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Abstract—Human activity recognitin (HAR) has become an
important emerging field of application for sensor networks
(SN) technologies. Nevertheless, the pervasiveness of SN in
everyday life has given rise to new privacy concerns especially
when mining personal sensed data in external environments.
From that perspective, many research works have proposed
cryptography-based techniques so as to tackle SN privacy is-
sues, yet have costed significant degradations in computational-
time efficiency. In this work, we propose a novel privacy-
preserving Knn classification protocol to be used in HAR
process and that is based on a novel privacy-preserving pro-
tocol that aims to assess similarity between personal recorded
activities and extern patterns using the cosine similarity metric.
We build our proposals without any cryptographic schemes in
order to provide a high efficient recognition service.

Index Terms—Human activity recognition (HAR), sensor net-
works (SN), Knn classification, cosine similarity, privacy, effi-
ciency.

1. Introduction

The last recent years have seen a huge advancement
in sensing and communication technologies, leading to a
ubiquitous computing era where sensor networks (SN) are
becoming smarter, more connected and allowing to track
anything, anytime and everywhere.

These developments in SN span a wide range of ap-
plications that support innovative services in all areas of
life. Particularly, human activity recognition (HAR) was an
emerging research field that aims to mine pervasive data
streams collected by wearable and implantable sensors so
as to provide more understand of human activities and
behaviours. This may improve the quality of individual
life in several aspects, ranging from daily assisted living
to leisure applications. For instance, most elderly people
prefer to stay in their own homes as they age [1], but
living individually can be scary as a simple fall may induce
injuries, which is fatal for their lives if not assisted early.
To shed some light on this, Centers for Disease Control
and Prevention reported that 2.5 million of older people fall
each year, but less than half could tell their doctors [2].

Therefore, an emergency HAR system that recognizes falls
and abnormal activities using SN may save many elderlies’
lives. From another side, people wanting to stay well and
be healthy need to follow a lifestyle management program,
which should include a self-monitoring of caloric intake
related to their daily physical activities. For this purpose,
a sensor-based HAR system may be useful so as to track
daily activities, set reminders and give recommendations
[3]. Likewise in public security, transportation and urban
management, tracking people activities and mobility could
be exploited to great social benefits [4].

However, the pervasive nature of sensor-based HAR
systems raised in privacy concerns surrounding tracking
people’s actvities and locations. These concerns encompass
especially storing, communicating and mining sensed data
in external environments.

From the perspective of research, many proposed works
[5], [6] have implemented cryptographic schemes, such as
the Paillier [7] and ElGamal [8] cryptosystems in order
to tackle the privacy issues in SN. Nevertheless, these
cryptogaphy-based security measurments costed a signifi-
cant degradation in response time, trading so security and
performance. Such a trade-off may be intolerable in emer-
gency situations where instant decision is vital.

In this work we propose a diferent approach that enhance
both security and performance measures. Using two novel
proposed protocols that are free from cryptography, we aim
to add a significant improvement to the recognition process
of HAR systems. The contribution of this work can be
summarized as follows

• We propose (Π-CSP+): a novel privacy-preserving
and efficient cosine similarity protocol that aims
to asses similarity between sensed activities and
external patterns.

• We integrate the above proposed (Π-CSP+) in a
novel privacy-preserving and efficient Knn classifi-
cation protocol named (Π-Knn) so as to classify the
sensed activities according to extern patterns held by
a service provider.

• We make evaluations of our proposals proving their
high security as well as their efficiency level com-
paring to other proposals.
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The rest of the paper is organized as follows. Section
2 presents preliminaries used to introduce our proposals.
In Section 3, we highlight the privacy concern raised by
the HAR classification process and present our privacy-
preserving proposed protocols. In Section 4, we give a
formal security proof of our protocols using the real/ideal
simulation paradigme and Section 5 is devoted to the per-
formance evaluation accross different experimental tests. In
Section 6, we provide a literature survey of related works
and we discuss their lacks. We conclude by summarizing
the contributions of this work.

2. Preliminaries

In this section we present preliminaries and building
blocks used later to implement our proposals.

2.1. Sensor-based HAR

Sensor-based HAR systems aim to retrieve information
about performed activities from raw sensor data gathred by
wearable or implantable sensor networks (SN). The general
structure of a sensor-based HAR process encompasses four
main steps.

