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Abstract—Over the past few years the semantics community
has developed ontologies to describe concepts and relationships
between different entities in various application domains,
including Internet of Things (IoT) applications. A key problem
is that most of the IoT related semantic descriptions are not
as widely adopted as expected. One of the main concerns
of users and developers is that semantic techniques increase
the complexity and processing time and therefore they are
unsuitable for dynamic and responsive environments such as
the IoT. To address this concern, we propose IoT-Lite, an
instantiation of the semantic sensor network (SSN) ontology
to describe key IoT concepts allowing interoperability and
discovery of sensory data in heterogeneous IoT platforms by
a lightweight semantics. We propose 10 rules for good and
scalable semantic model design and follow them to create
IoT-Lite. We also demonstrate the scalability of IoT-Lite by
providing some experimental analysis, and assess IoT-Lite
against another solution in terms of round time trip (RTT)
performance for query-response times.
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I. INTRODUCTION

With the growing development of machine-to-machine
communications and IoT deployments, interoperability be-
tween different platforms has become a key issue in creating
large scale IoT frameworks. Semantic technologies suggest
a suitable approach for interoperability by sharing common
vocabularies, and also enabling interoperable representation
of inferred data. IoT testbed providers have recently started
to add semantics to their frameworks allowing the creation
of the semantic Sensor Web, which is an extension of the
current Web in which information is given well-defined
meaning, enabling machine-to-machine communications and
interactions between objects, devices and people [10].

Semantics usually model the domain concepts in great
detail. Although they can be applied for querying almost
anything about objects, these complex models are often dif-
ficult to implement and use, especially by non-experts. They
demand considerable processing resources and therefore
they are considered unsuitable for constrained environments.
Instead, IoT models should consider the constraints and
dynamicity of the IoT environments, especially with the new
trend towards integrating semantics in constrained devices
such as M2M gateways or smartphones. At the same time,

they need to model the relationships and concepts that
represent and allow interoperability between IoT entities.
Therefore, expressiveness versus complexity is a challenge.

It is important to note that semantic models are not
end-products. They are normally only part of a solution
and should be transparent to the end user. The semantic
annotation models should be offered with effective methods,
API’s and tools to process the semantics in order to ex-
tract actionable information from raw data. Query methods,
machine learning, reasoning and data analysis techniques
should be able to effectively use these semantics. Semantic
modelling is only the initial part of the whole design, and
it has to take into account how the models will be used;
how the annotated data will be indexed and queried with
real-time data; and how to make the publication suitable for
constrained environments and large scale deployments when
applications often require low latency and processing time.

We propose IoT-Lite, a lightweight semantic model which
is an instantiation of the Semantic Sensor Network (SSN)
ontology [2](see Figure 1). IoT-Lite is the outcome of a
research effort that focuses on discovery and seeks for
the minimum concepts and relationships that can provide
answers to most of the end user queries. We have focused
on the typical queries for accessing the data in the IoT based
on our experience in the challenge of analysing data for
obtaining meaningful information for end-users. We find that
we do not need full descriptions and complex relationships
to satisfy user queries. Some of the most commonly used
semantic models on the Web are simple models, such as
Friend Of A Friend, (FOAF)1. Their simplicity encourages
faster adoption by end users, as they do not imply complex
annotations or do not require complex processing meth-
ods. Optimised models can also support providing faster
responses to queries.

We also propose guidelines for developing scalable and
reusable semantic models in the IoT. These guidelines
leverage conventions followed by some semantic modelling
designers such as the utilisation of the linked data approach.

IoT-Lite does not intend to be a full ontology for the IoT.
Our aim is to create a core lightweight ontology that allows

1http://www.foaf-project.org/



Figure 1: An overview of the proposed semantic model, IoT-Lite.

relatively fast annotation and processing time. IoT-Lite can
be a core part of a semantic model in which, depending on
the applications, different semantic modules can be added to
provide additional domain and application specific concepts
and relationships.

