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Abstract—Future Intelligent Transportation Systems (ITS) can
improve on-road safety and transportation efficiency and vehic-
ular networks (VNs) are essential to enable ITS applications via
information sharing. The development of 5G introduces new
technologies providing improved support for connected vehi-
cles through highly dynamic heterogeneous networks. Machine
Learning (ML) can capture the high dynamics of VNs but the
distributed data cause new challenges for ML and requires
distributed solutions. Federated learning (FL), a distributed ML
framework, gives a distributed ML framework while ensuring
information privacy protection and is an exciting area to explore
in VNs. This article provides a detailed summary of recent FL
applications in VNs and gives insights on current research chal-
lenges. The included research topics are resource management,
performance optimization and applications based on VNs.

Index Terms—Vehicular Networks, Machine Learning, Feder-
ated Learning, 5G, Mobile Edge Computing

I. INTRODUCTION

As vehicles have gained increasing communication, com-
puting, and sensing capabilities, new opportunities have been
revealed for both research and industrial applications to realize
future intelligent transportation system (ITS) applications [1].
However, a major challenge in vehicular networks (VNs) is the
rapid and continuous changes of network (Net) nodes, com-
bined with their short connection time, requiring a dynamic
Net topology. Traditional wireless Net solutions are based on
parameterized mathematical models and an a priori knowledge
of the environment making them highly sensitive to the highly
dynamic nature of VNs resulting in non-optimal performance.

Another methodology utilizing Machine Learning (ML)
can cope with the uncertainty in the dynamically changing
environment by learning the patterns from collected data, or
directly interacting with the environment to develop an optimal
policy. Because of the adaptivity and flexibility provided by
ML, it has gained traction in wireless communications research
[2] and VNs [3]. Similarly, the growth of Deep Learning

(DL) technique can further exploit the vast amount of data
for improved task-specific performances.

Another major challenge raised by vehicular-to-everything
(V2X) communication [4] and VNs is heterogeneity. VNs
have various communication types with multiple radio access
technologies of choice (Figure. 1). Due to the heterogeneity,
VN data is collected and stored in different Net nodes such
as vehicles, roadside units (RSUs), pedestrians, leading to
incomplete local datasets for these nodes. Moreover, since
data-driven learning methods require a rich dataset to fully ex-
tract the underlying patterns; the partially observed data stored
locally will cause individual learners to underperform in VNs.
Reinforcement learning (RL) algorithms for VNs also face
a similar challenge that individual agents may only interact
with a part of the whole environment, leading to suboptimal
policies. To solve such problems, distributed learning methods
integrating different learners in the same environment for an
enhanced dataset or environment observation thus become a
promising approach; presently, federated learning (FL) [5] is
a major methodology in this category.

With the development of 5G, VNs have started to embrace
a series of new communication standards and related enabling
technologies [6]. Mobile edge computing (MEC), a key tech-
nology for 5G, provides edge caching and computation of-
floading functions [7], thus reducing latency and computation
load by moving less computation-intensive tasks to Net edge
and end devices instead of centralized cloud servers; thus
opening up the possibility of implementing distributed FL
deployment in VNs. Adoption of this architecture permits a
decentralized FL setup to collectively learn while simultane-
ously reducing latency and increasing bandwidth efficiency.

For the sake of brevity, this paper is restricted to the most re-
cent applications of FL in VNs and identifies current research
challenges in networking and methodology optimization.



Fig. 1. An example scenario of the heterougenous vehicular network

II. FL IN VEHICULAR NETWORKS

Initially, FL was developed to exploit the values of dis-
tributed data among learners while protecting each learner’s
data privacy [5]. FL structures can be classified into two
major types; vertical and horizontal and readers are referred
to the excellent treatise on FL frameworks for further read-
ing [8]. Normally, FL training (Figure. 2) includes 3 steps:
Initialization, Local training, and Global aggregation. During
Initialization, the FL server determines the training setup, data
requirements, and the participants. Once step 1 is complete
FL enters the Local training process where each participant
receives the initialization information and uses this to train a
local model using its local data. Step 3 is the Global aggre-
gation process, where each participant uploads the parameters
of its local model to the FL server. The server then performs
model averaging and distributes the resulting global model
among participants.
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Fig. 2. General FL training process with N participants

When applied to VNs, FL frameworks can improve Net opti-
mization problems including communication cost and resource
allocation [9]. For example, an FL-based method [10] has been

developed to deal with vehicular communications joint power
and resource allocation problem to define an ultra-reliable and
low-latency communication (URLLC) application specifica-
tion. By utilizing extreme value theory [11] for modelling
extreme queue lengths with Lyapunov optimization applied
[12], this method is used to determine the optimal resource al-
location policy per vehicle when considering resource sharing.
The FL framework design allows vehicles to participate in the
training process, train their local models, and upload the model
parameters to the RSU in the specified region. The RSU will
then average out all model parameters and send the updated
global model back to participating vehicles. Also, this work
developed both synchronous (SY) and asynchronous (ASY)
algorithms. In the SY case, all vehicles upload their training
parameters to the server periodically at the end of a predefined
interval. However, the SY mode will experience communi-
cation delay when multiple vehicles upload simultaneously.
Therefore, in the ASY case, each vehicle will complete its
training and upload the parameters when sufficient information
is collected locally; and the FL server will update the global
model upon receipt of a set of parameter upload. Simulation
results show the number of vehicles experiencing extreme
queue length is lessened and data exchange is also reduced via
the proposed centralized FL approach. However, the researcher
presumes that the training data come from an independent and
identical distribution (IID) which cannot be guaranteed in for
the general case; centralized FL training may also cause more
significant communication delay in real-world applications.

