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Abstract—This work presents a set of node-level optimizations
to perform the assembly of edge finite element matrices that arise
in 3D geophysical electromagnetic modelling on shared-memory
architectures. Firstly, we describe the traditional and sequential
assembly approach. Secondly, we depict our vectorized and
shared-memory strategy which does not require any low level in-
structions because it is based on an interpreted programming lan-
guage, namely, Python. As a result, we obtained a simple parallel-
vectorized algorithm whose runtime performance is considerably
better than sequential version. The set of optimizations have
been included to the work-flow of the Parallel Edge-based Tool
for Geophysical Electromagnetic Modelling (PETGEM) which
is developed as open-source at the Barcelona Supercomputing
Center. Finally, we present numerical results for a set of tests in
order to illustrate the performance of our strategy.
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I. INTRODUCTION

THE electromagnetic methods (EM) are an established tool
in geophysics, finding application in many areas such

as hydrocarbon and mineral exploration, reservoir monitoring,
CO2 storage characterization, geothermal reservoir imaging
and many others. In particular, the marine Controlled-Source
Electromagnetic Method (CSEM) has become an important
technique for reducing ambiguities in data interpretation in
hydrocarbon exploration. In the traditional configuration, the
sub-seafloor structure is explored by emitting low-frequency
signals from a high-powered electric dipole source towed close
to the seafloor. By studying the received signal, the subsurface
structures could be detected at scales of a few tens of meters
to depths of several kilometers.

On the other hand, in the Finite Element Method for solving
electromagnetic field problems, the use of Nédélec elements
(edge elements or edge finite element method) has become
very popular. In fact, Nédélec elements are often said to be
a cure to many difficulties that are encountered (particularly
eliminating spurious solutions) and are claimed to yield accu-
rate results.

As summary, main properties of Nédélec elements are the
following: degrees of freedom (DOFs) are edge-associated; at

interfaces, their tangential component is continuous, while the
normal one is, in general, discontinuous; vector basis functions
are divergence free and they do not yield conflicting conditions
at points where the interface between two different media is not
locally flat [8]. As regards the computational burden, only six
unknowns are required for each element (Nédélec tetrahedral
elements of lower order). It is worth nothing that the linear
vectorial Lagrange elements or any other consistently linear
3D-vector functions over a tetrahedral, carry twelve unknowns,
three at each of its four nodes [11].

Despite the popularity of the EFEM, there are few imple-
mentations of it. Furthermore, the 3D modelling of geophysical
EM problems can easily overwhelm single core computing
resources [3]. To alleviate these issues we present a set of
node-level optimizations to perform the assembly of edge finite
element matrices that arise in 3D geophysical electromagnetic
modelling on shared-memory architectures.

The set of optimizations have been included to the work-
flow of the Parallel Edge-based Tool for Geophysical Electro-
magnetic Modelling (PETGEM) which is developed as open-
source at Computer Applications in Science & Engineering of
Barcelona Supercomputing Center.

We structured the paper as follows: in section two we
describe the physical problem to be solved. In section three we
present the edge finite element assembly procedure. We explain
the parallel-vectorized algorithm and his implementation in
section four. In section five we present the numerical and
scalability results for a set of tests. We expose the conclusions
and future work in last section.

II. ELECTROMAGNETIC MODELLING IN GEOPHYSICS

The electromagnetic methods (EM) are an established tool
in geophysics, finding application in many areas such as
hydrocarbon and mineral exploration, reservoir monitoring,
CO2 storage characterization, geothermal reservoir imaging
and many others. In particular, the marine Controlled-Source
Electromagnetic Method (CSEM), also referred as seabed
logging [7], has become an important technique for reducing
ambiguities in data interpretation in hydrocarbon exploration.

In marine CSEM a deep-towed electric dipole transmitter is
used to produce a low frequency electromagnetic signal which978-1-5090-1496-5/16/$31.00 © 2016 IEEE
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interacts with the electrically conductive Earth and induces
eddy currents that become sources of a new electromagnetic
signal. The two fields add up to a resultant field, which is
measured by remote receivers placed on the seabed. Figure 1
depicts the marine CSEM.

Fig. 1. Marine CSEM [8]

The 3D CSEM modelling is typically solved in frequency
domain at low frequency (∼ 1Hz), which involves the numer-
ical solution of Maxwell’s equations in stationary regimes in
an unbound domain Γ [4].

