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Abstract—As the number of older adults increases 
worldwide, new paradigms for indoor activity monitoring are 
required to keep people living at home independently longer. 
Radar-based human activity recognition has been identified as 
a sensing modality of choice because it is privacy-preserving and 
does not require end-users compliance or manipulation. In this 
paper, we explore the robustness of machine learning 
algorithms for human activity recognition using six different 
activities from the University of Glasgow dataset recorded with 
an FMCW radar. The raw radar data is pre-processed and 
represented using four different domains, namely, range-time, 
range-Doppler amplitude and phase diagrams, and Cadence 
Velocity Diagram. From those, salient features can be extracted 
and classified using Support Vector Machine, Stacked 
AutoEncoder, and Convolutional Neural Networks. The fusion 
of handcrafted features and features from CNN is applied to get 
the best scheme of classification with over 96% accuracy. 

 

Keywords—radar, signal processing, machine learning, deep 
learning, classification, healthcare, assisted living 

I. INTRODUCTION 

Recently, the increasing number of the elderly population 
is a serious problem for most countries. Some of those old 
people have no choice but to live alone, and thus it is hard for 
their family and governments to take care of them, especially 
when some emergency happens, such as falling. To avoid 
those dangerous situations or further injuries, timely detection 
of those hazardous activities is important. If we can recognize 
or even predict them, medical support can be dispatched in 
time. Cameras are suitable sensors to realize human activity 
recognition, but it is affected by the lighting conditions, and 
some blind zones cannot be detected because of dead angles. 
Most importantly is the user's privacy may be violated by the 
camera intentionally or unintentionally. Radar is an alternative 
sensing modality that can perform this function while 
protecting individual privacy. By analyzing the radar signal 
reflected from the user, activity classification can be achieved, 
and thus dangerous actions can be detected [1]. 

Radar data can be transformed into different domains 
where useful features can be extracted for classification, 
namely, range-time (RT), Doppler-time (DT) amplitude and 
phase, and Cadence Velocity Diagram (CVD). From [2], DT 
is used for the activity classification from which velocity-
related physical features from the target can be calculated. In 
[3], CVD is used for feature extraction combined with 

spectrograms. Phase diagrams (PD) are also proven to provide 
salient information regarding the change and disturbance of 
signals [4].  

Traditional machine learning methods, such as SVM (support 
vector machine) with different kernel functions, are widely 
used in the industry. It has good performances for activity 
classification when the number of activities is limited to 10-
20, with accuracies of in the low and mid 90% [5]. For deep 
learning networks in [6], the authors show that stacked 
autoencoder(SAE), and convolutional neural network (CNN) 
have excellent results of 84% and 90% separately, for dealing 
with a large dataset. In this paper, those 3 classifiers are all 
used for a comparison based on their accuracy, robustness, and 
combination with fusion.  

 This paper is organized as follows. Section II describes the 
details about the experimental radar and the data collection. 
The data pre-processing / feature extraction methodology is 
presented in Section III. Section IV presents the results for 
SVM and feature selection optimization. Section V presents 
the deep learning architectures and feature fusion. Finally, 
Section VI concludes this paper. 

II. EXPERIMENT AND DATA DESCRIPTION 

83 participants took part in the data collection. They were 
asked to perform 6 different activities and repeat them thrice. 
These activities are walking A01, sitting down A02, standing 
up A03, pick up an object A04, drinking A05 and falling A06. 
Those radar data were collected in safe situations at the 
University of Glasgow. Considering falling is a high-risk 
activity, the elderly volunteers were not ask to fall. Finally 
there are 1164 samples in our dataset [7, 8].  

The radar data were collected with a frequency modulated 
continuous wave (FMCW) radar (Fig. 1). This radar works at 
5.8GHz, with a chirp bandwidth of 400MHz and 1ms time 
duration. The number of samples per sweep is 128 (128 kS/s). 
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Fig. 1. View of radar used in this research, while cylinders are Yagi 
antenna and small blue box is radar. 

III. RADAR SIGNAL PROCESSING AND FEATURE EXTRACTION 

A. Radar Data Processing 
The aim of signal processing is to convert the raw radar 

data to new domains which facilitate feature extraction and 
classification [9]. To generate the RT domain matrix, a 
moving target indication filter with a cut-off frequency of 
±0.0075Hz is applied to the raw data first to remove static 
clutter. A 128-point FFT is then used to derive the range 
profile. The RT domain is formed by the accumulation of 
range profiles over time. 
 After that, an STFT is applied to the RT matrix with a 
Hamming window of 0.2s duration, and 95% overlap for the 
sliding window. The accumulated DT profiles are 
accumulated over time with its amplitude being the DT a.k.a 
spectrogram (Fig. 3), where micro-Doppler (uD) features can 
be obtained, and its phase being the PD, which can supplement 
DT information. The PD is only useful if we retain the phase 
components with high enough amplitude in DT with 
thresholding and clipping frequencies beyond ±150Hz as they 
do not make physical sense in human activity recognition. 