The remainder of the paper is organised as follows.
Section II describes the related work. Section III introduces
the 10 rules for good and scalable semantic model design
and presents the proposed model, IoT-Lite, for representation
of IoT elements. Section IV provides a use case scenario that
illustrates the semantic annotation of a sensor in our model.
Section V details an evaluation of the proposed model
against a more detailed model and Section VI concludes
the paper and describes the future work.

II. RELATED WORK

There are several semantic descriptions designed for the
IoT domain. The SSN ontology [2] is one of the most
significant and widespread models to describe sensors and
IoT related concepts.

The SSN Ontology provides concepts describing sensors,
such as outputs, observation value and feature of interest.
However it is a detailed description, containing concepts and
properties that enable flexible descriptions over a very wide
range of applications, but including non-essential compo-
nents for many use cases that can make the ontology heavy
to query and process if it is used as it is.

The IoT-A model2 and IoT.est [14] are some of the
projects that extend the SSN ontology to represent other
IoT related concepts such as services and objects in addition
to sensor devices. IoT-A provides an architectural base for
further IoT projects (see Figure 2). The only implementation
of a purely IoT-A semantic model known by the authors is
described in [3]. The IoT-A model is overly complex for fast
user adaptation and responsive environments. The IoT.est
model extends the IoT-A model with extended service and
test concepts.

The Open Geospatial Consortium (OGC), through its Sen-
sor Web Enablement (SWE) group [1] has developed a set
of standards to describe sensors and their data, for example,
SensorML3, which is a language to describe sensors, and
Observations and Measurements (O&M). While SensorML
provides important syntactic descriptions using XML, it
lacks the expressibility provided by ontology languages such
as OWL. SemSOS [4] has mapped the XML tags of O&M
into OWL concepts. However it represents only observations
and not other IoT related concepts.

One of the ongoing works is OneM2M. OneM2M has
published a report for home automation, and describes con-
cepts and relationships [8]. Another initiative is the Spatial

2www.iot-a.eu/
3http://www.opengeospatial.org/standards/sensorml



Figure 2: An example of a sensor annotated with the proposed IoT-Lite ontology.

Data on the Web Working Group4, a joint effort between
the World Wide Web Consortium (W3C) and the Open
Geospatial Consortium (OGC) that aims to standardise key
ontologies for spatial, temporal and sensor data on the web
[12]. Several projects also work on semantic descriptions for
the IoT, such as FED4FIRE5 that currently has a semantic
model focus on communications, VITAL6 for smart cities,
CityPulse7 with more focus on data and OpenIoT8, which
is an instantiation of SSN.

Performance of ontologies for large data set have been
addressed by different views, such as by redesign the data
knowledge and levering the query time response [11]. Our
proposal extend previous works and can be used in com-
bination with other techniques for querying performance
improvements.

To summarise, existing published IoT ontologies are either
complex or domain-specific for sub-domains of IoT. The cre-
ation of a lightweight ontology that allows interoperability
and discovery of sensory data in heterogeneous platforms

4http://www.w3.org/2015/spatial/
5http://www.fed4fire.eu/
6http://vital-iot.eu/
7http://www.ict-citypulse.eu/
8http://www.openiot.eu/

with low complexity and processing time is still an open
issue.

III. IOT-LITE: IOT MODELLING AND SEMANTIC
ANNOTATION

While most of the semantic models tend to describe the
concepts in great detail and represent various links in IoT
systems, we represent only the most used concepts for data
analytics in IoT applications, such as sensory data, location
and type. See Figure 1 for the model and Figure 3 for an
example of an annotated sensor. This paves the way towards
creating scalable responsive systems and reduces memory
and computational cost of query processing in large scale
IoT applications.

In 2003 W3C published a list of sample “Good On-
tologies” following specific good practices9. The goodness
of the ontologies was scored based on five aspects: fully
documented; dereferenceable; used by independent data
providers; possibly supported by existing tools; and in use
by two independent datasets.

