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Abstract—Generative adversarial networks have been able to 

generate striking results in various domains. This generation 

capability can be general while the networks gain deep 

understanding regarding the data distribution. In many domains, 

this data distribution consists of anomalies and normal data, with 

the anomalies commonly occurring relatively less, creating 

datasets that are imbalanced. The capabilities that generative 

adversarial networks offer can be leveraged to examine these 

anomalies and help alleviate the challenge that imbalanced 

datasets propose via creating synthetic anomalies. This anomaly 

generation can be specifically beneficial in domains that have 

costly data creation processes as well as inherently imbalanced 

datasets. One of the domains that fits this description is the host-

based intrusion detection domain. In this work, ADFA-LD 

dataset is chosen as the dataset of interest containing system calls 

of small foot-print next generation attacks. The data is first 

converted into images, and then a Cycle-GAN is used to create 

images of anomalous data from images of normal data. The 

generated data is combined with the original dataset and is used 

to train a model to detect anomalies. By doing so, it is shown that 

the classification results are improved, with the AUC rising from 

0.55 to 0.71, and the anomaly detection rate rising from 17.07% 

to 80.49%. The results are also compared to SMOTE, showing 

the potential presented by generative adversarial networks in 

anomaly generation.  
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I. INTRODUCTION 

Since their first introduction in [1], generative adversarial 
networks (GANs) have been widely used in several diverse 
fields such as Image enhancement and drug discovery. The 
success of GANs in generating data originating from different 
distributions and types, shows the generality of the concept of 
GANs as well as their capability to learn nuances in the data 
distribution.  Via using this potential, one can generate data 
instances that belong to the original data distribution, while 
avoiding the generation of data instances that come from the 
mean of the data distribution and lack realistic details. 

With their learnt understanding of the data distribution, 
GANs’ generative power can be used to solve the problem of 
imbalance in the distribution, specifically the imbalance 
between anomaly and normal data instances. While this 

imbalance in inherently present in many datasets, its existence 
is problematic. If a model is trained on a dataset with 
imbalanced anomalies to normal data ratio, it can favor the 
majority class of normal data, due to the fact that it simply is 
not presented with enough data regarding the anomaly 
distribution. Via training GANs to solve this problem, the task 
of understanding the difference between the normal and 
anomalous data distributions can be given to the GANs. This 
enables the GANs to generate realistic anomalies, adding to the 
data in the anomaly distribution, allowing an additional model 
to benefit from more available data. 

This anomaly generation is beneficial if, firstly, the 
anomalies in a domain are rarely seen, and secondly, 
generating or recording anomalies in the real world in this 
domain is expensive. One domain that satisfies these 
requirements is the Host based intrusion detection. In this 
domain, the normal data is abundant compared to anomalous 
intrusion data, while creating these intrusions in a diverse 
manner is costly. This has caused the fact that few databases 
exist with recordings regarding host-based data of intrusions. 

In this work, we use a Cycle-GAN to learn the 
transformations between normal and anomalous host-based 
data. Having done so, we learn the transformation of normal 
data to anomalous data and use it to generate anomalies from 
the normal data. The generated anomalies are then added to the 
anomaly distribution and are shown to help detect unseen 
anomalies after training an artificial neural network (ANN). 
Therefore, the main goal of this work is to improve the 
performance of host-based intrusion detection systems through 
generating anomalies and gaining better understanding of the 
anomaly distribution using GANs. 

In the related literature, GANs have been used to generate 
anomalies in [2] and [3], yet this work, to the authors’ 
knowledge, is the first work to leverage the existence of a huge 
number of normal instances and transforming them into 
anomalies. 

II. BACKGROUND 

A. Host-Based Intrusion Detection Systems 

Host-based intrusion detection system (HIDS) is a 
defensive tool against intrusions after the cyber-attacks have 



 

 

passed through the network security defense measures, such as 
firewall or network intrusion detection systems, and are on a 
given host. The main purpose of having this system is internal 
monitoring through screening the information collected from a 
computer, node, or device to determine whether the host has 
been compromised. The intrusion can be detected by finding 
abnormal behavior in host-based information such as system 
calls, system logs, applications actions, and host traffic [4]. 
Specifically, the system calls are considered the most 
expensive source of audit data in Unix-based systems. They are 
the basic means for identification of computing processes at the 
higher level of computer hierarchy that can be executed by any 
process. Monitoring these processes helps find abnormalities.  

