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Abstract—Global misbehavior detection is an important back-
end mechanism in Cooperative Intelligent Transport Systems (C–
ITS). It is based on the local misbehavior detection information
sent by Vehicle’s On–Board Units (OBUs) and by Road–Side
Units (RSUs) called Misbehavior Reports (MBRs) to the Mis-
behavior Authority (MA). By analyzing these reports, the MA
provides more accurate and robust misbehavior detection results.
Sybil attacks pose a significant threat to the C–ITS systems. Their
detection and identification may be inaccurate and confusing. In
this work, we propose a Machine Learning (ML) based solution
for the internal detection process of the MA. We show through
extensive simulation that our solution is able to precisely identify
the type of the Sybil attack and provide promising detection
accuracy results.

Keywords—Sybil Attack, Misbehavior Detection, Cooperative
Intelligent Transport Systems, Machine Learning, Cyber-Security

I. INTRODUCTION

Cooperative Intelligent Transport Systems (C–ITS) is a
mature technology that aims at improving road safety, traf-
fic efficiency and users comfort. Vehicle’s On–Board Units
(OBUs) and Road–Side Units (RSUs) (also referred to as
Intelligent Transport Systems (ITS) Stations (ITS–Ss)) peri-
odically broadcast Vehicle–to–Everything (V2X) messages to
advertise their geographical position, speed, heading and other
parameters to the neighboring ITS–Ss.

Cyber-security in V2X communications is ensured by the
use of a Public Key Infrastructure (PKI), as specified in the
European and the American standards. In C–ITS, the PKI is a
global entity responsible for the distribution and management
of the digital keys use by the vehicles to communicate.
Basically speaking, vehicles authenticate themselves to the
PKI and get in return a unique long-term digital certificate
called Enrolment Certificate (EC). ITS–Ss then use their EC
to request several short-term Authorization Tickets (ATs) from
the PKI. Thus ITS–Ss typically have one EC and several ATs,
also called pseudonym identities. Pseudonyms are frequently
changed by ITS–Ss to avoid tracking and guarantee drivers

privacy. ITS–Ss use their pseudonyms to digitally sign the
V2X messages they broadcast. The PKI prevents external
malicious entities from attacking or disrupting the system.
However, it does not prevent internal entities (i.e. ITS–Ss that
are registered at the PKI) from sending false information in
their V2X messages. Misbehavior detection is a promising
technology that enables detection of potentially misbehaving
ITS–Ss within the system by checking the V2X messages data.

The misbehavior detection process is performed at two
levels: local detection at the ITS–S level and global detection
at the central Misbehavior Authority (MA). Local detection
consists of performing plausibility and consistency checks on
the received V2X message data [1]. The results of these checks
are then analyzed by a set of misbehavior detection algorithms.
If an anomaly is detected, the ITS–S reports it by sending a
Misbehavior Report (MBR) [2] to the MA. Global detection
starts after the reception of these MBRs by the MA. The MA
is in charge of collecting the MBRs coming from the ITS–
Ss and deciding whether the reported ITS–Ss are actually
misbehaving or not (e.g. it may be possible that an ITS-S
unintentionally sends false information because its sensors are
faulty). This decision is achieved by analyzing the reports
using a set of algorithms (anomaly detection, deep learning).

In this work, we focus on Sybil attacks. A Sybil attack
takes place when an ITS–S takes advantage of its available
pool of pseudonyms and uses them simultaneously to disturb
the system: it periodically broadcasts V2X messages and signs
them with different pseudonyms. The pseudonyms used for the
Sybil attack are valid which complicates the MA detection.

In this paper, we propose a misbehavior detection process
at the MA, which is able to identify and detect both Sybil and
other types of attacks. It is based on advanced Machine Learn-
ing (ML) algorithms. In addition, we evaluate our solution by
integrating it in both European Telecommunications Standards
Institute (ETSI) and Institute of Electrical and Electronics
Engineers (IEEE) C–ITS standard architecture.

The remainder of the paper is organized as follows: Section
III details the Sybil attack and its variations. Section II978-1-7281-3885-5/19/$31.00 ©2019 IEEE



discusses the related works. Section IV presents the global
C-ITS system architecture. Section V details our proposed
software architecture for decision at the MA. Section VI
provides the simulation settings and parameters we used to
evaluate our proposal. Section VII presents and discuss the
obtained results. Finally, section VIII concludes this work and
gives some perspectives.

