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like GPUs, Bluebox 2.0, S32V234 MCU, etc to increase the

speed of the training process and deploy the models for various

computer vision applications. But increasing the depth and

complexity of a model increases the size and computation cost

making it less efficient for hardware deployment, especially in

resource- constrained mobile and embedded platforms. In real-

time applications such as image classification [8], captioning

[9], object detection [10,23,33] and semantic segmentation

[34] in autonomous driving, the inference time and accuracy

are very important factors to one's safety. So, it becomes

necessary to have a model which is very accurate, requires

less memory complexity and has less computation time for

its utilization in real-time scenarios. To solve the above-

mentioned problem, a lighter model called MobileNet [6] with

a fewer number of parameters, and less computation time

was invented. MobileNet does not use standard convolutions,

instead, it uses Depthwise separable convolutions [6, 7] which

requires only one-eighth of the computation cost. To solve the

above-mentioned problem, a lighter model called MobileNet

[6] with lesser number of parameters, and less computation

time was invented. MobileNet does not use standard convo-

lutions, instead it uses Depthwise separable convolutions [6,

7] which requires only one-eighth of the computation cost.

MobileNet has got two hyperparameters: width multiplier and

resolution multiplier [6]. When we use them to reduce the size

of the network, the accuracy drops by a good margin. In this

paper, we propose a new MobileNet architecture called the

Thin MobileNet in which we have increased the accuracy and

simultaneously reduced the model size, the computation time,

and the overfitting problem in the baseline model. We also

have two other models which perform better than the baseline

model. The paper is divided into five sections: Section I. is

an introduction to the work which we have done. Section

II. is a discussion about the existing baseline MobileNet

model. Section III. describes the modifications which we have

introduced on the existing model. Section IV. lists the hardware

and software requirements. Section V. shows the experimental

results obtained after training the baseline MobileNet v1

model and the modified architectures on the CIFAR-10 dataset.

Section VI. concludes the paper by discussing the advantages

of the proposed Thin MobileNet model, further improvements

which can be made on it, and its application.

Abstract—In the field of computer, mobile and embedded 
vision Convolutional Neural Networks (CNNs) are deep learning 
models which play a significant role in object detection and 
recognition. MobileNet is one such efficient, light-weighted model 
for this purpose, but there are many constraints or challenges 
for the hardware deployment of such architectures into resource-
constrained micro-controller units due to limited memory, energy 
and power. Also, the overall accuracy of the model generally 
decreases when the size and the total number of parameters are 
reduced by any method such as pruning or deep compression. 
The paper proposes three hybrid MobileNet architectures which 
has improved accuracy along-with reduced size, lesser number of 
layers, lower average computation time and very less overfitting 
as compared to the baseline MobileNet v1. The reason behind 
developing these models is to have a variant of the existing 
MobileNet model which will be easily deployable in memory 
constrained MCUs. We name the model having the smallest 
size (9.9 MB) as Thin MobileNet. We achieve an increase in 
accuracy by replacing the standard non-linear activation function 
ReLU with Drop Activation and introducing Random erasing 
regularization technique in place of drop out. The model size is 
reduced by using Separable Convolutions instead of the Depth-
wise separable convolutions used in the baseline MobileNet. Later 
on, we make our model shallow by eliminating a few unnecessary 
layers without a drop in the accuracy. The experimental results 
are based on training the model on CIFAR-10 dataset.

Index Terms—Convolutional Neural Network (CNN), MobileNet, 
Depthwise Separable Convolutions, Separable Convolutions, Drop 
Activation, Random Erasing, Keras, Tensorflow, CIFAR-10, Blue-
box 2.0.