An HIDS usually consists of three sections; 1) Data source 
containing the recorded host-based audit data, 2) feature 
retrieval, a section responsible for abstraction of the data and 
extracting meaningful features from it, and 3) decision engine 
that determines if an instance is anomalous or not [5]. In this 
work, we focus on improving the performance of the decision 
engine by appending generated anomalies to the data source. 

B. Dataset in Use 

ADFA-LD first introduced in [6], is a host-based intrusion 
data source containing recorded system calls of compromised 
and non-compromised hosts. This dataset contains data 
regarding six new generation attacks such as user to root, brute 
force, exploits, and backdoors [7], which combine their 
anomalous behavior with normal behavior. The ADFA-LD 
dataset contains 5951 total instances, with 5205 normal 
instances and 746 anomalous instances. This creates an 
imbalanced dataset with a ratio of 1:7 for normal to anomalous 
data. As mentioned in the previous section, a feature retrieval 
function is needed to extract the features. In this work, the 
abstracted data from the approach integer data zero-watermark 
assisted system calls abstraction is acquired from [5]. 
Therefore, the feature extraction is not performed and the 
dataset in use is already in integer format.  

C. Cycle-GAN 

The modifications and alterations implemented on the 
structure of GANs have resulted in different types of GANs. 
While the generator in the original GAN has random noise as 
input, in Cycle-GAN created in [8], the input is an image from 
a given distribution, while output is an image belonging to 
another distribution. The structure of Cycle-GAN is shown in 
Fig. 1. 

Fig. 1. The Cycle-GAN structure (left) and samples of the transformation 

(right [9]). 

In this structure, the Cycle-GAN learns the transformation 
between instances from distribution X to Y (function G) and 
vice versa (function F). While Dx and Dy are responsible for the 
realism of the outcome of these transformations and reassure 
that the generated instance belongs to their respective 
distribution. The structure of the Cycle-GAN consists of two 
convolutions, several residual blocks, and two convolutions for 
the generator and 70 × 70 PatchGANs for the discriminator [8]. 

Cycle-GAN operates by transforming instances from a 
distribution to another and then transforming them back to the 
original distribution. With this approach if cycle-consistency is 
implemented, functions G and F learn to transform data from 
one distribution to another without losing considerable 
information in the transformation. Therefore, the overall 
structure of the data instance is saved, while changes occur in 
the values of the image. This can be seen in Fig. 1, where 
oranges are transformed into apples, with the overall structure 
being preserved, while defects in the orange are mapped to 
defects in the apple, and the skin and inside of the orange are 
mapped to their respective parts in the generated apple. 

Cycle-GAN is compatible with generation from ADFA-LD 
dataset in two manners: 1) the structure of the data is saved 
when transforming between the two data distributions that are 
governed by the same structure and feature abstraction, 2) the 
integer-based data is compatible with the nature of Cycle-GAN 
which works with images made of integers from 0 to 255. 

III. METHODOLOGY 

A. Anomaly Generation and Classification System 

The one-dimensional host-based intrusion data from the 
ADFA-LD dataset is first partitioned into training and test sets 
and transformed into two-dimensional images. To generate 
anomalies, we aim to transform normal data into anomalous 
data, therefore, a part of the normal instances in the training set 
is extracted and is named “Template Data”, which we use as 
references that undergo the normal to anomaly transformations. 
The anomaly generation and evaluation system is shown in 
Fig. 2. 

Fig. 2. Anomaly generation and classification system 

Firstly, the Cycle-GAN is trained using normal data as one 
distribution and anomalous data as the other. Having done so, 
Cycle-GAN learns to transform normal data to anomalous data. 
Then the template data is fed to the function G, resulting in the 
generation of synthetic anomalous data. This generated data is 
appended to the imbalanced training data, creating a balance 
between the normal and anomalous classes of the dataset. 
Subsequently, the balanced dataset is used to train a Multilayer 
Perceptron (MLP), and the classification is evaluated using the 
test set.  