• In preprocessing phase, sensed data signals pass by
different filters so as to remove frequencey noises
while preserving useful information.

• During segmentation, continuous sensed data
streams are splitted according to fixed time-series.

• During Feature exraction, different methods are
applied to each time window (a set of time-series)
transforming the large data raws into vectors of
quantitative features (mean, variance,...etc.).

• Classification consists of applying different methods
on the set of feature vectors in order to recognize
the performed activities.

In this work we focus on securing the classification phase
as all other phases are performed locally. Let HARP denote
the problem of classifying activities in a HAR process. We
define HARP as follows [9]

Definition 1 (HARP). Let A = {a1, ..., ak} denote set of
activities’ labels and W = {w0, ..., wn} a set of n time
windows equal in size. We assume each ti includes a set
of time series Si = {si0, ..., sim} from the m measured
attributes. Then, the HAR problem returns to find a mapping
function f : Si 7→ A such that f(Si) is as similar as possible
to the activity performed in ti

2.2. K-nearest neighbors (Knn) classifiers

Knn algorithm is one of the instance-based [10] clas-
sifiers that could be used to classify activities according
to trainning examples called instance space. Using a dis-
tance/similarity metric, Knn classifies a new instance (rep-
resented by a feature vector) by locating the k nearest
instances (neighbours) having a same class in the instance

space, then, labelling the unknown instance with the same
class label of the located neighbours. In this work, we lever-
age the use of activity patterns as instace space instead of
personal training examples so as to avoid the training phase
required by such classifiers. Let D= {(x1, y1), ..., (xn, yn)}
denote a set of instance space involving n activity patterns
where xi and yi correspond to the pattern data and the
pattern class respectively. Assume z = (Xz, Y z) a new
activity instance where Xz denotes the extracted feature
vector and Y z the activity class we are searching for. We
define the set of points x for which a function f reaches its
largest value as

argmax
x

f(x) = {x|∀y : f(x) ≥ f(y)}

and we define I , the identity function as

x ∈ {true, false} 7→ I(x) =

{
1, if x = true
0, if x = false

A detailed implementation of Knn is given in Algorithm1.

Algorithm 1: knn classification
Input : D, z and k, where:

D = {(x1, y1), ..., (xn, yn)}, z = (Xz, Y z)
and 0 < k ≤ n.

Output: yz, the class label of z.
1: Compute d(Xz, xi), the distacnce/similarity between

z and every object in D.
2: Select Dz ⊆ D, the set of k closest objects to z.
3: Y z = argmax

c

∑
(xi,yi)∈Dz I(c = yi).

2.3. Cosine similarity metric

Cosine similarity is a statistical metric used to assess
similarity in vector space model. It operates by measuring
the cosine (cos) of the angle between two vectors, thus, the
more it is closer to 1 the more vectors are similar. Assume
~a = (a1, .., an) and ~b = (b1, ..., bn) two numerical vectors.
Let (~a · ~b) denote the scalar product and ‖~a‖ (resp.‖~b‖)
denote the Euclidean norm. Cosine similarity between ~a and
~b is measured by

cos(~a,~b) =
(~a ·~b)
‖~a‖‖~b‖

(1)

while the scalar product is get by

(~a ·~b) =

n∑
i=1

(ai × bi) (2)

Notice that when we deal with normalized vectors, the co-
sine metric is shortened to the scalar product itself. Assume
â = (~a/‖~a‖) and b̂ = (~b/‖~b‖) the normalized representation
of ~a and ~b repectively. Then

cos(~a,~b) = (â · b̂) (3)



In this work, we use the cosine metric as a similarity func-
tion within the Knn process (see instruction 1, Algorithm
1). We leverage the use of this metric because of its high
accuracy level when evaluated in such a context [11].

3. Novel protocols for efficient and privacy-
preserving HAR

In this section, we highlight the privacy concern raised
by the HAR classification process, then, we introduce two
novel protocols that aim to preserve personal data privacy
with a low time-computation cost.