Following the works by [3] and [4], the edge finite element
equation for CSEM modelling can be expressed as follows:

[Ke
jk + iωσ̃eM

e
jk] · {Esk} = −iωµ∆σ̃eR

e
k (1)

where Ke and Me are the elemental stiffness and mass
matrices Re

k is the right hand side which requires numerical
integration. System of linear equations (1) can be rewritten
in a compact form Ax = b. Former system is large, sparse,
complex and symmetric and his assembly and solution is
computationally costly.

Elemental matrices Ke and Me in system (1) can be defined
as:

Ke
ij =

∫∫∫
V e

(∇×Ne
i · Se

i ) · (∇×Ne
j · Se

j ) dV (2)

Me
ij =

∫∫∫
V e

(Ne
i · Se

i ) · (Ne
j · Se

j ) dV (3)

where Ne
i are the vector basis functions associated to each

edge i and Se
i are coefficients equal to 1 or −1 depending on

the relative local orientation of the i-th edge in the element e
with respect to the global orientation of the i-th edge in the
mesh.

Considering the node and edge indexing in figure 2, the
vector basis functions Ne

i can be expressed as follows:

Ne
i = (λei1∇λei2 − λei2∇λei1)`ei (4)

where subscripts i1 and i2 are the first and second nodes
linked to the i-th edge, λei are the linear nodal basis functions,
and `ei is the length of the i-th edge of the element e.
Vector basis functions (4) can be calculated analytically or
numerically [8].

Fig. 2. Tetrahedral Nédélec edge element with node/edge indexing.

III. EDGE FINITE ELEMENT ASSEMBLY PROCEDURE

Solve the system (1) using the edge finite element method
in frequency domain typically requires the following step:
• Local assembly. For each element e in the computational

domain, a NxN local matrix W e (W e = Ke + Me),
and a N -length vector, be, are computed, where N is the
number of edges per element. In our case, computing of
these local matrices and vectors involves the evaluation
of integrals over the element using Gaussian quadrature
rules.

• Global assembly. The local matrices, W e, and vectors,
be, are used to build a global matrix A and global
vector, b, respectively. In this process the contributions of
the elements are integrated. The sparsity pattern of the
global matrix is function of the mesh connectivity. In
this stage, we used the Compressed Sparse Row (CSR)
format in order to reduce the storage requirement of the
global system and to eliminate redundant computations.

• System solution. Using iterative methods or direct meth-
ods, the system of equations Ax = b is solved for x.

Algorithm 1 describe the assembly of matrix A from each
associated element matrix W e whose dimensions are 6x6
because we used edge elements of lowest order (six edges
per element).

On the other hand, the assembly of vector b is depicted in
algorithm 2.

As main disadvantages of previous approaches arise the
repetition of some operations, indirect addressing and the loop
costs when the number of elements is grows.

IV. PARALLEL NODE-LEVEL OPTIMIZATIONS

The global assembly process is a performance bottleneck
in real scenarios. Recent investigations of alternative imple-
mentations of global assembly techniques show that depending
on problem parameters, the point at which it is profitable to
switch algorithms for global assembly varies depending on the
problem [10].

In our case, the assembly stage for CSEM modelling is a
portion of the computation that forms a significant bottleneck.
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Algorithm 1: Global assembly of matrix A
Data: A=sparse(numEdges, numEdges)
Result: Global matrix A

1 begin
2 for iElem = 1 : numElements do
3 edgesEle = get local edge indexes of iElem
4 Ke = Compute stiffness matrix of iElem
5 Me = Compute mass matrix of iElem
6 W e = Ke + ωσ̃eM

e

7 for ic = 1 : orderEle do
8 for jc = 1 : orderEle do
9 A(edgesEle(ic), jc) =

A(edgesEle(ic), jc) +W e(ic, jc)
10 end
11 end
12 end
13 end

Algorithm 2: Global assembly of vector b
Data: b=sparse(1, numEdges)
Result: Global vector b