II. RELATED WORKS

Sybil attack was first introduced by Douceur in [3]. Due
to the important damages it may cause in C–ITS systems,
researchers have proposed several detection approaches.

Pouyan et al. [4] present three methods for local Sybil attack
detection. The resource testing method assumes that a radio
network entity can not send and receive on the same channel at
the same time. This detection method is not valid in vehicular
networks because attackers may have multiple channels to
send and receive messages. The Position verification method
assumes that a vehicle can be localized at only one position
at the same time. The encryption and authentication based
methods assume that using a PKI is enough to detect Sybil
attack. In our analysis, we consider that a legitimate entity
with valid key materials can perform a Sybil attack.

Hao et al. [5] propose a protocol that detects Sybil nodes
in a cooperative way by examining the consistency between
the vehicles positions and those of their neighbors. The idea
is based on detecting the sudden appearance of a vehicle or
of multiple vehicles as well as on evaluating the number of
neighbors. When a vehicle detects locally that a neighbor is
potentially malicious, it broadcasts a warning message to have
the confirmation of other neighbors that an attack is occurring.
When the number of vehicles that confirm that an attack is
occurring is greater than a threshold, the identified vehicle may
be quarantined for a certain period of time or reported to the
authority. We believe that cooperative detection systems are
not reliable because the attacker takes part of the community
and could distort the detection procedure. Moreover, it requires
an honest majority to work properly.

Ghaleb et al. [6] propose a local misbehavior detection
model based on artificial neural network. Some features are
used to decide if a vehicle is misbehaving or not. In our
opinion, local detection is not sufficient as it is based only
on captured information by the vehicle. A global system with
access to more misbehaviour reports is required to improve
the detection system.

Our analysis of the existing works show that most of the
proposed solutions for C–ITS focus on local Sybil attack
detection. We believe that a global detection is crucial and
still not studied well in the context of C–ITS. In our work,
we propose a complete and generic solution for the global
detection at the MA level considering multiple types of Sybil
attacks.

III. THE SYBIL ATTACK

Vehicles communicate using the IEEE 802.11p network,
also known as the ITS-G5 network. All vehicles periodically

broadcast V2X messages using the 5.9 GHZ frequency band.
Each message contains the vehicle’s pseudonym (a temporary
identity) and several kinematic information (position, velocity,
heading, etc..). The C–ITS PKI delivers to vehicles one long
term certificate and several short term certificates, called
pseudonym certificates. These certificates are used to sign the
V2X messages. Vehicles frequently change their pseudonym
to avoid tracking and protect their privacy. Each vehicle uses a
single pseudonym certificate for a certain time period to sign
its generated V2X message. To ensure the ability of vehicles to
continuously send V2X messages, it is necessary that several
valid pseudonyms are simultaneously available. The European
Commission recommends the use of a maximum pool of 100
valid pseudonym certificates [7]. When a ITS–S is low on
available pseudonyms, it sends requests to the PKI to refill its
pool with new certificates. Notice that vehicles should not use
more than one pseudonym certificate during a certain period of
time to sign their messages. However, a misbehaving vehicle
may intentionally use multiple valid pseudonym certificates at
the same time, which results in a Sybil attack.

Depending on the attackers objective, this attack may take
different forms. In this work, we classify it into 4 categories:

1) S1 Traffic Congestion Sybil: As shown in figure 1, the
attacker uses valid pseudonyms to simulate multiple ghost
vehicles. Vehicles within the communication range of the
malicious vehicle receive the fake messages and conclude
that a congestion occurs on the road. The attacker intelli-
gently calculates the kinematic data for the ghost vehicles
such that the fake messages have plausible and coherent
contents.

Fig. 1: S1: Traffic congestion Sybil

2) S2 Data replay Sybil: This attack consists on reporting
legitimate vehicle as malicious. The attacker chooses a
victim vehicle and creates messages containing positions
broadcasted by the victim vehicle. As shown in figure
2, the attacker sends at time t=1 a message containing
the same position (X1) as the victim vehicle. One of
the hardest challenge of the detection system is to know
which node is the real one (the victim) and which one
is the ghost one. In this case, there is a good probability
that the victim vehicle is reported as attacker.

