p = 2.
The original from is not in the standard form of optimization

problem preventing us from using optimization method, so we
should change the original problem in to another equivalent
form, which is

min ‖r‖p, s.t. L(x+ r) < 0

L(x+ r) = fi(x+ r)− fj(x+ r)

i = F (x), j 6= i

i is the original label of the input x, j is any other label. For
simplicity, we can choose j to be the most possible wrong
label for input x, which is

j = argmax
k

fk(x), for k = 1, 2, . . . ,K and k 6= i

Assuming limx→x0
L(x) = L (x0), which means L(·) is

a continue function, and L(x) > 0, it can be known that
the solution ropt for this optimization problem is near the
boundary of the function L(·). That is L (x+ ropt) = −ε,
and ε is a small positive number. So original optimization
problem is transferred into the following form:

min ‖r‖p
s.t. L(x+ r) = fi(x+ r)− fj(x+ r)− ε = 0

i = F (x)

j = argmax
k

fk(x), for k = 1, 2, . . . ,K and k 6= i

(3)

Although we transfer the original optimization problem into
a standard form, solving this optimization problem is still diffi-
cult, because the function L(x+r) = fi(x+r)−fj(x+r)−ε is
a highly non convex function. So instead of finding the global
optimal solution, our method find a local optimal solution,
and we use experiments to show that this suboptimal is
small enough comparing adversarial example generated using
existing method, and can fool the neural network in high rate.

B. Boundary Search Method

As we mention above, L(x+r) > 0 indicates input (x+r) is
the same class as x; L(x+r) < 0 indicates different class. The
adversarial example can only exist in the decision boundary,
which is L(x+ r) = 0

1) Initial Point: Directly compute an input x′ satisfying
L(x′) = 0 would be difficult. However, we can utilize the
continuity of the function L(·) to compute it. Given an clean
input x, it is obvious that L(x) > 0. Then we randomly select
another input x̄ from the dataset. As long as x̄ is not the same
class as x, L(x̄) < 0 mast satisfied. Because L(·) is continue
function, there must be an input x′ = θx+(1−θ)x̄ satisfying
L(x′) = 0 for 0 < θ < 1. So we can use linear search or
binary search to find the x′. And the initial perturbation is
r0 = x′ − x.

Given a known starting point r0, such that L(x+r0) = 0,we
need to find a new perturbation r1 satisfying L(x + r1) = 0
and ‖r1‖2 < ‖r0‖2

2) Linear Case: We first propose the algorithm for linear
L(·), and then extend to nonlinear case. Given a linear function
L(x) = wTx+ b, and a known starting point r0, where L(x+
r0) = 0, the r0 can be decomposed into two parts: r0 = ropt+
rstep, where ropt is the optimal solution of the optimization
problem and is given by the closed-form formula:

ropt =
r0

Tw

‖w‖2
∗ w

w =
∂L (x+ r0)

∂ (x+ r0)

Notice that w can be easily computed using existing deep
learning machine learning framework.
ropt is the projection of r0 on the gradient direction
∇L (x+ r0), and rstep is the projection of r0 on the decision
boundary. Notice that rstep and ropt are orthogonal to each
other, so that for any r1 = ropt + αrstep, 0 ≤ α < 1,

‖r1‖2 =
∥∥ropt + αrstep

∥∥
2
<
∥∥ropt + rstep

∥∥
2

= ‖r0‖2
L(x+ r1) = wT (x+ r1) + b

= wT (x+ ropt + αrstep) + b

= wT (x+ r0 + (α− 1)rstep) + b

= wT (x+ r0) + (α− 1)wT rstep + b

= L(x+ r0) + 0

= 0

The r1 is proved to be a better solution than r0. When
α = 0, r1 degenerates to ropt, which is the optimal solution.

Fig. 2. Linear case

3) General Case: For most of widely used deep neural
networks, the function L(x) is highly non convex, but we can
adopt the idea from the linear case: in each iteration, we find
perturbation ri+1, which is a better solution than the ri, and
finally it converges to a local optimal solution. The iterative
formula is given by

ri+1 = ri
opt + αri

step

= ropti + α
(
ri − ropti

)
= αri + (1− α)ri

opt

= αri + (1− α)
ri

Tw

‖w‖2
∗ w

w =
∂L (x+ ri)

∂ (x+ ri)

(4)

where (1 − α) is the learning rate coefficient and should be
smaller than 1. Large learning rate may cause no convergence;
small learning rate will lead to slow convergence.

Fig. 3. Iterative method finding the adversarial examples for nonlinear L(·)

The iteration stops when the norm of the perturbation
convergence. Formally, it stops when

‖ri‖2 − ‖ri+1‖2 < σ (5)

for a small positive σ.
Although this the perturbation may converge to a local

optimal solution, we use experiments to show that the local
optimal solution is good enough to fool the classifier in high
rate.