Finally, the CVD is obtained by applying a 981-point FFT 
to the DT domain along the time axis for each Doppler bin. 
CVD can show some information about the repetition of 
velocities, and thus useful periodic features can be calculated 
in this domain, and some key information about the shape and 
frequency of moving targets are also available here. Fig. 2 
Summarizes the domains obtained with pre-processing. 

 

 
Fig. 2. The procedure of radar signal processing, from raw data matrix to 
range-time domain, DT/PD, and CVD. 

B. Handcrafted feature extraction from RT, DT and CVD 
After obtaining multi-domain information, features can be 

extracted. Based on [10], 36 handcrafted features are 
extracted, and most of them are derived from the DT. Some of 
them are uD features like those from DT, and some of them 
are periodic from CVD. Table 1 shows the list of features used 
in this research. 

Table 1: List of the extracted features  

Feature List of Radar # 
Energy curve  3 
Skewness  1 
Centroid  2 
Bandwidth 2 
SVD (Singular Value Decomposition)  12 
SVD from RT domain 12 
Entropy 1 
SRF(Step repetition frequency) of CVD 1 
Peak value of CVD 2 

Total 36 

 

Most features are extracted from the DT domain. 
According to previous work, the centroid of Doppler in DT is 
of the highest robustness, which can show the movement of 
the torso and limbs. It is given by (1). 

  (1) 

 is the element of row  and column  of the DT 

matrix and  is the Doppler frequency the ith Doppler 

bin. The bandwidth is the difference of the extreme value 
of DT domain representing the modulation around the 
mean Doppler component. Other features, including 
skewness and entropy, are utilized to give a metric of grey 
levels of the DTs. For other information, singular value 
decomposition (SVD) has been used to exploit more useful 
features containing a spectral projection of the time and 
frequency domains, respectively. SVD is also applied to 
the RT domain, calculating the mean value and standard 
deviation of its components as features. The frequency of 
velocity is extracted from CVD after an FFT along the time 
axis of DT, which represents the periodicity of step for the 
walking A01 action, for example. 

IV. CLASSIFICATION AND FEATURE SELECTION 

The aforementioned handcrafted features from RT, DT, 
and CVD are classified using SVM for activity recognition. 
Different kernel functions are compared in this part to get the 
best classifier. Finally, a sequential backward selection (SBS) 
is used to increase accuracy and reduce the complexity of the 
algorithm and time efficiency. The framework of this part is 
shown in Fig. 3. 

 

Fig. 3. Feature extraction, classification and feature selection 

A. Support Vector Machine 
SVM with handcrafted features is a traditional machine 

learning method to realize classification. The training time of 
SVM is much lower than deep learning methods, while it has 
good performances when the number of data types is small. In 
this paper, 36 features extracted from 3 different domains are 
used as input. SVM with 5 different kernels are compared 
based on 10-fold cross-validation. From Fig. 4, the cubic SVM 
performs best for this dataset with 91.6% accuracy. 
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Fig. 4. Results of SVM with different kernel functions 

B. Feature Selection 
According to [11], not all the features have a positive 

contribution to the current accuracy. To choose the most 
salient features and save computational power, feature 
selection is introduced. SBS is applied to the former classifier 
based on [12]. The SBS algorithm tests all combinations of 
features sequentially starting from the whole feature set and 
removing one feature and keeping the subset of features 
providing the best accuracy and repeating the process until 
there is only one to optimize the classification by identifying 
the subset of features yielding the best accuracy as shown in 
Fig.5. The improvement in accuracy is 3.58% when there are 
14 features selected yielding 95.24%, which saves about 60% 
in computation power.  

 

 
Fig. 5. Feature extraction, classification and feature selection 

V. DEEP LEARNING ARCHITECTURE 

SVM seems to have good performances, but if the 
complexity of the dataset increases, their performance may 
sharply decrease. Deep learning has better robustness in those 
conditions [13]. Two methods, Stacked AutoEncoder (SAE) 
and Convolutional Neural Network (CNN) are used to classify 
those activities.  