3.1. Privacy problem statement

In a context when a HAR system does the classification
step according to extern patterns, it should collaborate with
a patterns service-provider in order to assess similarity
between a new recorded activity and each class patterns
according to a distance/similarity metric (see task 1 of Algo-
rithm 1). To clarify this, let P1 and P2 denote respectively
a service-provider of activity patterns and a HAR system.
Assume ~pj = (pj,1, ..., pj,n) the pattern of the activity class
j held by P1 and ~z = (z1, ..., zn) a new activity recorded
by P2. As we chose to use the cosine metric (see Section
2.3) because of its high accuracy level[], we formalize the
collaboration between P1 and P2 as

cos(~pj , ~z) = (p̂j · ẑn) (4)

where p̂j and ẑn denote the normalized representation of
~pj and ~z respectively. Such a collaboration specifying that
one party (P1 or P2) should disclose its vector to its
collaborator (see equation 2) is a privacy issue for both
parties since P1 may provide a commercial service and P2
is recording personal private data such as location. Thus,
in order to allow this computation while preserving data
privacy for both collaborator parties, we propose Π-CSP+,
a novel privacy-preserving and efficient cosine similarity
protocol that will be used later to implement Π-Knn, a novel
efficient and privacy-preserving Knn protocol for a HAR
classification context.

3.2. Π-CSP+: privacy-preserving and efficient co-
sine similarity protocol

In order to introduce our proposed Π-CSP+, let us
consider two parties P1 and P2 having respectively A =
{ ~a1, ..., ~as} and B = {~b1, ..., ~bp} sets of object vectors and
want to securely assess similarity between their objects.
Assume for 1 ≤ i ≤ s and 1 ≤ j ≤ p: ~ai and ~bj ∈ Rn and
they have the same structure. In order to shorten our focus
to the privacy concern in the scalar product (see section
3.1), we consider both parties collaborate with normalized
vectors (see section 2.3). Let Â and B̂ denote the normal-
ized sets of A and B respectively. We define MR[s × s],
MA[s × n] and MB[n × p] as matrix tools used during
the privacy-preserving scalar product process, where MR

is a random noise, MA involves the s normalized object
vectos get from Â and put as rows and MB includes the p
normalized object vectors get from B̂ and put as columns.
Assume MR is an invertible matrix, (s, n, p) ∈ N3∗ such
as: {1 < s < n, 0 < p < s}. The detail of Π-CSP+
implementation is provided in algorithm 2.

Algorithm 2: Π-CSP+, a Privacy-preserving and Ef-
ficient Cosine Similarity Protocol

Input : A = { ~a1, ..., ~as} P1 object vectors
B = {~b1, ..., ~bp} P2 object vectors

Output: (For P1 only)MAB[s× p] containing the
cosine similarity results, where
MAB [i, j] = cos(~ai, ~bj)

Preprocessing: P1 and P2 compute respectively
Â = {â1, ..., âs} and B̂ = {b̂1, ..., b̂s} the sets of
normalized vectors from A and B.

Step 1 by P1
1: Generates a random invertible matrix MR[s× s]
2: Puts A’s elements as rows in a matrix MA[s× n]
3: Performs (MR ×MA) and sends the result matrix

(MRA) to P2
Step 2 by P2

4: Puts B’s elements as columns in a matrix MB [n× p]
5: Performs (MRA ×MB) and sends back the result

matrix (MRAB) to P1
Step 3 by P1

6: Performs (M−1
R ×MRAB) = (MA ×MB) = MAB

which is the searched cosine similarity matrix.

3.3. Π-Knn: privacy-preserving and efficient Knn
classification protocol

In what follows, we introduce Π-Knn in which we
make calls to Π-CSP+ presented above in order to securely
perform the collaboration task (see task 1 of Algorithm 1)
needed by the Knn process when dealing with an extern
service provider. Assume D= {(x1, y1), ..., (xs, ys)} a set
of instance space held by a service provider denoted P1
and involving s activity patterns where xi and yi correspond
to the pattern data and the pattern class name respectively.
In order to adapt the similarity evaluation task within the
knn process to Π-CSP+ presented above, we devide each
time window wi, which is considered as a time unit for one
classification (see section 2.1), into p sub-windows. Thereby,
in each classification we will consider p recorded activities
each of which has a separate extracted feature vector.

Assume Z =< (Xz1, Y z1), ..., (Xzp, Y zp) > a set of
p recorded activities in a HAR system denoted P2, such
as for 1 ≤ j ≤ p: Xzj ∈ Rn is the feature vector of the
observation j and Y zj denotes the correspondant activity
class we are searching for. For the correctness purpose, we
assume xi and Xzj have the same structure whenever 1 ≤
i ≤ s and 1 ≤ j ≤ p and we define I the identity function as
defined above (see section 2.2). The deatiled implementation
of Π-Knn is provided in algorithm 3.