I. INTRODUCTION

Deep Convolutional neural networks gained popularity

when AlexNet [1] won the ImageNet Challenge in the year

2012. Since then, the domain of deep learning expanded

exponentially. Many standard algorithms for computer vision

like Canny's algorithm or HOG have been replaced by deep

learning models like SqueezeNet [2], SqueezeNext [3], ResNet

[4], Inception [5], etc. There also had been significant devel-

opments in new optimization techniques, non-linear activation

functions, training methods, etc. In order to get higher accu-

racies, the models are made deeper and complex. The advent

of deeper and complicated models [1, 2, 3, 4, 6] has led to

the development of a wide number of hardware architectures
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TABLE I
MOBILENET V1 TRAINED ON CIFAR-10 DATASET FOR 200 EPOCHS

Model name MobileNet v1 baseline
Accuracy 84.30%
Model size 39.1 MB
Computation time per epoch 31s
Total number of parameters 3,239,114

II. PREVIOUS WORK

The unique characteristic of MobileNet is that it uses

depth- wise separable convolutions which can be thought of

standard convolutions split into depthwise convolution and 1

by 1 pointwise convolution. In depthwise convolution, each

input channel is filtered separately. This is followed by 1

by 1 pointwise convolution which linearly combines all the

depthwise convolution outputs. The drastic reduction in model

size and computation cost is the result of this factorization. The

computation cost is reduced by about 8 to 9 times as compared

to the usage of standard convolutions. There are two hyper-

parameters [6] present in the network: 1. Width multiplier and

2. Resolution multiplier. The function of the width multiplier

is to slim the network at each layer uniformly by reducing the

number of filters, while the resolution multiplier can be used

to decrease the image resolution. We can obtain some smaller

models by playing with different values of the width multiplier

and resolution multiplier, but it always leads to a reduction

in the overall accuracy. Both Batch normalization [11] and

non–linear activation function ReLU [26] have been used after

each convolution layer in the model. Downsampling is done

with the use of strided convolutions in the first convolution

as well as in the depthwise convolution layers. These are

followed by an Average Pooling layer, Fully Connected layer

and Softmax classifier. In total, there are 28 layers in the base-

line MobileNet, if the Depthwise convolution and Pointwise

convolution layers are considered separately. Fig. 1 shows a

schematic diagram of the MobileNet v1 baseline architecture

with all the layers. TABLE I depicts the accuracy, the model

size, computation time per epoch and the total number of

parameters of the baseline MobileNet architecture trained on

the CIFAR-10 dataset.

Fig. 1. MobileNet v1 baseline model [6]

III. THE PROPOSED MODIFICATONS

In this part, we introduce some modifications like using

Separable Convolutions instead of Depthwise Separable Con-

volution to reduce the size of the network. Also, Drop Activa-

tion and Random Erasing methods are introduced to improve

the overall performance of the model. After introducing these

modifications, we make the MobileNet shallower by eliminat-

ing some layers from the network to reduce the number of

parameters and computation overhead without compromising

on the accuracy.

A. Modification 1 - MobileNet architecture with Separable

Convolutions [7] instead of Depthwise Separable convolu-

tions: A depthwise separable convolution is implemented

by first performing channel-wise convolution (filtering each

input channel separately) and then linearly integrating those

outputs with the help of pointwise convolutions. In the baseline

model, the depthwise convolution layers and the pointwise

convolution layers are defined separately. In our model we

use separable convolutions [7] instead of depthwise separable

convolutions which combines the depthwise layer and the

pointwise layer into one layer and there is no need to define

them separately. We have used the Keras framework in which

Separable Convolution 2D is defined. Here, the pointwise

initializer, pointwise regularizer and pointwise constraint for

the pointwise convolution are defined inside the same init()

function as the depthwise initializer, regularizer and con-

straints. This reduces the network to 14 layers, keeping the

basic functionality of the depthwise separable convolutions

intact, but does not do much in increasing the accuracy of

the network. The model size becomes 26.9 MB (12.2 MB

less than the baseline) and the total number of parameters

becomes 2,158,826. Fig 2. shows the difference between the

core layers of the original network and the modified network.

The computation time per epoch is now reduced to 21s.

Fig. 2. Comparison between Depthwise separable convolutons and Separable
convolutions- In Depthwise separable convolutons, the DW and PW convolu-
tions are defined in separate layers that is Layer 1 and Layer 2 respectively.
Separable convolutions consists of DW and PW convolutions integrated in a
single layer (Layer 1).



B. Modification 2 - MobileNet architecture with Drop-

Activation layers instead of ReLU : Regularization [22, 31,

32] has been an important part of Deep learning networks.

Sometimes, regularizations individually work quite well but

when they are combined, they do not enhance the overall

performance of the network. For example, if we are using

Batch normalization and Dropout [20, 28, 29] in our model,

the performance drops as Batch normalization requires the

statistical variance should be same in both training and testing

scenarios. Dropout changes the variance of the layers output

when the model is in testing phase after its training phase.