A. Stacked Autoencoder 
An autoencoder consists of an encoder and a decoder. The 

aim of the SAE is compressing the input into a middle layer 
and then decompressing it back, and make the output as 
similar to the input as possible. SAE is several autoencoders 
stacked together. The input to SAE is the figure of DT, and it 
is converted to a 1-dimensional array for the input layer of 
SAE. The structure of this 3-layers SAE is shown in Fig. 6. 
After training, the middle layer is drawn out containing the 
compressed representation of the input is connected to a 
SoftMax layer to realize classification using a Bayes 
optimizer. After optimization, an SAE yielded 92% accuracy.  

 

 
Fig. 6. Classification network from 3-layers SAE 

 

B. Convolutional Neural Network 
CNN is a widely used architecture for the feature 

extraction of images. Compared with SAE, it is more focused 
on global features. The optimization for activity classification 
is obtained with gradient descent and backpropagation of error 
[14]. The CNN is tested with DT and PD as inputs, and those 
matrices are converted to compressed figures of size 32x32x3. 
After Bayes optimization, the CNN network yielded 92.21% 
accuracy for the DT input, while the CNN with PD as input 
yielded only 81.9% accuracy. The structure of DT input is 
shown in Fig. 7. The depth of this net is 2 with a 3 3 filter 
size. Larger filter sizes with fewer network depth may have 
the same theoretical result, but this structure performs better 
and more efficiently. 

Fig. 7. CNN structure with DT input 

C. Robustnesss comparison and retraining 
Although those classifiers have good results for this 

dataset, some of them may have a loss in performance when 
there are changes in the data which would indicate that the 
classifier did not generalize the model enough and therefore 
overfitted to the training set. For instance, if the number of 
activities increases, the classifier based on handcrafted 

features may not perform as well have bad results because 
they cannot generalize well. 

To compare those classifiers, a new dataset with 155 
samples is introduced with the same activities. This dataset 
is collected in a different environment with 7 different 
participants while the activities are the same as the former 
one. Classifiers are tested by this new data and compared 
with each other, as shown in Fig. 8. The accuracy of SVM 
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declines from 95.24% to 52.73%. SAE and CNN show 
better robustness while their accuracy also decreases 
slightly from 91.23% and 92.21% to 69.39% and 77.17%, 
respectively. To improve this situation, half of the new data 
are put into the training set to retrain those classifiers, and 
the results of all the classifiers increased to 70.89% for SVM, 
80.31% for SAE, and 90.29% for CNN. In this case, CNN 
has shown its robustness compared to SAE and SVM.  

D. Feature Fusion 
Finally, different feature-fusion schemes are compared 
combining handcrafted features (H), features from CNN 
(DT and PD) are combined together as input to an SVM. 
There are 4 different combinations with 3 possible 
pairings (H+DT, H+PD, DT+PD), and all the features 
combined. The cross-validation result is shown in Fig. 9. 
The fusion of handcrafted features and CNN-features 
from the DT achieves the highest accuracy at 96.65%, 
which is better than the optimized SVM by 1.41% and 
SAE and CNN with DT as input by 5.42% and 4.44%, 
respectively.  

 

Fig. 8. Comparison between SVM, SAE and CNN 

 
Fig. 9. Comparison between different feature fusion schemes. H 
means handcrafted features, DT means features from the CNN with 
DT as input, and PD means features from the CNN with PD as input. 

VI. CONCLUSION 

In this paper, the radar data are collected with an FMCW 
radar worked at 5.8GHz with 400 MHz bandwidth and 1 ms 
duration, including 6 different kinds of activities. In the data 
processing part, it is converted into 4 different domains: 
range-time, Doppler-time, PD and CVD. 36 features are 
extracted from those domains and then input to SVM. After 
the comparison of 5 kernel functions, cubic SVM has a 
cross-validation accuracy of 91.26%. SBS algorithm is used 
to select features, and 14 features are left to increase the 
accuracy to 95.24% while saving 60% computation power. 

For deep learning architecture, SAE and CNN are applied 
to this dataset. SAE yields 91.23% accuracy and CNN 
92.21%. By introducing a new test dataset, the robustness of 
classifiers was tested showing that the CNN has the best 
robustness while SVM is the least robust. Finally, a feature 
fusion of handcrafted features and CNN features is used, 
increasing the classification accuracy to 96.65% obtained 
with handcrafted features combined with the CNN features 
obtained from DT input. 

An interesting direction to pursue for future research on 
the robustness of classification would be the comparison of 
FMCW radar with an OFDM radar when multiple radars 
operate in the same vicinity [15]. 
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