Algorithm 3: Π-Knn, a Privacy-preserving and Effi-
cient Knn classification protocol

Input : D = {(x1, y1), ..., (xs, ys)}: xi,(1≤i≤s) ∈ Rn

Z =< (Xz1, Y z1), ..., (Xzp, Y zp >:
Xzj,(1≤j≤p) ∈ Rn

1 < s < n
0 < k ≤ s
0 < p < s

Output: < Y z1, ..., Y zp >, the correspondant class
label of each observation within Z

Step 1 by (P1 ∪ P2)
1: Compute Π-CSP+(D, Z), the cosine similarity matrix

using Π-CSP+.
Step 2 by P1

2: for (j = 1; j <= p; j + +) do
3: Select Dzj ⊆ D, the set of k patterns having the

highest similarity rate in the column j of the cosine
similarity matrix got from task 1.

4: Y zj = argmax
c

∑
(xi,yi)∈Dzj

I(c = yi).

5: end for
6: return < Y z1, ..., Y zp > to P2

4. Security analysis

In this section, we give a security analysis of our propos-
als according to the real/ideal simulation model [12], which
provides strong security guarantees [13].

4.1. Security preliminaries

4.1.1. Multiparty computation (MPC). Given a set of par-
ticipants that want to jointly compute the value of a public
function f relying on their private data. Let P1,...,Pn denote
the participants and v1,...,vn their private data respectively.
We call f(v1, ..., vn) an MPC model [13].

4.1.2. Adversary model. The security analysis we give later
depends on an allowed behaviours of corrupted parties. In an
MPC model, we can distinguish, according to the allowed
behaviours, two types of adversaries namely passive and
active [13].

• Passive adversary (semi-honest). When a collabo-
rating party is corrupted by such an adversary, it still
follows the protocol specifications provided that it is
allowed to analyse all information it gathered during
the execution.

• Active adversary (malicious). A Party corrupted by
such an adversary is alowed to randomly deviate
from the protocol specifications, yet there are two
common behaviours: a) aborting the protocol un-
timely or b) injecting fake inputs.

4.1.3. Assumptions & Notations.

• Let Π denote a multiparty protocol executed by P1

and P2 in order to evaluate the function f such as

f : [s× n]× [p× n] → [s× p]
(MA,MB) 7→MA ×MB

• We call security parameters the set {s, n, p} denoted

param and defined as

{
1 < s < n

0 < p < s

• Let viewΠ
X (param, MA, MB)i denote the set of

messages get by the party Pi,i∈{1,2} during the
execution X of Π on inputs MA, MB and security
parameters param.

• Let outΠX (param, MA, MB)i denote the output of
the party Pi from the execution X of the protocol Π
on inputs MA, MB and security parameters param
and let outΠX (param, MA, MB) denote the global
output of all collaborating parties from the same
execution of Π, where

outΠR(param[],MA,MB) =

outΠR(z, param[],MA,MB)1+

outΠR(z, param[],MA,MB)2

4.2. Security definition

In this subsection, we give a definition of secure MPC
according to real/ideal simulation paradigm.

4.2.1. Security model. In what follows, we introduce the
real/ideal execution models.

• During a real execution model denoted R of the
protocol Π on inputs MA, MB and security param-
eters param, we consider the presence of a real
adversary denoted A, which behaves according to
sme adversarial model (passive, active) while cor-
rupting the party Pi. At the end of the execution R,
the uncorrupted party denoted Pj outputs whatever
specified in Π and the corrupted Pi outputs any
random function of viewΠ

R(param, MA, MB)i.
• During an ideal execution model denoted L of the

protocol Π on inputs MA, MB and security param-
eters param, we consider the presence of a trusted
party denoted T that receives inputs of Pi,i∈{1,2}
in order to evaluate f in the presence of an ideal
adversary denoted S. Assume S is corrupting the
party Pi, handle its inputs and behave according
to some adversial model (passive, active) before
sending them to T . By the end, the uncorrupted
party denoted Pj outputs what was received from
T and the corrupted Pi outputs a random function
of viewΠ

L (param, MA, MB)i.