Fig. 2: S2: Data replay Sybil



3) S3 Dos Random Sybil: As shown in figure 3, the attacker
creates messages with random data (e.g., the position is
not on the road). The attacker uses a different pseudonym
for every sent message. The motivation behind such
attack could be to overwhelm the misbehavior detection
algorithms of neighboring ITS–S.

Fig. 3: S3: Dos Random Sybil

4) S4 Dos Disruptive Sybil: This attack is a combination
between S3 and S2. As shown in figure 4, the attacker
uses a different pseudonym for each message but does not
fill them with random data. Instead, the transmitted data is
based on the ones received from the neighboring vehicles.
The difference between S4 and S2 is that S4 does not
follow one victim, the attacker is trying to disturb the
system with sudden appearance of vehicles. For example,
the attacker send at time t=1 a message containing a
position (pos=X1), and at time t=2 a message containing
another position (pos=X2) which is the position of an-
other vehicle. The motivation of the attacker could be the
degradation of the safety system quality thus decreasing
the reliability of the exchanged information.

Fig. 4: S4: Dos disruptive Sybil

IV. PROPOSED SYSTEM MODEL

A. The misbehavior detection process

We propose a misbehavior detection process that consists
of the following operations (Figure 5):

1) The misbehavior detection: OBUs and RSUs locally
detect a potential misbehaving entity. The ITS–S will
keep checking the plausibility and the consistency of
several mobility information in the V2X message until
one check fails the tests. These local detection checks
are detailed in section IV-B.

2) The misbehavior reporting: when an ITS–S detects a
malicious behavior, it sends a MBR to alert the MA about
the existence of a malicious entity in the network. The
MA is a central authority located in the cloud, which is
in charge of receiving and processing the MBRs. Notice

Fig. 5: System model

that the reporting protocol and format are specified in our
previous work [2].

3) The misbehavior investigation: the MA processes the
received MBRs in order to detect the type of the re-
ported misbehavior. The global detection of Sybil at-
tack requires linking between several pseudonyms to
identify the original attacker generator. The American
architecture integrates a Linkage Authority (LA) entity
whose function is to provide the results of linking sev-
eral pseudonyms based on a straightforward association
between them. However, a similar function does not exist
in the European standards. This is why, without prior
knowledge on pseudonyms association, we specified an
LA-like function based on ML technique to link several
pseudonyms. This operation is detailed in section V.

B. Local Detection Checks

The misbehavior detection process is largely based on
checks performed by the ITS–Ss. Therefore, these checks
should contain relevant and sufficient information for the
detection process. In this work, we aggregated and imple-
mented the checks used in multiple local detection works [8].
However, the implemented checks does not return a binary
value, instead a plausibility factor is calculated as described in
our previous work [9]. For more details on the implementation
of the detectors, all the implementations are open-source on
github [10]. Here is a summary of all the selected local
detectors:

• Range plausibility: The position of the sending ITS–S is
inside of the ITS–S maximum radio reception range.

• Position plausibility: The position of the sending ITS–S
is at a plausible place (e.g. on a road, without overlaps



of physical obstacles, etc.).
• Speed plausibility: The speed advertised by the sending

ITS–S is less than a predefined maximum threshold.
• Position consistency: The distance separating two con-

secutive beacons from the same ITS–S is less than a
predefined maximum threshold.

• Speed consistency: The speed difference between two
consecutive beacons from the same ITS–S is a plausible
acceleration or deceleration.

• Position speed consistency: The distance separating two
consecutive beacons from the same ITS–S is consistent
with the advertised speed.

• Beacon frequency: The time separating two consecutive
beacons from the same ITS–S is compliant with the
standards.

• Position heading consistency: The position angle sepa-
rating two consecutive beacons from the same ITS–S is
consistent with the advertised heading.

• Intersection check: The beacon from two different ITS–
Ss must not have intersecting positions.

• Sudden appearance: The beacon of a suddenly appearing
ITS–S within a certain close range must not have a preset
positive speed.