    

 

B. Data Transformation and Partitioning 

In this work, the host-based intrusion data is transformed 
into images to leverage the capabilities of Cycle-GAN. The 
fact that the dataset of interest is integer-based facilitates the 
data transformation into images, by lowering the loss of 
quantization and normalization. The Cycle-GAN takes images 
of fixed sizes as input, thus an optimal size for the image 
should be defined that can contain most of the data, while 
preserve their fine-grained changes. The lengths of the data 
instances are various ranging from 75 to 4494, however, 89% 
of the data are shorter that 1024 integers. Therefore, all data is 
shorter than 1024 is extended to this length by adding the value 
of 255 and the data that are longer than 1024 are discarded. 
The transformation occurs by putting the 1024 integers into a 
32x32 image in a row-wise manner. The results of the 
transformation are seen in Fig. 3. 

Fig. 3. Transformed data into images, normal (right) and anomalous (left). 

The white sections visible in Fig. 3 denote the part of the 
data that was extended and replaced by 255 in order to fill the 
image. The patterns created in these images for normal and 
anomalous classes will enable the discrimination between the 
two classes.  

To begin the classification process, the dataset needs to be 
partitioned into training and test. 30% of the data is chosen as 
the test set and the remaining as the imbalanced training set. To 
avoid leakage of data to the generation and training process 
and to have fair classification, the test set is isolated from the 
rest of the process and is never involved until the evaluation 
process. The test data contains 446 normal instances and 82 
anomalous instances. 

The Cycle-GAN is trained using the imbalanced training 
set, learning to transform normal images to anomalous images 
and vice versa. However, the MLP is trained using a balanced 
training set, by combining the generated images with the 
imbalanced training set. The training data include 4150 
instances of normal data and 598 instances of anomalous data. 
In order to balance the dataset, 3552 anomaly data need to be 
generated. Therefore, 3552 normal data are extracted from the 
dataset randomly, and create the template data, which are 
transformed via Cycle-GAN. 

C. Learning Rate 

Since Cycle-GAN has parameters and structure optimized 
for handling images, the structure and hyper-parameters are not 
changed in this work. However, since the complexity and the 
data distribution of the images in this work differ from that of 

the Cycle-GAN, the learning rate is changed to aid the 
classification process. The change of the learning rate is shown 
in Fig. 4. 

Fig. 4. Learning rate through training steps. 

As seen in Fig. 4, the learning rate remains 2x10-6 for 
150,000 steps, after which it linearly decreases to 2x10-7 in the 
next 200,000 steps. This range is determined trial by and error, 
delivering results that are relatively fast, yet have good quality. 

D. Evaluation Method 

Having balanced the training dataset, an MLP is trained and 
evaluated. This MLP consists of two layers with the size of 100 
and 20, respectively. To evaluate the results of the 
classification the area under the ROC curve (AUC) is used, 
which is a prevalent metric used in similar works that focus on 
classifying imbalanced datasets.  

Furthermore, two additional MLPs are trained using 
imbalanced data and balanced data via Synthetic Minority 
Over-Sampling Technique (SMOTE). SMOTE serves as the 
most prevalent approach for minority generation, creating new 
synthetic data via iteratively over-sampling the minority group. 
In this work, SMOTE generates new anomalous data by over-
sampling the anomalies in the dataset, while our approach 
creates new data by understanding the difference and the 
transition between anomaly and normal data distributions. 

IV. RESULTS 

A. Results of Training the Cycle-GAN 

The implementation of the Cycle-GAN with TensorFlow 
backend was acquired from [9]. After changing the learning 
rate, the model was trained for 330,000 steps. The values of the 
loss function for F, G, Dx, and Dy were recorded every 10,000 
steps and are shown in Fig. 5. 

As it is visible in Fig. 5, the G function shows more 
volatility in training than the F function. The G function 
transforms the input to the anomaly distribution, which is a less 
populated distribution. Therefore, compared to the F function, 
this function is presented with less information and acts in a 
more volatile manner. The same case can be seen when 
comparing Dx and Dy, with Dx being more volatile when 
judging the realism of the generated images based from the 
fewer anomaly images. 