1 begin
2 for iElem = 1 : numElements do
3 edgesEle = get local edge indexes of iElem
4 gaussPoints = compute Gauss points
5 basis = compute basis functions
6 Ep = compute electric field
7 be = −iωµ∆σ̃e ∗ Ep ∗ basis
8 for ic = 1 : orderEle do
9 b(edgesEle(ic)) =

b(edgesEle(ic)) + be(edgesEle(ic))
10 end
11 end
12 end

As consequence, we decided to focus in the performance
improvement of it through the use of high-level strategies
for parallel shared-memory sparse matrix-vector operations.
The set of node-level optimizations have been included to the
work-flow of the Parallel Edge-based Tool for Geophysical
Electromagnetic Modelling (PETGEM) which is a Python
code for the scalable solution of geophysics electromagnetic
problems on tetrahedral meshes, as these are the easiest to
scale-up to very large domains or arbitrary shape. PETGEM is
developed as open-source at Computer Applications in Science
& Engineering of Barcelona Supercomputing Center. Detailed
information about PETGEM, such as software stack, main
functionalities and capabilities, are described in [4], [5].

A. Vectorization strategies
Vectorization is a technique that allows speed up algorithms

with minimum effort by utilising computational architectures
along with some highly optimised vector routines. Since PET-
GEM is a Python-based code, is possible apply operations at

once to an entire set of values (arrays). Therefore, parts of the
assembly process eligible for vectorizing are the following:
computation of stiffness and mass matrices, be computation,
Gauss points computation, basis functions computation and
electric field computation. Here, our main target was avoid
the use of loops in the numerical formulation by [3], [4]
and [5]. As consequence, in the new version of the code all
operations can be developed in a matrix-vector manner, which
significantly reduces the memory access (indirect addressing)
and therefore the computation time.

On the other hand, the global assembly process had been
improved by the inclusion of sparse matrices functions by
scipy [9]. Among of that, we choose the Compressed Sparse
Row (CSR) format because is has an efficient row slicing and
a fast matrix vector products.

B. Shared-memory strategies
In order to meet the high computational cost of vectorized

functions, we used shared-memory strategies for matrix-vector
operations in Python. In Python language, the multiprocessing
package supports spawning processes using an API similar to
a threading OpenMp [14] approach. The multiprocessing pack-
age offers both local and remote concurrency, effectively side-
stepping the Global Interpreter Lock by using subprocesses
instead of threads. Due to this, the multiprocessing module
allows the programmer to fully leverage multiple processors
on a given machine [15].

The previous technique exploits the use of multi-core archi-
tectures, specially when the problem to be solved is computa-
tionally intensive as in our case. In our approach, the assembly
process is seen as a function across multiple input values
(data parallelism), namely, functions are defined as modules
so that child processes can successfully import and execute
that module.

C. Parallel-vectorized algorithms
Taking into account previous strategies, new version of

algorithms for global assembly of matrix A and vector b are
depicted in algorithm 3 and algorithm 4, respectively.

In algorithm 3 computation of Ke and Me is done in
a vectorized manner. On the other hand, in algorithm 4
computation of basis functions and primary field has been
vectorized because these are the most expensive code region.

V. NUMERICAL AND SCALABILITY RESULTS

In order to verify the performance of the node-level op-
timizations we used the canonical model by [6] which is
deeply described in [4]. Furthermore, we have prepared a set
of hierarchically refined meshes in order to investigate the
scalability. In 3D computational domains, this technique results
in 8 times more tetrahedral elements. Table I depicts main data
of our meshes. For the numerical integration we used 8 gauss
points per tetrahedral element.

The experiments were performed on the Marenostrum su-
percomputer with two 8 cores Intel Xeon processors E52670
at 2.6 GHz per node.
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Algorithm 3: Global assembly of matrix A in parallel
Data: Computation of constants
Result: Global matrix A (CSR format)

1 begin
2 Start parallel pool(number of processors)
3 for iElem = 1 : numElements do Parallel loop
4 edgesEle = get local edge indexes of iElem
5 Ke = Compute stiffness matrix of iElem
6 Me = Compute mass matrix of iElem
7 W e = Ke + ωσ̃eM

e

8 W e = convert matrix W e to array
9 return W e to master as W

10 end
11 Close parallel pool()
12 I = row indexes computation
13 J = column indexes computation
14 A = CSR-Building(W , I , J)
15 end

Algorithm 4: Global assembly of vector b in parallel
Data: Computation of constants
Result: Global vector b