4.2.2. Secure MPC protocol. Under the real/ideal pradigm,
we consider that Π is secure if for any real adversary A that
attacks Π and behaves according to some adversary model,
there exists an ideal adversary S that can emulate it such that



any effect on Π acheived by A could also be acheived by S
while behaving according to the same adversarial model. Let
d≡ denote the distribution equality. We formilze this security
definition as

{outΠR(param,MA,MB)} d≡ {outΠL(param,MA,MB)}
(5)

4.3. Security proof by simulation

Relying on definitions given above, in this subsection
we provide a security proof of Π-CSP+ (see algorithm 2)
and Π-Knn protocol (see algorithm 3).

4.3.1. Π-CSP+ security proof.

Theorem 1 (Π-CSP+ security). The Π-CSP+ detailed in
Algorithm 3 is a secure MPC protocol in the presence of a
malicious adversary.

Proof. In order to prove the theorem 1, we give a separate
simulation of the case where a malicious adversary corrupts
P1 and the case where it corrupts P2. We assume that if
both parties are corrupted we are not required to provide
security measurments. Let A, S and T denote respectively a
real active adversary, an ideal active adversary and a trusted
third party. Let Π denote the Π-CSP+.

• Case 1: P2 is corrupted by A. Then, the allowed
behaviour of P2 is only injecting fake inputs (MB)
(Because aborting the protocol untimely will stop
the execution of Π-CSP+ and so, has no meaning).
Assume P2 sends a fake MB . In this case, S can
emulate A by just handling the fake MB and sends
it to T , which performs compuation and sends back
MAB to P1. Thereby, completing the simulation.
At the end, the views of P2 through ideal and real
executions are decribed as

viewΠ
L (param,MA,MB)2 = {MB} (6)

viewΠ
R(param,MA,MB)2 = {MB ,MRA} (7)

But, since MRA will contain ((s × s) + (s × n))
unknowns opposite to (s × n) equations, thus ac-
cording to security parameters defined in param,
MRA will not involve any information for P2 and
can be considered as a random noise. Hence, the
view of P2 in the real execution could be reduced
as

viewΠ
R(param,MA,MB)2 = {MB} (8)

Thus, relying on (6) and (8) we get

{outΠR(param,MA,MB)2}
d≡

{outΠL(param,MA,MB)2}
(9)

On the other hand, P1 will output MAB in real
execution, which is the same output received from
T in ideal process. Recall that P1 is uncorrupted,

thus it outputs what was specified in the protocol.
This means that

{outΠR(param,MA,MB)1}
d≡

{outΠL(param,MA,MB)1}
(10)

Through (9) and (10), we proved by simulation that
all effects achieived by a real malicious adversary
corrupting P2 can also be acheived in an ideal
process. In this case, Π-CSP+ is a secure MPC
protocol.

• Case 2: P1 is corrupted by A. Then, it can inject
fake inputs (MA) or abort the protocol in step 2.
But, since P2 does not require any output, the abort
of P1 will have no effect. Assume P1 sends a fake
MA. In this case, S will emulate A by handling the
fake MA and just sends it to T in order to complete
the simulation. By the end, the views of P1 through
ideal and real executions are decribed as

viewΠ
L (param,MA,MB)1 = {MA,MAB} (11)

viewΠ
R(param,MA,MB)1 = {MA,MAB ,MRA,

MRAB}
(12)

Like in the precedent case, we can reduce (12) since
MRAB will involve (s × p) equations and (n × p)
unknowns, so, according to security parameters de-
fined in param, it can not reveal any information for
P1. Likewise, since MR is a random noise, MRA

could also be get from (11), thus, we reduce it from
(12). Hence, the view of P1 in the real execution
could be shortened as

viewΠ
R(param,MA,MB)1 = {MA,MAB} (13)

Thus, from (11) and (13) we get

{outΠR(param,MA,MB)1}
d≡

{outΠL(param,MA,MB)1}
(14)

Regarding the uncorrupted P2, as it does not require
any output, it will not receive any information in
ideal execution, which is the case for real execu-
tion since the only message get during Π is MRA

that does not involve any information according to
security parameters param. Consequently, we can
deduce from (14) that any effect acheived by a
real malicious adversary corrupting P1 can also be
acheived in an ideal process. This means that in this
case, Π-CSP+ is a secure MPC protocol.