To make our model more robust, accurate and compatible

to other regularization techniques, the non-linear activation

function ReLU is replaced by Drop-Activation [18] layers.

The non-linear function is randomly deactivated and activated

during training i.e. randomness is introduced into the activation

function. The nonlinearity in the activation function is kept

with a probability P and dropped with a probability of (1-P).

Here, the non-linear activation function considered is ReLU

and the way of applying ReLU to the network is modified by

using Drop-Activation layer. Suppose, f(x) is the non-linear

operator. If x is the input and if the activation is ReLU then,

f(x)=0, when x≤0 and f(x)=x, when, x≥0.

Fig. 3 illustrates that if the input is negative, then in case of

standard ReLU, the output is zero (the graph does not go to the

third quadrant). Fig. 4 illustrates that in case of drop-activation,

suppose if the input is negative having the probability P=0.75,

the output is zero as in normal ReLU, but the identity function

I is also used with a probability of 0.25. That means, the

graph may go towards the third quadrant with a probability

of 0.25. Thus, we switch between standard ReLU (75%) and

Identity mapping function (25%). The value of drop-activation

probability P should be somewhere in between 0 and 1, since

P=1 means all the non-linearities have been kept and P=0

means all the non-linearities have been dropped.

In the testing phase, we average the realizations of P and

get a deterministic non-linear function as a result. We use this

function for testing. Mathematically speaking, we calculate the

expectation of the equation of the standard non-linear function

we are using during training, for example, ReLU in this case

and get Leaky ReLU [30] with slope (1-P) as our deterministic

non-linear function for the testing phase.

The advantages are that, Drop-activation technique increases

the accuracy of the model to 85.14% and reduces the over-

fitting problem present in the baseline architecture. The dif-

ference between the training and testing accuracy is only 0.2

now. It is also compatible with other training methods like

Batch normalization and regularization techniques like data

augmentation. Fig. 5 shows that all the Separable convolu-

tion layers are followed by Batch normalization and Drop-

Activation layers. TABLE II depicts the output shape produced

after each layer and the number of parameters involved in each

layer.

C. Modification 3- Use of Random erasing in the network:

Random erasing [19] is a kind of data augmentation [21, 27]

method where we select rectangular regions in an image I

Fig. 3. Graph of Standard ReLU function [18]

Fig. 4. Graph of Drop-Activation function [18]

in a mini-batch randomly, and erase the pixels of that region

and substitutes it with random values. It enhances the ability

of generalization of a convolutional neural network. When

some regions of an object in an image are occluded, a CNN

model can be unsuccessful in recognizing the object from its

global structure due to poor generalization power. To curb

this problem, Random erasing [19] technique was established.

Random erasing has the following input parameter values

(base setting) [19] in our model:

1. Probability of erasing p = 0.5.

2. Maximum erasing area ratio Sh = 0.4.

3. Minimum erasing area ratio Sl = 0.02.

4. Erasing aspect area ratio re = 0.3.

5. Erasing aspect ratio range = [0.3,3.33].

The Erasing area ratio is equal to Se/S, where S is the area

of the original image and Se is the erased area. It helps us

to further enhance the accuracy to 85.21% and to reduce the

overfitting problem in our model. Now, the difference between

the validation loss and the training loss is roughly 0.1 which

is an acceptable value in any CNN object recognition model.

There is a little increase in computation time per epoch which

is currently 23s but still, it is much less than that of the baseline

architecture which has this value as 31s.

D. Modification 4- Eliminating unnecessary layers: We can

make our architecture shallower by eliminating some layers

which are repetitive [6]. The five layers with output shape

(2,2,512) that is layers, 9 to 13 as illustrated in TABLE II ,are

eliminated as they contribute about 41% of the total number

Fig. 5. Modified blocks containing Separable convolutions with Batch
normalization and Drop-Activation