     

     

 

 

 

Fig. 5.  Values of the loss functions through training steps for the functions 

of; a) F, b) G, c) Dx, d) Dy. 

B. The Evolution of Generated Images 

The volatility in the loss functions seen in Fig. 1 proposes a 
challenge as to when to stop the training of the GAN. To 
overcome this challenge the model of the Cycle-GAN was 
saved every 10000 steps and is evaluated later. The saved 
models are exported into graphs and the template data, which 
consists of normal data, is fed to these graphs in order to 
generate synthetic anomalous data. The transformation that 
occurs on a normal image via each model is shown in Fig. 6. 

Fig. 6. The evolution of generated images in different steps; original image 
(upper left), 0 steps (upper right), 10,000 steps (lower left), 150,000 steps 

(lower right). 

As seen in Fig. 6, the model starts with no knowledge of 
the data distributions and generates the value of each pixel 
randomly. At 10,000 steps, the model has learnt the concept of 
preserving the white section of the image and is generating 
images that are close to gray scale, similar to the original data. 
At 150,000 steps the generated image contains a sharper border 
above the white section. Cycle-GAN layers contain 2-D 
convolutional filters, which use the surrounding area of the 
border line to reconstruct the original border line and maintain 
cycle-consistency. Therefore, information is stored around the 
border line to help the reconstruction and this border line is 
never perfect. After 60,000 steps, the generated images 
preserve their overall patterns with various changes in the pixel 
values.  

C. Evaluation Results 

After the data is generated with each individual graph, the 
MLP is trained using the original data combined with the 
generated data. The AUC is recorded for each model and is 
shown in Fig. 7. 

Fig. 7. AUC of different generation models created at different steps. 

A few models deliver relatively high AUC and a few 
models perform similar to the model at step 0, which generates 
random results, therefore, the volatility of the Cycle-GAN is 
still visible in the final results in Fig. 7. The model that created 
the best result is the one saved at 210,000 steps. 

The MLP is trained two more times, once using no 
generated data and once using SMOTE to balance the dataset 
instead of Cycle-GAN. The results are reflected in Table I. 

TABLE I.  COMPARISON OF CLASSIFICATION RESULTS 

Approach TP TN FP FN Recall F1 AUC 

Imbalanced Data 14 415 31 68 17.07 22.05 55.06 

SMOTE 67 250 196 15 81.71 38.84 68.89 

Cycle-GAN 66 277 169 16 80.49 41.64 71.30 

 

As it is visible form Table I, classification on imbalanced 
data results in a model that mostly predicts the input as normal, 
since normal is the majority class and the model is not given 
enough information to discriminate between the two classes. 



When comparing the approaches that have balanced datasets, 
our approach outperforms SMOTE with lower false positives 
and higher AUC. 

Our approach has room for improvement via using 1-D 
convolutional neural networks and customizing the structure of 
the neural network to be compatible with the dataset of interest. 
Despite the lack of these customizations, Cycle-GAN was able 
to deliver better results than SMOTE, which is a predominant 
method for balancing the data. This superiority originates from 
the fact that Cycle-GAN can learn different concepts in the 
data distributions and transforms the data in a way that it 
remains conceptually correct. These results show the capability 
of Cycle-GAN in anomaly generation. 

V. CONCLUSION 

This work, to the authors’ knowledge, is the first attempt to 
use Cycle-GAN to generate anomalous data via transforming 
the normal data. The abstracted ADFA-LD dataset, which 
contains data from host-based intrusions, is first transformed 
into images. Part of the images from the normal class are fed to 
the Cycle-GAN as template data and are transformed into 
anomalies. These synthetic anomalies were then combined 
with the original dataset and are fed to an MLP. The results 
show an improvement in the effectiveness of the classification 
results, increasing the AUC from 0.55 to 0.71, and increasing 
the percentage of detected unseen anomalies from 17.07% to 
80.49%. This approach was able to outperform SMOTE, 
despite being in its early stages of customization, showing the 

potential of generative adversarial networks in the anomaly 
generation domain.  
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