• Kalman Filter Tracking: The beacon information of the
ITS–S is tracked with a Kalman filter [11]. The advertised
beacon information must not diverge from the predicted
information as proposed in [12]. The calculation imple-
mentation is open source [10].

V. PROPOSED MISBEHAVIOUR AUTHORITY
INVESTIGATION PROCESS

We propose a MA system architecture (see figure 6). The
proposed architecture consists of three main phases: General
Misbehavior Type Detection, Pseudonym Linkage and Sybil
Type Detection. The MA system takes an MBR as input
and returns the predicted attack type as output. In the first
phase we start by detecting misbehavior types related to one
single pseudonym identity. This detection is effective against
misbehavior types that are non-Sybil. However, this detection
fails against attacks that makes use of multiple pseudonyms.
To address this problem we propose the pseudonym linking
schemes of phase two. In the second phase we attempt to
link the pseudonyms related to the same physical reported
ITS–S. If no link is found the process is complete and the
misbehavior type is returned. If a link is found then a Sybil
attack is suspected and the linked pseudonyms are candidates
for Sybil attack type detection in phase three. In this third
phase the linked pseudonyms are treated as one and the
evidences collected from all the linked pseudonyms is used
in a specific Sybil type detection process. The predicted Sybil
misbehavior type is returned and the process is complete.

A. Phase 1: General Misbehavior Type Detection

The goal of this phase is to detect as accurately as possible
the type of misbehavior related to one pseudonym. This is
accomplished using the following steps:

Fig. 6: Global Detection System Architecture

1) Pre-processing :
• Database Storage: We start by adding the reports to a

spatial database. This enable us to do fast and efficient
geographic queries.

• Filter Similarities: We aggregate similar data from
multiple reports (e.g. several ITS–S detecting the same
implausibility and sending the same evidences). We
found this filtering to significantly improves the de-
tection speed and quality.

• Feature Generation: We extract key information from
the collected evidence in our database. These informa-
tion, also called features, are then used by the ML-
based detection algorithm to determine the type of
misbehavior. The quality of the extracted features are
crucial to the robustness and accuracy of the detection.
We evaluated different sets of features through cross
validation on our relatively large data-set and verified
a set of 30 features:

– The local detection checks done on V2X messages
described in section IV-B.



– The Position, Speed, Accel, Heading and Time
of the last beacon.

– The ∆Position, ∆Speed, ∆Accel, ∆Heading
and ∆Time between the last 2 beacons.

– The ∆Time between the last 2 received reports.
– The number of time this evidence has been received

(e.g. the number of filtered reports data).
2) Prediction:

• Autoencoder: We first compress the previously created
features using an autoencoder. Although this step may
not be important for the detection of a non-Sybil attack,
the result is useful for the pseudonym linkage Phase.

• Recurrent Neural Network (RNN): We provide the
previously calculated and compressed features by the
auto-encoder to an RNN. The choice of an RNN
was made due to the temporal relation between the
received reports. We tested different simple models
and determined that the Long Short-Term Memory
(LSTM) has a good performance in our use case.
Hence, for our testing purposes we use an LSTM.
However, more rigorous experimenting is needed to
test different models, thus more complex and elaborate
models could be proposed in the future.

B. Phase 2: Pseudonym Linking

The goal in this phase is to link the pseudonyms coming
from the same vehicle as accurately as possible. However,
in order to be compliant with both US and European C-ITS
Systems, we explore two options for pseudonym linking.

1) Pre Processing:
• Space-Time selection: In this step we use the spatial

database to recall all the reports within a range and
time of the reporter node. We propose doing this for
processing efficiency reason, e.g. it prevents having to
test all the previously received pseudonyms and limits
the detection to the target region.

• Prediction Filter: We use the output prediction of the
RNN to filter reports with diverging predictions. If
the RNN detects the same type of attack for two
different pseudonyms in the same region and type, we
consider them candidates for linking test. Otherwise,
the pseudonyms are discarded.

• Autoencoder Distance Filter: We use the output pre-
diction of the auto-encoder to filter reports with di-
verging compressed features. We calculate distances
between the compressed features of the recalled and
current pseudonym. We exclude the pseudonyms with
compressed features far from the one.