Algorithm 1 Boundary Search Attack Method
1: function BSA(x,L)
2: binary search the starting point r0
3: i← 0
4: do
5: w ← w = ∂L(x+ri)

∂(x+ri)

6: ri+1 ← αri + (1− α) ri
Tw
‖w‖2w

7: i← i+ 1
8: while ‖ri‖2 − ‖ri−1‖2 > σ
9: return ri

10: end function

III. EXPERIMENT RESULTS

A. Setup

We now test our attack algorithm on three deep convolu-
tional neural networks architectures.

• LeNet: We trained a classic LeNet architecture applied
on the MNIST dataset. The network achieves 99.1%
accuracy.

• VGG16: We trained a small version of VGG16 network
applied on the CIFAR10, achieving 88.63% accuracy.

• ResNet18: Small version of ResNet18 applied also on
CIFAR10, achieving 89.9% accuracy.

In order to verify the effectiveness of our attacking method,
we find adversarial example for images in the testing set.
We compute the fooling rate and the average norm of the
perturbation. A successful attack is defined as

‖r‖2 < ρ

F (x) 6= F (x+ r)
(6)

The norm of the perturbation should be smaller than certain
small value ρ in order to be imperceptible and the perturbation
should change the predicted label of the original image. We
choose ρ = 3 for MNIST dataset and ρ = 1 for CIFAR10
dataset.

We also perform the same experiments for FGSM, Deep-
Fool(DF), Basic Iteration Method(BIM) for comparison.

B. Results

The experiments results are reported in Table I, II, and III.
From the results, we can see that FGSM method cannot find
the adversarial examples effective, because it is designed to
be fast instead of finding the optimal adversarial examples.
The perturbations found by BIM have the smallest average
perturbations. However in our experiments we found that the
BIM is the most time consuming method. Our method have
the highest fooling rate in all three model, while keeping
the average norm of the perturbations as small as the other
three methods. But the smallest perturbation found by FGSM,
DeepFool and BIM method are much better than ours, because
these three method searching the adversarial examples starting
from the sample points, which makes them easier to find the
minimal perturbations.

TABLE I
LENET-MNIST

Attack method Fooling rate Average norm Min norm Max norm
FGSM 0.32 1.84 0.048 2.99

DF 0.89 1.98 0.044 2.99
BIM 0.89 1.89 0.043 2.99
Our 0.98 1.96 1.24 2.99

TABLE II
VGG16-CIFAR10

Attack method Fooling rate Average norm Min norm Max norm
FGSM 0.67 0.28 2.8e-3 1.00

DF 0.83 0.28 8.4e-4 0.98
BIM 0.84 0.20 5.7e-6 0.99
Our 0.99 0.26 0.15 0.99

TABLE III
RESNET18-CIFAR10

Attack method Fooling rate Average norm Min norm Max norm
FGSM 0.76 0.25 2.7e-3 1.00

DF 0.99 0.21 1.3e-4 0.94
BIM 0.98 0.17 1.6e-4 0.97
Our 0.99 0.23 0.16 0.86

IV. CONCLUSION

In this paper, we propose a novel method to compute the
adversarial examples without accessing the gradient around the
sample points and we use experiments to demonstrate that the
adversarial examples generated using our method have small
perturbations and can fool the neural networks in high rate.

In the future research, we should focus on the effectiveness
of our attacking method applying on the neural networks
protected by defense method, accelerating the design of neural
network with high robustness for adversarial attacking.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[2] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[4] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins, “Globally normalized transition-based neural
networks,” arXiv preprint arXiv:1603.06042, 2016.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[8] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2574–
2582, 2016.

[9] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP),
pp. 39–57, IEEE, 2017.

[10] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1765–1773, 2017.

Fig. 4. An illustration of four attack methods applied on two datasets. The
leftmost column contains the clean images. The next four columns show the
adversarial examples generated by using FGSM, DeepFool, BIM and our
method, respectively.

[11] A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Sparsefool: a few
pixels make a big difference,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9087–9096, 2019.

[12] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
2019.

[13] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie, “Generative
adversarial perturbations,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4422–4431, 2018.

[14] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597,
IEEE, 2016.

[15] N. Papernot and P. McDaniel, “On the effectiveness of defensive
distillation,” arXiv preprint arXiv:1607.05113, 2016.

[16] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature
denoising for improving adversarial robustness,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 501–
509, 2019.

[17] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard, “Ro-
bustness via curvature regularization, and vice versa,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9078–9086, 2019.

[18] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[19] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
arXiv preprint arXiv:1802.00420, 2018.

[20] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” arXiv preprint
arXiv:1611.03814, 2016.

