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Abstract—Recent advances in molecular biology and Bioin-
formatics techniques have brought to an explosion of the
information about the spatial organisation of the DNA inside
the nucleus. In particular, 3C-based techniques are revealing
the genome folding for many different cell types, and permit
to create a more effective representation of the disposition of
genes in the three-dimensional space. This information can be
used to re-interpret heterogeneous genomic data (multi-omic)
relying on 3D maps of the chromosome.

The storage and computational requirements needed to
accomplish such operations on raw sequenced data have to be
fulfilled using HPC solutions, and the the Cloud paradigm
is a valuable and convenient mean for delivering HPC to
Bioinformatics. In this work we describe a data analysis work-
flow that allows the integration and the interpretation of multi-
omic data on a sort of “topographical” nuclear map, capable of
representing the effective disposition of genes in a graph-based
representation. We propose a cloud-based task farm pattern to
orchestrate the services needed to accomplish genomic data
analysis, where each service represents a special-purpose tool,
playing a part in well known data analysis pipelines.

Index Terms—High performance computing, Cloud computing,
Bioinformatics, Systems Biology

1. Introduction

Since the advent of Next Generation DNA Sequenc-
ing technologies (NGS), more and more information about
genome organisation becomes available. So much that Ge-
nomics laboratories are “caught in a flood of data”, and
are now facing many of the scale-out issues that High-
Performance Computing (HPC) has been addressing for
years: raw data resulting from sequencing experiments must
be analysed, integrated and archived. These steps pose sub-
stantial requirements in speed (in terms of execution time),
application scalability and data representation. Orchestrating
applications to fulfil these requirements is a complex and
delicate task.

Moreover, no data analysis pipeline anywhere in any
scientific field works as one monolithic process: different
stages of the data analysis process are just fundamentally
different, and have different parallelism, memory access and
data access requirements. Also, it often makes sense to run

the same stage of an analysis in a number of different ways,
to demonstrate the robustness of novel results (which are not
unusual in fields like Genomics and Bioinformatics), or to
tackle different sorts of data, for example one in which a
reference genome is available, compared to one where it is
not. Here, HPC comes into play: from modelling scientific
processes to the use of computers to obtain quantitative
results from these models, it turns a domain science into
a computational activity.

Luckily enough, the Cloud paradigm has become a
consolidated technology that exploits the full potential of
virtualised resources to deliver computation and storage via
the Internet, enabling a larger resource usage by sharing
a given hardware among several users. For instance, cloud
computing is wide-spreading in Bioinformatics, just because
it is a discipline heavily dependent on data and, even more,
on space-consuming and time-consuming data processing
tasks [1]. With its various declinations (DaaS, SaaS, PaaS,
IaaS), the cloud paradigm delivers computational power
and storage as dynamically allocated virtual resources, on-
demand, relieving scientists from the daunting expense of
establishing and maintaining complex computational infras-
tructures for data processing.

Considering the innovation that high-throughput tech-
nologies are introducing to the analysis of genomic data,
in this work we propose a custom work-flow for data
integration that relies on cloud computing: a cloud solu-
tion with a scalable high-performance infrastructure, where
software tools for data processing are provided as services.
By exploiting NuchaRt, a software tool that produces a
graph-based representation of the genes placed along the
chromosome [2], we can integrate data resulting from Hi-
C, RNA-Seq and ChIP-Seq experiments, in order to study
the interactions among genetic elements that can reveal
insights on biological mechanisms, such as genes regulation,
translocations and epigenetic patterns.

The whole infrastructure is characterised by a coarse
grain parallelism among software services, and a finer grain
that exploits the computing power of shared-memory multi-
core architectures. We tested our solution with a use case
that presents associated RNA-Seq, ChIP-Seq and Hi-C ex-
periments on the same samples of laboratory mouse [3]. We
will show that our cloud task farm helps reducing execution
times for running the three data analysis pipelines with the
datasets presented in [3].



The rest of this article is organised as follows: in Sec-
tion 2 we introduce the biological background from which
this work has emerged, with a discussion on biological tools
and pipelines employed to process data. Also, a brief state
of the art of current cloud solutions for Bioinformatics is
provided. Section 3 describes our cloud-based task farm
solution, presenting the overall infrastructure and explaining
the orchestration of multiple pipeline stages as services.
Section 4 describes a test case upon which we benchmarked
our solution, reporting results in terms of execution time,
with a discussion of our achievements. Section 5 concludes
this work and highlights some proposals for future works.

2. Background

In this Section we will discuss the background from
which this work has emerged, providing a brief overview of
the biological and Bioinformatics concepts that motivated
the development of our solution. Section 2.2 reports some
concrete examples where cloud computing actually brought
benefits to the Bioinformatics community.

2.1. Genomic data analysis

The study of chromosome organization in the nucleus
of a cell is extremely relevant to gain insights on biological
function at the gene level, as well as the global nuclear level,
and it will further enable the investigation of pathologies
related to genome instability or nuclear morphology [4].
Chromosome Conformation Capture (3C) method and its
derivatives measure the frequency at which two chromo-
some fragments physically associate in a three-dimensional
space, based on the propensity for those two locations to
become cross-linked together [5]. Among them, the Hi-C
method exploits NGS techniques to detect those genes that
physically interact in the nucleus due to spatial proximity,
providing data about the chromosomal arrangement in the
3D space [6].