TABLE II
MODIFIED NETWORK ARCHITECTURE

Layer / Stride Output Shape Parameter
Input layer 32, 32, 3 0
Conv2d/s2 16, 16, 32 864
Separable conv2d/s1 16, 16, 32 1312
Separable conv2d/s2 8, 8, 64 2336
Separable conv2d/s1 8, 8, 128 8768
Separable conv2d/s2 4, 4, 128 17536
Separable conv2d/s1 4, 4, 256 33920
Separable conv2d /s2 2, 2, 256 67840
Separable conv2d /s1 2, 2, 512 133376
Separable conv2d /s1 2, 2, 512 133376
Separable conv2d /s1 2, 2, 512 266752
Separable conv2d /s1 2, 2, 512 266752
Separable conv2d /s1 2, 2, 512 266752
Separable conv2d/s2 1, 1, 512 266752
Separable conv2d /s1 1, 1, 1024 528896
Global average pool/s1 1, 1, 1024 0
FC and Softmax/s1 1,1,10 10250

of parameters. This drastically reduces the model size to 9.9

MB without a decrease in the accuracy.

IV. HARDWARE AND SOFTWARE REQUIREMENTS

(a) Python IDE- Spyder v3.6

(b) Anaconda Navigator 2.0

(c) Open-source API – Keras v2.2.0

(d) Backend framework – Tensorflow-gpu v1.11.0 [12]

(e) Livelossplot package from PyPI

(f) Intel i9 9th generation processor (32GB RAM)

(g) NVIDIA Geforce RTX 1080Ti GPU

We have used the CIFAR-10 dataset for our experiments. It

contains 6000 images among which 5000 are training images

and the remaining 1000 are testing images. There are ten

exclusive classes of images in this dataset.

V. EXPERIMENTAL RESULTS

All the models have been trained from scratch using the

CIFAR-10 dataset without using transfer learning technique.

The parameters of each model are saved and loaded from a

checkpoint file. Fig. 6 shows the plot of accuracy when the

MobileNet baseline model is trained. We get an accuracy of

84.30%. We have trained the models with a batch-size of 32

and steps-per-epoch of 1563 for 200 epochs on CIFAR-10

dataset.The optimizer used is Nadam [13, 14] or Nesterov

Adam. Nadam is an efficient optimization technique which

combines Adam [14], RMSProp [15], and Nesterov momen-

tum [16, 17]. Nadam performs better than SGD [24] and

Momentum [25] as it does not overshoot suddenly around the

minima.

Model 1: Modified MobileNet architecture after using Sep-

arable Convolutions, Drop-Activation and Random Erasing:

This model is obtained as a result of using Separable Con-

volutions instead of Depthwise separable convolutions, Drop-

Activation instead of ReLU and Random Erasing as a regu-

larization technique i.e. introducing Modification 1,2 and 3 as

mentioned above in section 3. The best accuracy is obtained

when we set the Drop-Activation probability P = 0.75, with no

Fig. 6. MobileNet v1 baseline accuracy

TABLE III
THIN MOBILENET ARCHITECTURE

Layer / Stride Output Shape Parameter
Input layer 32, 32, 3 0
Conv2d/s2 16, 16, 32 864
Separable conv2d/s1 16, 16, 32 1312
Separable conv2d/s2 8, 8, 64 2336
Separable conv2d/s1 8, 8, 128 8768
Separable conv2d/s2 4, 4, 128 17536
Separable conv2d/s1 4, 4, 256 33920
Separable conv2d /s2 2, 2, 256 67840
Separable conv2d/s2 1, 1, 512 133376
Separable conv2d /s1 1, 1, 1024 528896
Global average pool/s1 1, 1, 1024 0
FC and Softmax/s1 1,1,10 10250

changes in the base setting of the Random erasing parameters.

Fig. 7 shows the plot of accuracy when the above modifications

are introduced.

TABLE III shows the features of the modified network.

This network has improved accuracy, reduced model size, less

computation time per epoch and fewer parameters as compared

to the MobileNet v1 baseline model. The overfitting is reduced

to a large extent, in this case.

Model 2: Modified MobileNet architecture using Drop-

Activation and Random Erasing with Depthwise separable

convolution: This model is obtained as a result of using

Drop-Activation (P = 0.75) instead of ReLU and Random

Erasing as in the case of Model 1 without the use of Separa-

ble convolution that is we preserve the Depthwise separable

convolutions from the baseline architecture and only introduce

Modification 2 and 3. modifications are introduced. This model

is obtained as a result of using Drop-Activation (P = 0.75)

instead of ReLU and Random Erasing as in the case of

Model 1 without the use of Separable convolution that is

we preserve the Depthwise separable convolutions from the

baseline architecture and only introduce Modification 2 and 3.