IoT-Lite follows these aspects to create a reusable model.
We have published the ontology with a web page that
fully documents the ontology (aspect 1) with a permanent

9http://www.w3.org/wiki/Good Ontologies



Figure 3: An example of a sensor annotated with the proposed IoT-Lite ontology.

link10, and all the concepts in the ontology are described
by a dereferenceable URI (aspect 2). The annotations are
applied to IoT testbeds, University of Surrey SmartCampus
[6] and SmartSantander [9]. It is planned to be used by
other independent platforms in the open calls of the H2020
project FIESTA-IoT11 (aspects 3 and 5). We plan to develop
annotation and validation tools for IoT-Lite, extending our
SAOPY annotation tool12[5] and the SSN validator tool13

(aspect 4).
Although the above aspects are essential to create interop-

erable and reusable ontologies they are not enough to cover
scalability, dynamicity and user adoption issues. We propose
a set of guidelines for developing scalable ontologies.

1) Design for large-scale.
2) Think of who will use the semantics and design for

their neeeds.
3) Provide means to update and change the semantic

annotations.
4) Create tools for validation and interoperability testing.
5) Create taxonomies and vocabularies.
6) Re-use existing models.
7) Link data and descriptions to other existing resources.
8) Define rules and/or best practices for providing the

values for each property.
9) Keep it simple.

10) Create effective methods, tools and APIs to handle and
process the semantics.

In the design of IoT-Lite we have followed these rules.
We have designed a lightweight ontology considering the
scalability (following rule 1) and will provide tools for

10purl.oclc.org/NET/UNIS/fiware/iot-lite
11http://fiesta-iot.eu
12http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/saopy.html
13http://iot.ee.surrey.ac.uk/SSNValidation/

annotation and validation (rules 3 and 4), as well as APIs and
using existing tools for querying and information processing
(rule 10) as we mention previously in this Section. Semantics
are only one part of the solution and often not the end-
product. Query methods, machine learning, reasoning and
data analysis techniques and methods should be able to
effectively use these semantics.

We have designed IoT-Lite (see Figure 1) with a clear pur-
pose of defining only the most-used terms when searching
for IoT concepts in the context of data analytics. We studied
the most common uses of IoT ontologies (following rule 2)
based on our experience with other IoT ontologies used by
applications for data analytics. For example, an application
that provides the temperature on the move, will query the
ontology for the temperature sensor service endpoint at
each particular location. The ontology needs the concept of
sensor, the quality it measures (temperature) coverage and
endpoint. Other concepts are irrelevant in that query. The
ontology needs also to have these concepts easily accessible,
avoiding deep and distantly-connected terms of the ontology
that need complex queries to retrieve the desired results.
Therefore the simplicity of the ontology is essential (rule
9). The widely used semantic descriptions on the Web are
simple ones such as FOAF.

Another important aspect of semantic models is the in-
teroperability. In the design of IoT-Lite we followed the
linked data guidelines14. Our ontology is linked with other
ontologies (rule 6 and 7). We chose well-known and widely
used ontologies, expecting their publications to be stable
(e.g. SWEET and SSN). We avoid links to uncommonly
used ontologies in order to prevent inconsistencies in case
of unexpected deletion of the linked ontologies. In the
context of interoperability it is also important to use the

14http://linkeddata.org/



same vocabulary to be able to share and combine data
from different sources. In that sense, we have created a
taxonomy of quantity kinds and units which is published on
the ontology webpage and is a compilation of terms used
in well-known ontologies such as qu15 and qudt16 (rule 5
and 7). IoT-Lite is published with a webpage which fully
explains the terms used and provides examples (rule 8). This
allows reuse and linking with other ontologies.

With the above prerequisites we have created an instan-
tiation of SSN, which is considered the de facto standard
of sensor networks ontologies. SSN is not designed to be
necessarily used as it is in full form; it is a template to be
extended and instantiated. We have customised SSN to make
a lightweight ontology with the main concepts being the
three well-accepted items in the classification of IoT entities
[13]: Entities or objects; resources or devices; and ser-
vices, namely iot-lite:Object, ssn:Device and
iot-lite:Service. Figure 1 shows an overview of the
proposed information model. These three concepts are the
core concepts of the ontology and are necessary in any
ontology describing IoT.

The interrelations between these three concepts
are also well-known relationships, that is, an object
(or entity) iot-lite:Object has an attribute
iot-lite:Attribute which is associated with a
device (or resource) iot-lite:Device, which is
exposed by a service iot-lite:Service. We built
the rest of the ontology around these three main concepts
adding the necessary concepts and relationships to provide
responses to the standard queries.