For MEC applications in mobile Nets, the optimization
of edge storage and computational power management has
become another topic in resource allocation research. In [13],
an FL-based deep RL (DRL) algorithm has been developed for
caching and computation offloading decision optimization in a
MEC system. A double deep Q-learning Net [14] is designed
for user equipment (UE) covered by a base station to decide
whether to cache a file and offload tasks to an edge node. A
further FL approach utilizes distributed computational power
for faster training while keeping training data on individual
UE only to protect privacy. To deal with the non-IID issue of
distributed data, the FedAvg algorithm [15] is used to keep
training results robust and balanced. Similarly, the authors of
[16] have also utilized an FL-based double deep Q-learning
algorithm for computation offloading in an internet of things
(IoT) system. In their framework, randomly selected IoT
devices download a copy of the global model from an edge
node and train it with their local data, after which the trained
parameters will be sent back to the edge node for aggregation.

Through the adoption of FL-based structures, relatively
large-scale deployments for caching and computation offload
is possible when compared to a centralized structure while
continuing to protect the participants’ data privacy. Training
results from the above two examples approach the best perfor-
mance achieved by the centralized structures used as baselines.
While these examples are focused on a more general IoT use
case, the highly dynamic mobility of nodes must be considered
when adapting to VN applications. Conversely, both schemes



may suffer long training delays when dealing with a Net
consisting of numerous heterogenous UE with the proposed
DRL methods.

With the increase in sensing and computational power, on-
road vehicles are becoming rich data sources and images
taken by on-board cameras can provide valuable information
for intelligent applications. FL becomes a valuable frame-
work to exploit such image data while protecting the un-
derlying sensitive information. However, as the photographic
and computational power of vehicles can vary, this affects
global model accuracy causing communication latency. To
address this asymmetric information challenge for FL, a multi-
dimensional selective model aggregation approach for SY
FL is proposed [17] relying on an image classifier within
a vehicular edge computing structure. The FL server first
proposes a DL model with a contract bundle containing the
requirement of data quality levels, computation resources, and
payoffs. Vehicles can self-evaluate and predict whether their
images satisfy the contract requirements via instantaneous
velocity observations. Competent vehicular participants will
then download the global model after contract confirmation
and upload their local models to the FL server for model
aggregation while meeting the synchronization requirements.
Simulation results show that this selective aggregation model
effectively simplifies the information asymmetry problem to
be solvable via a naı̈ve greedy optimization algorithm . This
work provides an innovative contract-theory based approach to
tackling a data quality problem. This yielded the largest utility
compared to economic models applied to mobile Nets such as
the linear pricing and the Stackelberg competition model [18].
however the authors have not considered the high mobility
aspects of on-road vehicles and only propose an SY FL model.

FL can also support utility applications using VNs such
as the prediction of electric vehicles’ energy demand, thus
reducing energy transfer congestion at charging stations [19],
resulting in improved on-road traffic efficiency. The charging
data of vehicles at each station is essential for future energy
demand prediction to pre-order and reserve electricity from the
power grid suppliers. To ensure data privacy, the implemented
DL algorithm with an SY FL structure only requires each
station to upload result gradient data via local training and
the FL server will aggregate and produce the final prediction
model. Improvements to the model’s accuracy can be achieved
by implementing the constrained K-means clustering algo-
rithm [20] to cluster charging stations based on geographic
information. To evaluate the efficiency of these methods,
simulations are conducted on real-world charging station data
obtained from the UK city of Dundee. When the FL based
method with clustering was applied, it outperformed all other
methods as measured by the lowest root mean square error
and control overhead. Pattern recognition of traffic flows and
charging station recommendations for load balancing among
available stations can be a promising further application.

This section introduced five distinct FL applications in VNs
in detail with different types of applications included. DL
and DRL methods can capture the highly dynamic VNs well

when sufficient data are collected. FL enabling utilization
of distributed data and privacy protection can improve DL
applications. The works covered in this section is summarized
in Table. I with their application types and central ideas.

III. CURRENT RESEARCH CHALLENGES

FL is a relatively new ML training framework and applica-
tions in VNs are still in their infancy presenting significant
challenges requiring further research investment. The chal-
lenges include communication issues, deployment with data
quality and method scalability, and security issues. In wireless
mobile Nets, a significant challenge is interferences among
devices as a function of the distance between participants
following existing participant selection schemes [21], [22]
with the number of mobile devices taken into account. The
radio interference influences the communication quality during
local result uploading causing possible data loss or false data
and will decrease the reliability of the global aggregation
model. To date, this challenge has received some attention in
FL resource allocation research [10], [23], but the scalability
of existing methods still needs investigation.