• Linkage Features Generation: Similarly to the first
feature generation step, we need to extract the relevant
information form the selected pair of pseudonyms.
These features are used by the ML algorithm to de-
termine if the reported pseudonyms are linked or not.
Therefore, from each pair of reports we extract and
similarly validate the following set of features:

– The difference between all the previously calcu-
lated features of the two latest received report of
each pseudonym.

– The euclidean distances between the reporter ITS–
S position and broadcasted position of the reported
pseudonym for both selected pseudonyms.

– The euclidean distances between the reporter ITS–
S position of one pseudonym and the broadcasted
position of the other reported pseudonym.

– The absolute difference between the two latest
RNN predictions of the selected pseudonyms.

2) Linking:
• Linkage Authority (Option 1): The US architecture

supports a LA. This enables us to do straightforward
linking between the selected pseudonyms. No ML-
based prediction is needed.

• ML-based linking (Option 2): The European architec-
ture lacks a LA. To cope with this issue we propose
using a ML-based solution. The goal of this solution is
to determine, using the previously calculated features,
if two reported pseudonyms are generated by the same
physical ITS–S. For testing purposes we use an Multi-
Layer Perceptron (MLP), which is the classical type of
neural networks. However, more rigorous experiment-
ing is needed to propose more complex solutions.

C. Phase 3: Sybil Type Detection
This algorithm activates if a link is found in the previous

phase. The goal is to detect the type of Sybil attack related to
the number of linked pseudonyms in the previous phase.

1) Sybil Algorithm Pre-Processing:
• Merge Multiple Linked Pseudonyms: In this step we

prepare a new database entry where we merge the
evidence data of the multiple linked pseudonyms.

• Filter Similarities: Similarly to the previous filter, we
aggregate similar data from the new database entry.
This also improves the prediction performance.

• Sybil Features Generation: We extract from the new
and filtered database entry the key detection informa-
tion. These features are the indications used by the ML
algorithm to determine the type of Sybil attack. We
create the same features used by the general algorithm
described in the first phase phase. Additionally, we add
two specific feature to the Sybil type detection:
– The number of linked pseudonyms.
– The number of reports in the new database entry.

2) Prediction:
• Recurrent Neural Network: Similarly to the general

prediction algorithm, we provide the previously calcu-
lated features to an RNN. We also use the LSTM for
testing purposes. The Model and the ML algorithms
and hyper-parameters should be investigated further.

Finally the output of the MA algorithm will be the Sybil
Attack Type if a pseudonym link is found and the General
Misbehavior Type otherwise.



VI. SIMULATION SETTINGS AND SCENARIOS

In order to evaluate our proposed solution, we use the F2MD
framework [13]. F2MD is a VEINS extention, VEINS [14]
is an open source framework for vehicular network simula-
tions. VEINS is based on OMNeT++ and SUMO, a network
simulator and road traffic simulator respectively. We use the
Luxembourg SUMO Traffic (LuST) scenario for the vehicle
traces [15]. LuST is a synthetic data set generated with SUMO
and validated with real data, provided by the vehicular lab of
the university of Luxembourg [16]. We use different sections
of the scenario for the training part and testing part of our
ML algorithms (Figure 7). The train scenario is 6.51km2

and of peak density of 104.5V ehicle/km2. The test scenario
is 1.61km2 and of peak density of 67.4V ehicle/km2. The
topology of the scenarios consists of a downtown area, with
residential roads and main arterial roads linked to highways.
In total, the train scenario contains 82, 146 vehicles with
301, 082, 858 exchanged V2X messages and 5, 209, 072 trans-
mitted MBRs. The test scenario contains 24, 663 vehicles
with 17, 051, 860 exchanged V2X messages and 294, 160
transmitted MBRs. Both scenarios have an attacker rate of
5%. For further technical details, the source code of our
VEINS extension along with all the configuration details of
the simulated scenario are published on github [10].