To allow the queries to be lighter we have linked most of
the concepts of the ontology under one main class (Device)
and leave the other two classes lighter. We have spotted
at least three main classes of Devices (ssn:Sensor,
iot-lite:Actuator, iot-lite:Tag) that we need
to separate due to the differences that applications can
query for. For example, an application that needs to know
the temperature will query for sensors, whilst if the ap-
plication needs to switch on the lights it will query for
actuators. ssn:SensingDevice is directly linked via
properties or via inheritance of the relevant properties
to the concepts qu:QuantityKind, qu:Units and
iot-lite:Coverage. Therefore, we need only three
triples to link each sensing device with these concepts (e.g.
Sensor1 hasQuantityKind temperature).

In order to allow a common vocabulary to interoperate
between different systems we need a taxonomy to describe
the measurements of the devices in terms of the quantity
kinds and units, such as temperature and degrees Celsius.
We have created this taxonomy using individuals from well-

15www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-rec20.html
16http://www.qudt.org/qudt/owl/1.0.0/quantity/

know ontologies, such as qu-rec20 17 and qudt18.
The spatial dimension of the ontology is addressed with

the geo ontology19 based on WGS84 location coordinates20.
This simple ontology is widely used and there are some
available tools for discovery whether a point belongs to an
area, (such our coverage areas circle, rectangle and poly-
gon), and extensions of SPARQL to deal with geolocations.
We have added relative locations to these geolocations to
annotate locations such as a building or a floor in indoor
scenarios, where the geolocation is less intuitive. The relative
location also supports linking to resources such as GeoN-
ames21 that are publicly available as part of the Linked Open
Data cloud22.

IV. USE-CASE

One of the key issues in heterogeneous IoT ecosystems
is accessing sensor data from different systems. Enabling
a lightweight description of sensors to efficiently manage
annotation and discovery of sensor data is essential. In this
section, we exemplify the use of the proposed information
model, IoT-Lite, using sensor information from the Surrey
testbed [7] developed within the EU FP7 project Smart
Santander23. The testbed consists of 200 IoT nodes/devices
provided with 6 sensors each that measure temperature, mi-
crophone, vibration, light, presence and energy consumption.

Figure 3 illustrates a sample describing the outcome of
one of the temperature sensors in the testbed using the IoT-
Lite ontology. This sensor is associated with the temperature
of a room. In this example it can be seen that a table
located in Room CII01 has an attribute, temperature, which
is associated with the temperature sensor located in the same
room. The temperature sensor has a coverage that covers
the rectangle of the room, defined by two points in the
diagonal corners; measures the temperature with degrees
Celsius and a resolution of 1024; and is exposed by a
service with endpoint http://surrey.ac.uk/sensor/roomCII01.
We have used the geolocation to annotate the latitude and the
longitude coordinates. However, we have also annotated the
relative altitude as floor1 for better human understanding.
Listing 1 is an excerpt of the same temperature sensor
annotation in a turtle format.

@prefix qu: <http://purl.org/NET/ssnx/qu/qu#> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .
@prefix iot-lite:<http://purl.oclc.org/NET/UNIS/iot-lite/iot-lite#>

:temperatureSensorRoom13CII01 rdf:type owl:NamedIndividual ,
ssn:Sensor ;
iot-lite:type "SensorTelosB"ˆˆxsd:string ;

17http://purl.org/NET/ssnx/qu/qu-rec20
18http://www.qudt.org/qudt/owl/1.0.0/quantity
19http://www.w3.org/2003/01/geo/wgs84 pos
20https://confluence.qps.nl/pages/viewpage.action?pageId=29855173
21http://www.geonames.org/
22http://lod-cloud.net/
23http://www.smartsantander.eu/



iot-lite:id "telosB-001"ˆˆxsd:string ;
geo:hasLocation :locationRoom13CII01 ;
iot-lite:exposedBy :ngsi10SensorRoom13CII01 ;
iot-lite:hasMetadata :resolution1024 ;
iot-lite:hasUnit qu:degree_Celcius ;
iot-lite:hasQuantityKind qu:temperature .
iot-lite:hasCoverage :areaRoom13CII01 ;

iot-lite:tableRoom13CII01 rdf:type iot-lite:Object ,
owl:NamedIndividual ;
iot-lite:description "http://Room13CII01/Tabl"ˆˆxsd:anyURI ;
iot-lite:hasAttribute iot-lite:tempreraturTableRoom13CII01 ;
geo:hasLocation :locationRoom13CII01 .