1 begin
2 Start parallel pool(number of processors)
3 for iElem = 1 : numElements do Parallel loop
4 edgesEle = get local edge indexes of iElem
5 gaussPoints = compute Gauss points
6 basis = compute basis functions
7 Ep = compute electric field
8 be = ∆σ̃e ∗ Ep ∗ basis
9 return be to master as V

10 end
11 Close parallel pool()
12 I = row indexes computation
13 b = CSR-Building(V , I , 1)
14 b = −iωµ ∗ b
15 end

TABLE I. MESHES INFORMATION

Test #nodes # elements # edges # dofs

Mesh 1 729 3,072 4,184 3,032
Mesh 2 4,913 24,576 31,024 26,416
Mesh 3 35,937 196,608 238,688 220,256
Mesh 4 274,625 1,572,864 1,872,064 1,798,336
Mesh 5 2,146,689 12,582,912 1,482,704 14,532,992

TABLE II. SUMMARY OF RUNTIMES (MINUTES)

Test Processors

Sequential 2 4 8 16

1 0.0764 0.0478 0.0300 0.0219 0.0181
2 0.5368 0.2899 0.1608 0.1003 0.0790
3 4.2441 2.2959 1.2247 0.7239 0.5606
4 36.2597 18.3408 9.9575 4.7760 2.6941
5 295.1132 142.1810 77.8087 39.8862 19.4709

TABLE III. SUMMARY OF STRONG SCALING TEST (%)

Test Processors

Sequential 2 4 8 16

1 100 79.91 63.66 43.60 26.38
2 100 92.58 83.47 66.89 42.45
3 100 92.42 86.63 73.28 47.31
4 100 98.84 91.03 94.90 84.11
5 100 99.83 94.82 92.48 94.72

Table II summarizes the run-time for each test. The sequen-
tial time and parallel time (both expressed in minutes) for
each test are included in function of the number of processors.
According to results presented in [5], new version of PETGEM
is significantly more efficient than previous one .

Table III show the parallel scalability for the new version of
PETGEM. Here, for each mesh we used a strong scaling where
the problem size stays fixed but the number of processing
elements were increased (cpu-bound test). Following the work
by [3] the parallel scalability or parallel efficiency is given by:

χ =
S

n · Sn
· 100 (5)

where S is the amount of time to complete a work unit with
1 processing unit, n is the number of processing units and Sn
is the amount of time to complete the same unit of work with
n processing units. Results in table III are congruent because
the chache miss and non-uniform memory access (NUMA).

Howewer, because our approach is based on shared-memory
architectures the communication overhead has no an important
negative impact in the parallel scalability for a considerable
work-load as show figure 3 for mesh 4 and figure 4 for mesh
5. As consequence, we obtained a quasi linear speed-up, which
is plotted in figure 5 and 6 for mesh 4 and mesh 5 respectively.

VI. CONCLUSIONS AND FUTURE WORK

Nowadays, the electromagnetic methods are a fundamental
tool in geophysics area, finding an ample range of applica-
tion such as hydrocarbon and mineral exploration, reservoir
monitoring, CO2 storage characterization, geothermal reservoir
imaging and many others. In particular, the marine CSEM has
become an important technique for reducing ambiguities in
data interpretation in hydrocarbon exploration.

Considering the societal value of exploration geophysics,
we presented a set of node-level optimizations to perform
the assembly of edge finite element matrices that arise in
3D geophysical electromagnetic modelling on shared-memory
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Fig. 3. Parallel scaling for mesh 4
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Fig. 4. Parallel scaling for mesh 5
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Fig. 5. Parallel scaling for mesh 4
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Fig. 6. Parallel scaling for mesh 5

platforms. The set of optimizations have been included to the
work-flow of the Parallel Edge-based Tool for Geophysical
Electromagnetic Modelling (PETGEM) which is developed as
open-source at Computer Applications in Science & Engineer-
ing Department of the Barcelona Supercomputing Center.

Using a canonical model of an off-shore hydrocarbon reser-
voir, we have evaluated the efficiency of PETGEM through
scalability tests (strong scaling) for a set of hierarchically
refined tetrahedral meshes. Results shows a good parallel
efficiency of our code.

Future work will be aimed in two lines. Firstly, at the im-
plementation of an hybrid parallel model (distributed memory-
shared memory) to improve the computation time of the
whole solution. Secondly, including anisotropy and seafloor
bathymetry to the scheme as well as comparing the behaviour
of the code to other modelling approaches for CSEM.
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