Fig. 8 shows the plot of accuracy for this model. The accuracy

increases to 86.42%, while the computation time per epoch

and the model size remains almost the same as the MobileNet

baseline architecture. The overfitting is a bit more as compared

to the Model 1 but it is much less than the baseline model.



Fig. 7. Model 1 accuracy plot - Modified MobileNet architecture after using
Separable Convolutions, Drop-Activation and Random Erasing

TABLE IV
MODEL 3-THIN MOBILENET FEATURES

Accuracy 85.61%
Model size 9.9 MB
Computation time per epoch 14s
Total no. of parameters 8,14,826

Model 3: Thin MobileNet architecture using Separable

Convolutions, Drop-Activation and Random Erasing: Modi-

fication 4 that is eliminating some repetitive layers (Layers 9

to 13) is introduced along-with the other three modifications

into the network to get a shallower version of the MobileNet.

Fig. 9 shows the plot of accuracy after introducing these

modifications.Fig. 10 shows the building blocks of the Thin

MobileNet model. TABLE IV shows the output shape and

the number of parameters linked with each layer of the

model and TABLE V shows its features. The accuracy of the

model improves with a drastic reduction in the model size,

number of parameters and the computation time per epoch.

The overfitting problem is almost negligible here. This model

is suitable for deployment into resource-constrained processors

due to its lightness and less computation overhead.

Fig. 8. Model 2 accuracy plot - Modified MobileNet architecture using Drop-
Activation and Random Erasing with Depthwise separable convolution

Fig. 9. Model 3 accuracy plot - Thin MobileNet

Fig. 10. Thin MobileNet architecture

VI. CONCLUSION

In this paper, we propose an enhanced version of the

MobileNet called the Thin MobileNet. We have introduced

four modifications to the existing MobileNet baseline model.

This new CNN architecture is thinner, more accurate and

faster than the MobileNet model and some other popular CNN

architectures. Through our experiment, we have increased the

accuracy and reduced the size of the network considerably,

TABLE V
MODEL 3-THIN MOBILENET FEATURES

Accuracy 85.61%
Model size 9.9 MB
Computation time per epoch 14s
Total no. of parameters 8,14,826



which makes it suitable for deployment in memory-constrained

hardware. When we reduce the depth of the model by using

Separable Convolutions instead of Depthwise separable con-

volutions, the accuracy does not decrease as Drop-activation

and Random erasing play an important part in compensating

for the accuracy. Generally, a shallow model is not as accurate

as a deep model, but introducing randomness into the standard

activation function ReLU combined with Random Erasing data

augmentation has a good impact on keeping the accuracy of

the model much above the baseline MobileNet model accuracy.

Random Erasing also has a significant impact on removing the

overfitting problem and enhancing the generalization ability

of the model. The last modification is eliminating a few

layers with the same output shape to make the model shallow,

drastically reduces the total number of parameters resulting

in a model size of 9.9 MB. Also, Nadam optimizer performs

better compared to other optimizers like Adam, RMS Prop and

SGD for training and testing the network on CIFAR-10 dataset

from scratch. This model is also faster than many other CNN

architectures and is safe for real-time embedded applications

like object detection and recognition applications. All the

proposed models perform better than the baseline MobileNet

model trained from scratch on the CIFAR-10 dataset.The best

model in terms of accuracy is Model 2 having an accuracy of

86.42% and the best model in terms of model size is Model

3 which we have named as the Thin MobileNet (9.9 MB).

The future work involves trying out various combinations of

the width multiplier and the resolution multiplier on the three

models to achieve more efficient networks. Using optimum

values for the width multiplier and the resolution multiplier

can further reduce the model size, keeping the accuracy much

above the accuracy of the baseline MobileNet model and at

the same time beating other benchmark CNN models in terms

of both model size and accuracy. Later on, the model will

be deployed on to Bluebox 2.0, an autonomous hardware

development platform produced by NXP Semiconductors for

single-shot object detection [33] application. The Bluebox

2.0 incorporates the computer vision processor S32V234, the

multi-core communication processor LS2084A and the radar.

micro-controller unit S32R27.
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