iot-lite:tempreratureTableRoom12CII01 rdf:type iot-lite:Attribute ,
owl:NamedIndividual ;
iot-lite:isAssociatedWith :temperatureSensorRoom13CII01 .

:areaRoom13CII01 rdf:type iot-lite:Rectangle ,
owl:NamedIndividual ;
iot-lite:hasPoint :NEcornrRoom13CII01 , :SWcornrRoom13CII01 .

:NEcornerRoom13CII01 rdf:type owl:NamedIndividual ,
geo:Point ;
geo:long "-0.59316"ˆˆxsd:float ;
iot-lite:altRelative "1stFloor"ˆˆxsd:string ;
geo:lat "51.2434"ˆˆxsd:float .

:SWcornerRoom13CII01 rdf:type owl:NamedIndividual ,
geo:Point ;
geo:long "-0.59315"ˆˆxsd:float ;
iot-lite:altRelative "1stFloor"ˆˆxsd:string ;
geo:lat "51.2433"ˆˆxsd:float .

:locationRoom13CII01 rdf:type owl:NamedIndividual ,
geo:Point ;
geo:long "-0.593154"ˆˆxsd:float ;
iot-lite:altRelative "1stFloor"ˆˆxsd:string ;
geo:lat "51.243362"ˆˆxsd:float .

:ngsi10SensorRoom13CII01 rdf:type iot-lite:Service ,
owl:NamedIndividual ;
iot-lite:endpoint "http://meassur/rom13CII01"ˆˆxsd:anyURI ;
iot-lite:description "http://meassur/room13CII01"ˆˆxsd:anyURI ;
iot-lite:type "ngsi-10"ˆˆxsd:string ;

:resolution1024 rdf:type iot-lite:Metadata ,
owl:NamedIndividual ;
iot-lite:value "1024.0"ˆˆxsd:float ;
iot-lite:type "resolution"ˆˆxsd:string .

Listing 1: An excerpt from a sensor annotation based on
IoT-Lite Ontology.

V. EVALUATIONS

In order to validate the scalability and applicability of
IoT-Lite we performed some experiments using sensory data
from the University of Surrey’s SmartCampus testbed. A
web application developed in Java was used to annotate the
ontology individuals that represent the sensing devices and
to store them in a set of Jena TDB triple stores24, one for
each dataset. We used a Personal Computer (PC) running
Windows 7 (x64) operating system with a processor Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz 8GB RAM to act as
a server that hosts the web application. We sent remote
queries from a different PC located in another subnet. The
aim of this experiment was to measure the response time of a
common query. With IoT-Lite a common query is defined as

24https://jena.apache.org/documentation/tdb/

in Figure 2 as a query asking for the endpoint of the services
that provide the temperature in a particular area. As can be
seen, the query is simple. It contains just six triples due to
the shallow depth of the IoT-Lite ontology.

SELECT ?sens ?endp
WHERE {
?sensDev iot-lite:hasQuantityKind qu-rec20:temperature;
iot-lite:isExposedBy ?serv;
iot-lite:hasCoverage ?cover.
?cover iot-lite:hasPoint ?point.
?point iot-lite:RelativeLocation "Desk2".
?serv iot-lite:endpoint ?endp.
}

Listing 2: Query performed in the experiments.