(a) Test Network (b) Train Network

(c) Test Vehicle Density (d) Train Vehicle Density

Fig. 7: Simulation Scenario: Part of Luxembourg city

In both scenarios we implement the attacks described in
section III. Additionally, we implement a set of other types
of misbehavior in order to increase the complexity of the
classification. We extracted from the literature a set of possible
misbehavior types [17]: (1) Fixed Position Offset: the vehicle
broadcasts its real position with a fixed offset, (2) Random
Position Offset: the vehicle broadcasts its real position with
a random offset limited to a max value, (3) Fixed Speed:

the vehicle broadcasts the same speed each beacon, (4) Fixed
Speed Offset: the vehicle broadcasts its real speed with a fixed
offset, (5) Random Speed Offset: the vehicle broadcasts its real
speed with a random offset limited to a max value.

VII. RESULTS AND ANALYSIS

Fig. 8: Detection Accuracy By Type of Linkage

Figure 8 shows the results of detection accuracy of the Sybil
attacks by linkage type. The detection accuracy is the ratio
of the true classified reported vehicles over all the reported
vehicles. The first result we notice is that the total detection
for Sybil attacks types using a LA is at 94.97%, whereas
it’s only at 88.83% using the Linkage AI model. This is an
expected result as the AI prediction is uncertain compared to
the absolute information provided by the LA. We also notice
that the detection accuracy difference between the two linkage
types is proportional to the general detection accuracy for each
type of Sybil attack. This is due to the prediction output of
the first phase. Attacks that are difficult to classify, are less
likely to be linked by the AI Linkage. Especially since the
classification output of the first phase is used as an input
feature for the AI model. This problem however is not present
using the LA.

TABLE I: AI Linkage Evaluation Results

Precision Recall Accuracy Fallout Specificity F1Score

95,6% 89,6% 96,4% 1,3% 98.7% 92.5%

Table I shows the Evaluation Results of the AI Linkage
Mechanism. The evaluation metrics are detailed in our pre-
vious publication [9]. As this system is replacing the LA, a
high confidence in a perceived linkage is needed before it is
considered. This shows clearly in the results as the Precision
is significantly higher than the Recall. Consequently, the lower
Recall (with respect to the LA) results in the lower detection
accuracy perceived in Figure 8.

Figure 9 shows the detection accuracy of the attacks by the
number of the received reports. In other words, it shows the
number of reports needed for an accurate detection.

First, we notice that the detection accuracy for the Data
Replay Sybil and Dos Disruptive Sybil attacks require more
reports to converge than for the Traffic Congestion Sybil and



Fig. 9: Detection Accuracy by Number of Received Reports

Dos Random Sybil. The reasoning for that is both the former
attacks cause the local vehicles to simultaneously report other
genuine vehicles alongside the attacker. These false positive
reports adds a significant amount of noise to the data. There-
fore, more data is required to sort the genuine pseudonyms
from the attacker pseudonyms. We also notice that the Data
Replay Sybil attack requires more information than the Dos
Disruptive Sybil to converge. This is a consequence of the
former intelligently generating a realistic path instead of just
replaying data incoherently.

Additionally, we notice that Traffic Congestion Sybil has a
relatively low detection rate with one report. However, even
though the attacker tries to intelligently remain within the
plausible range, the detection then quickly converges. This is
due to the lack of the simultaneously falsely reported genuine
vehicles. The information is clean from false positives thus
multiple reports are analyzed much more efficiently.

Finally, the Dos Random Sybil attack does not cause false
positives neither is it within the plausible ranges. As a result
it is easily detected even with evidence from only one report.

VIII. CONCLUSION AND FUTURE WORK

Sybil attacks are a dangerous threat that can significantly
deteriorate the C–ITS system quality and lead to catastrophic
road accidents. MisBehavior Detection is the proposed solu-
tion against those types of attacks. The current MisBehavior
Detection architecture consists of a local component done on
every vehicle and a global component in the cloud. Local mis-
behavior detection is well treated in the literature. However,
the global component is not as mature.

In this paper we propose a global misbehavior detection
mechanism for C–ITS. More precisely, we proposed a MA
architecture specifically robust against Sybil attacks. This is
achieved using machine learning analysis on the Misbehavior
Report and pseudonym linking on the global level. We propose
an implicit Machine Learning (ML) based linking or direct
linking using the IEEE Linkage Authority. We show through

extensive simulations that overall detection rate for various
types of Sybil attacks is relatively high.

Future works, includes plans of deployment and testing of
variants of this solution on the C–ITS field tests in France.
Currently, we are still developing and refining and the different
components of the proposed architecture.
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