Data quality is another challenge in distributed systems. To
improve training performance and deal with heterogeneous
data issues in FL, some research have focused on participant
selection algorithms [21], [24]. However, the assumption is
that a permanently robust link exists between a potential
participant and the FL server. In VNs, this assumption can-
not be guaranteed as rapidly moving vehicles will result in
unstable links, which causes a participant drop-out problem
during FL training process and greatly affects the joint training
performance. Future research for FL applications in VN needs
to anticipate the drop-out situation and focus on robustness.

The identified FL applications use the SY training schemes
as they guarantee convergence [25], but these also limit the
system progression to that of the slowest participant, thereby
restricting the scalability and training efficiency. To address
the “straggler” effect the ASY scheme used in [10] is pro-
posed which may also solve the participant dropping issue
by allowing new participants to join an ongoing training ses-
sion. However, this approach may introduce potentially more
heterogeneous data and thus jeopardize training convergence.
Future ASY FL research must address this while exploring the
scalability and adaptability benefits.

As wireless communication is essential for data transmis-
sion in FL training in VNs and other MEC systems, com-
munication and information security become major concerns
as FL implementations in such systems are vulnerable to
communication attacks such as distributed denial-of-service
[26] and jamming attacks [27], impacting the FL systems’
overall performance. Conversely, although an FL framework
guarantees data privacy through keeping individual data lo-
cally, it is still exposed to information leaking risks [28].
According to Lim [9], countermeasures have been developed
for both types of issues for FL implementation, but trade-offs
between system safety and efficiency require further attention.



TABLE I
FL APPLICATIONS IN VEHICULAR NETWORKS (VNS) COVERED.

Application Type Ref. Central Idea

Resource Management [10] Joint power and radio resource allocation for VNs with extreme value theory to predict extreme queue
lengths.

[13], [16] FL-based deep Q-learning networks to deal with edge caching and/or computation offloading in small scale
MEC (IoT) systems.

Performance Optimization [17] A contract theoretic approach to cope with data asymmetry issues with the FL-based image recognition
tasks in VNs.

V2X-based Application [19] An FL-based energy demand algorithm developed to tackle energy transfer congestion issues of electric
vehicles at charging stations.

IV. CONCLUSION

This summarizes recent federated machine learning applica-
tions in VNs while aiming to address the distributed data and
information privacy issues in such systems and providing some
insights into the existing research challenges. A significant
benefit of FL is that it can utilize the distributed data stored
among vehicles and RSUs through joint training schemes
while retaining data privacy by keeping individual participant
data local. Real-world deployment and security issues are
major challenges for FL applications that demand attention
by future research ers. Outstanding real-world deployment
challenges contain communication link interference, training
data quality, and algorithm scalability while maintaining com-
munication and information security.
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D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016.

[6] M. A. Imran, Y. A. Sambo, and Q. H. Abbasi, Evolution of Vehicular
Communications within the Context of 5G Systems, pp. 103–126. IEEE,
2019.

[7] Z. Ning, X. Wang, and J. Huang, “Mobile edge computing-enabled
5g vehicular networks: Toward the integration of communication and
computing,” IEEE Vehicular Technology Magazine, vol. 14, no. 1,
pp. 54–61, 2019.

[8] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
Jan. 2019.

[9] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Communications Surveys Tutorials, pp. 1–
1, 2020.

[10] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Distributed fed-
erated learning for ultra-reliable low-latency vehicular communications,”
IEEE Transactions on Communications, vol. 68, no. 2, pp. 1146–1159,
2020.

[11] L. De Haan and A. Ferreira, Extreme value theory: an introduction.
Springer Science & Business Media, 2007.

[12] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[13] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI conference on artificial
intelligence, 2016.

[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[16] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated learning-
based computation offloading optimization in edge computing-supported
internet of things,” IEEE Access, vol. 7, pp. 69194–69201, 2019.

[17] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23920–23935, 2020.

[18] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim,
“Incentive design for efficient federated learning in mobile networks:
A contract theory approach,” in 2019 IEEE VTS Asia Pacific Wireless
Communications Symposium (APWCS), pp. 1–5, IEEE, 2019.

[19] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, M. D.
Mueck, and S. Srikanteswara, “Energy demand prediction with federated
learning for electric vehicle networks,” arXiv preprint arXiv:1909.00907,
2019.

[20] P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means
clustering,” Microsoft Research, Redmond, vol. 20, no. 0, p. 0, 2000.

[21] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pp. 1–7, 2019.

[22] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L. Wang, “Efficient
training management for mobile crowd-machine learning: A deep rein-
forcement learning approach,” IEEE Wireless Communications Letters,
vol. 8, no. 5, pp. 1345–1348, 2019.

[23] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Transactions on Wireless Communications, vol. 19,
no. 5, pp. 3546–3557, 2020.

[24] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl: Cooperative learning mechanism using non-iid data in wire-
less networks,” CoRR, vol. abs/1905.07210, 2019.

[25] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
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