We performed this query over different datasets. For that
purpose we created four datasets containing 200, 1.000,
10.000 and 100.000 sensors each. The IoT-Lite ontology
contains 116 triples by itself. When annotating sensors, each
new sensor needs just six triples, and in total the number of
triples in each data set are shown in table I.

datasets: number of sensors 200 1.000 10.000 100.000
number of triples in IoT-Lite 1486 6926 68126 680126
number of triples in IoT-A 1866 7946 76346 760346

Table I: Number of triples in each dataset

To compare the ontology against other solutions we
performed the same experiments with IoT-A, another in-
stantiation of SSN aiming to define the architecture of IoT.
We chose IoT-A because we have used the IoT-A ontology
in one of our components, a discovery element for IoT
entities. With this ontology we experienced some of the
problems mentioned in the introduction and this motivated
us to develop IoT-Lite to replace IoT-A in the discovery
component. Figure 2 shows IoT-A. We queried IoT-A with a
similar query to that for IoT-Lite, but in this case we needed
ten triples to obtain the same results, i.e. the endpoints of
services that provide the temperature in a particular area.
The IoT-A ontology contains 346 triples by itself. The total
number of triples of each data set are also shown in table I.

In order to avoid false perceptions of the round time
trip (RTT) due to jitter, we sent the query ten times to
each dataset. Figure 4 shows the boxplot results of these
10 queries for each dataset. We can see that the RTT of
the query/response is acceptable for every dataset in IoT-
Lite. Even when the dataset contains 100.000 individuals
the mean of the RRT is below 200 milliseconds. We can
also see that the time of the RTT is less in IoT-Lite than
in IoT-A in all the cases, and particularly in large datasets,
such as 100.000 sensors, the time of IoT-A is more than
doubling the time of IoT-Lite. IoT-Lite performs better than
Iot-A for large scale annotations of sensors.



Figure 4: Boxplot of the Round Time Trip (RTT) of the queries required to retrieve the endpoint of a temperature sensor in
a certain location depending on the size of the triplestore with both ontologies IoT-Lite ans IoT-A.

VI. CONCLUSIONS

In this study we proposed a lightweight semantic IoT
model, IoT-Lite. The model is an instantiation of SSN with
shallow depth, appropriate for real time sensor discovery.
We have proposed and followed a set of ontology design
guidelines for dynamic and responsive environments. We
have demonstrated that the annotation of new sensors in
IoT-Lite requires only 6 triples, and that the RTT of a query-
response is in the range of milliseconds, even for large
datasets. We have also assessed our proposal against another
instantiation of SSN, IoT-A, and we have demonstrated that
IoT-Lite performs better than Iot-A, in terms of memory
requirements, computational time and RTT for a query-
response, reducing the time by half for large datasets, such as
for 100.000 sensors. Further work will provide IoT-Lite tools
for annotation and validation, similar to SAOPY25 and SSN
validator26. We will also use the IoT-Lite based descriptions
to provide interoperability in developing IoT and smart city
applications and services.
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Burba, Mauno Rönkkö, and Mikko Kolehmainen. Emrooz: A
scalable database for SSN observations. In Joint Proceedings
of the 1st Joint International Workshop on Semantic Sensor
Networks and Terra Cognita (SSN-TC 2015) and the 4th
International Workshop on Ordering and Reasoning (OrdRing
2015) co-located with the 14th International Semantic Web
Conference (ISWC 2015), Bethlehem, Pennsylvania, United
States, October 11th - and - 12th, 2015., pages 1–12, 2015.

[12] Kerry Taylor and Ed Parsons. Where is everywhere: bringing
location to the Web. IEEE Internet Computing, 19(2):83–87,
March/April 2015.

[13] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Ser-
gio Gusmeroli, Harald Sundmaeker, Alessandro Bassi, Ig-
nacio Soler Jubert, Margaretha Mazura, Mark Harrison,
M Eisenhauer, et al. Internet of things strategic research
roadmap. O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli,
H. Sundmaeker, A. Bassi, et al., Internet of Things: Global
Technological and Societal Trends, 1:9–52, 2011.

[14] Wei Wang, Suparna De, Ralf Toenjes, Eike Reetz, and Klaus
Moessner. A comprehensive ontology for knowledge rep-
resentation in the internet of things. In Trust, Security and
Privacy in Computing and Communications (TrustCom), 2012
IEEE 11th International Conference on, pages 1793–1798.
IEEE, 2012.