Note 1 (Secure re-execution). We consider both P1 and
P2 having a probability p > 0 to change their inputs (MA

and MB) in each execution (X) of Π-CSP+. Under such
assumption, we ensure the secure re-execution of Π-CSP+
for t(t>0) times by the same parties.



4.3.2. Π-Knn security proof.

Corollary 1 (Π-Knn security). The Π-Knn protocol detailed
in Algorithm 3 is a secure MPC protocol in the presence of
a malicious adversary.

Proof. As the call to Π-CSP+ is the only multiparty task
within Π-Knn (see algorith 3), we can deduce the security
of Π-Knn relying on theorem 1 proved above.

5. Performance analysis

In this section we evaluate the computation performance
of Π-CSP+, which in turns, reflects the performance of Π-
Knn protocol. To do this, we assess the ability of Π-CSP+
to handle feature vectors of high size (s) extracted from
activities recorded in time windows having a short length(l).
This evaluation aims to prove the adequacy of Π-CSP+ for
activity recognition systems that require a high accuracy
level besides a quick decision make.

Regarding the evaluation environment, we make exper-
iments on the same set of vectors using a simulator built in
Python and an Intel i5-2557M CPU running at 1.70 GHz
and having a 4 GB of RAM.

5.1. Experimental scenarios

We consider a HAR system where a client’s activity are
recorded during a period of time (wi) that has a length of
(l) time unit. During this period, that we call observation
time window, the HAR system exracts from the sensed
data raws, every time unit, a new feature vector having
the size (s). At the end of (wi), the HAR system sends
the l extracted feature vectors in order to be classified by
a service provider considered having (2 × l) patterns. We
consider testing separately the effect of the (s) size of feature
vectors and the length (l) of the observation time window
on the running time of Π-CSP+ throughout 2 experiments
respectively E1 and E2.

We perform E1 four times such that in each one we fixe
the time window length l to one distinct value from the set
[2, 20] and we vary s in the set [50, 100] for each fixed l.

In E2, we do the opposite by fixing s four times to one
value from the set [50, 100] and we vary l for each fixed s
in the set [2, 20]. Notice that we choose these sets of values
so as to respect the security parameters (param) used in
implementations Π-Knn and Π-CSP+ (see section 3.2).

For the comparison purpose, we make the same exper-
iments on the most recent cosine similarity computation
protocol named PCSC [14], which is free from cryptography
and asserted to be the most efficient.

We take three samples from each experiment and we
plot results of E1 and E2 respectively in Figure 1 and
Figure 2, besides the running time of the direct cosine
similarity computation denoted DCS (direct application of
the cosine similarity metric without any secure measurment.
see equation (1), section 2.3) that we consider as a running
time reference.

5.2. Results & discussion

Through E1 wa have evaluated the effect of the feature
vecors size (s) on the running time of the three similarity
computation methods (Π-CSP+, PCSC and DCS). Results
illustrated in Figure 1 reveal the high efficiency level of
Π-CSP+ running time which remains stable in the neigh-
borhood of 0.0x ms for l ∈ {2, 10} and reaches 0.1x for
l = 15 with a slow increasing rate of 4.66% between l = 2
and l = 15. On the other hand, PCSC running time revealed
an increasing overhead with rate of 6% between l = 2 and
l = 15, besides a high distance from the running time of
DCS computation reference (> 170 ms), which is highly
greater than Π-CSP+ time distance from DCS (< 0.x ms).

In E2 we made focus on the effect of time window
length (l) on running time of the previous three computation
methods. Results shown in Figure 2 reveal more clearely
the overhead induced in running time of PCSC throughout
the three sample sizes s = {70, 90, 100}. PCSC distance
time from DCS reference was increasing continuously (on
average of 1200 ms) with an increasing rate that has reached
≈ 10% versus a rate of 7% reached by Π-CSP+ while
keeping a short stable distance on average of 0.1x ms from
DCS running time.

Results of E1 and E2 have shown the efficiency of
Π-CSP+ computation time regarding the increase of time
window length (l) or when dealing with feature vectors
having a high size (s). These reusults affirm the adequacy
of Π-CSP+ to efficiently secure a classification process of
any HAR system that needs a high accuracy level (a high
number of features within a vector (s) and a high number
of vectors within a short time (l)).

6. Related works

In this state-of-the art section, we review recent works
in HAR field and we highlight their privacy lack. Next,
we provide a short review of exiting privacy-preserving
techniques that might be used to securly assess similarity
in a HAR classification process.

6.1. HAR systems

Almost all existing HAR systems make focus on accu-
racy and reliability of activities’ detection without consid-
ering data privacy concern.

B. Najafi et al. [15] proposed a physical activity mon-
itoring system based on Kinematic sensors. The system is
able to recognize sitting, standing and lying body postures
as well as periods of walking with the aim of monitoring
elderly people in their daily lives. Authors have focused on
accuracy detection of activities but they gave no security and
privacy preserving measurements. JC Hou et al. [16] pro-
posed PAS: an open architecture that exploits off-the-shelf
technologies to assist elderly people through monitoring
their physiological functions, mobility profiles, besides fall
detection service and some other assisted-living tasks. Re-
garding security concerns, PAS incorporated mechanisms to



(a) l=2 (b) l=10 (c) l=15

Figure 1. E1. Effect of the features vectors size (s) running time while fixing the time window length (l).

(a) s=70 (b) s = 90 (c) s = 100

Figure 2. E2. Effect of the time window length (l) on running time while fixing the features vectors size (s).

secure both data storage and communication; however, there
is no privacy protection of sensed data during analysis and
recognition process. S Jiang et al. [17] proposed CareNet:
a system prototype for remote physical activity monitoring
in healthcare application. CareNet is able to detect falls and
launch associated alarms, in addition to provide on-demand
video information in order to verify the physical activity
results. Privacy protection within CareNet is ensured only
through secure communication while there is no privacy
protection measurements regarding data analysis. AS Evani
et al. [18] proposed a patient activity monitoring system
using wearable flex sensors in order to follow patient’s
routine day-to-day activities. Their system recognize sitting,
standing and walking activities as well as inactivity that
is considered as abnormal behaviour. With regard to data
privacy, no protection measures were embedded.

Recently, Debraj De et al. [19] introduced a fine-grained
activity recognition system using multimodal wearable sen-
sors. Authors highlighted the need for detecting complex
activities in critical healthcare application. The proposed
system was able to recognize 19-in home activities without
using sensing modes that induce direct privacy concerns,
such as video recording. Although this use of only wearable
devices, some sensed data such as GPS localisation could
disclose sensitive information which requires strong mecha-
nisms for privacy protection during analysis and recognition

process.

6.2. Privacy-preserving similarity evaluation

As the privacy concern of the cosine similarity metric
used in HAR classification lives in computing the scalar
product (see section 3.1), in this subsection we make in-
terest on existing privacy-preserving scalar product tech-
niques. Throughout a literature review, almost all such
techniques are trading security and computational efficiency.
By summarizing, there has been two main approaches: a)
cryptographic-based techniques [20], [21], [22], [23], [24],
[25] that uses cryptographic schemes such as the Paillier [7]
and ElGamal [8] cryptosystems in order to provide hard se-
curity guarantees while raising in significant degradation in
computational-time efficiency and b) noise-based techniques
[14], [22], [23], [26] that aim to guard a high efficiency level
by using simple arithmetic transofrmations. Nevertheless,
existing approches that fall in this category do not provide
a security protection for all data types (ex. binary attributes
vs numerical attributes), making so, an other trade-off.

Contrary to precedent work, the main contribution of
this paper is to provide a high security guarantee as cryp-
tographic techniques level (see section 4) besides a high
efficient computational-time service comparing to arithmetic
techniques [14] (see section 5).



7. Conclusion

In this paper we have tackled the privacy and efficiency
concern in classification step of a human activity recogni-
tion (HAR) process by designing two novel protocols. we
proposed Π-Knn, a novel knn classification protocol that
securely performs the similarity evaluation task between
recorded activities and extern patterns based on a novel
efficient and privacy-preserving cosine similarity protocol
named Π-CSP+. Through a security analysis using the sim-
ulation paradigm, we have shown the security guarantees
provided by our proposals in the presence of an active
adversary. Regarding the performance evaluation, diferent
experimental tests have revealed the time-effciency of com-
putations performed by our protocol when compared to other
recent proposed method, which reveals its adequacy for
situations where a quick decision is critical.
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