In previous works we proposed NuchaRt, a tool for Hi-
C data analysis that produces a graph-based representation
of the genes along the chromosome — a sort of topological
map of the chromosome [2], [7]. These maps will be the
ground for the integration and analysis of omics information
(i.e., resulting from different biological experiments), such
as RNA-Seq and ChIP-Seq, which can greatly benefit from
analysis relying on the 3D maps of the DNA. For instance,
mapping point-wise information directly on the chromo-
some graph allows us to apply spatial statistics, highlighting
patterns and correlations between epigenetic features and
spatial organization that could not have been detected by
considering only the bare proximity on the linear sequence.

2.2. Cloud computing and Bioinformatics

Data are both a blessing and a curse in Bioinformatics:
for this reason, it can seriously take advantage from the
cloud paradigm, which holds great promises in effectively

addressing data storage and analysis problems in Bioinfor-
matics: a typical such analysis often involves downloading
data from public sites, installing software tools locally,
and running analyses on in-house computer resources. By
placing data and software into the cloud and delivering them
as services, data and software can be seamlessly integrated
into the cloud so as to achieve adequate data storage and
analysis.

In the past years, efforts have been made to develop
cloud-scale tools, including sequence mapping [8], [9], ex-
pression analysis [10], peak caller for ChIP-Seq data [11],
and various cloud-based applications for NGS data analysis
(such as BGI Cloud and EasyGenomics. These names can all
be seen as examples of the SaaS model. Worth to mention
is also Mercury [12], an analysis pipeline for NGS data that
has been deployed in private hardware as well as in the
Amazon Web Services via the DNAnexus platform.

DNAnexus is an American company that provides an
enterprise-focused, API-based PaaS, designed to enable
clinical and research enterprises to move their analysis
pipelines into the cloud, using their own algorithms along-
side industry-recognized tools and reference resources, with
the goal of creating customized work-flows in a secure, cost-
effective, and compliant environment. To the best of our
knowledge, remarkable PaaS solutions for Bioinformatics
are Eoulsan — which is a cloud-based platform for high-
throughput sequencing analyses — and Galaxy Cloud —
an open, web-based platform for data intensive biomedical
research.

Amazon EC2 represents an example of an IaaS
model [13], and it offers a variety of VM images provided
with a good variety of Bioinformatics tools. Other important
examples are Cloud BioLinux [14] and CloVR [15]. The
former is a publicly accessible virtual machine for high
performance Bioinformatics computing. The latter, instead,
is a portable virtual machine for automated sequence anal-
ysis. It is also worth to mention that Amazon Web Services
(AWS) provides a centralized repository of public datasets,
including archives of GenBank, Ensembl, Model Organism
Encyclopedia of DNA Elements, Influenza Virus, etc. As a
matter of fact, AWS contains multiple public datasets for
a variety of scientific fields, from biology to astronomy,
chemistry, etc1. These datasets are delivered as services
(DaaS), and can be seamlessly integrated into cloud-based
applications [13].

2.3. Data analysis pipelines

Datasets are downloaded from public repositories and
analysed using well-known pipelines. The main repository
for this kind of data is the Sequence Read Archive (SRA) of
the National Centre for Biotechnology Information (NCBI),
which makes biological sequence data available to the re-
search community, so as to enhance reproducibility and
allow for new discoveries by comparing datasets. In this

1. http://aws.amazon.com/publicdatasets
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Figure 1. The three Bioinformatics pipelines we are interested on. Red dashed lines indicate a further dataset partitioning, where .fastq files are split
and processed by many aligners simultaneously. Partial .sam files are subsequently merged together to form a definitive output of aligned sequences (see
Figure 2) .

work, we also use this repository as main reference for
RNA-Seq, ChIP-Seq and Hi-C experiments.

Two widely used analysis pipelines for RNA-Seq and
ChIP-Seq data exist, relying on Tophat [16] and Cuf-
flinks [17] the former, and on Bowtie [18] and MACS [19]
the latter. Concerning Hi-C data analysis, in [2] and [7] we
discussed our approach for the analysis and representation
of such data: we refer to those works for better explanations.
However, for what it relates to this work, our method relies
on HiCUP [20] for raw data processing and alignments, and
on NuchaRt for generating Hi-C graphs and mapping multi-
omic information on the resulting graph.

Each of the three pipelines showed in Figure 1 works
on different kinds of data, produced by different biolog-
ical experiments, conducted with diverse purposes. ChIP-
Seq is used to identify those sites where a protein binds
to the DNA, while RNA-Seq reveals a snapshot of RNA
presence and quantity in a genome. Finally Hi-C produces
a catalogue of interacting chromosome fragments, a sort of
genome-wide sequencing library that provides a valuable
mean for measuring the three-dimensional distances among
all possible elements in the genome.

Figure 1 illustrates the stages that compose the three
pipelines: raw data resulting from genomic experiments
(.sra files) are downloaded from public repositories, con-
verted to the .fastq format and then aligned against a
reference genome. Aligned genomic data is then processed

using specific tools.
Dashed lines in Figure 1 indicate a further dataset par-

titioning: .fastq files are split into multiple parts; partial
files are processed simultaneously and converted to .sam
(or .bam) file (see Figure 2). All partial results are then
merged to form a single aligned file ready to be used in the
subsequent steps. Once all data have been processed, we
proceed by mapping them onto the Hi-C graph produced by
NuchaRt.

Multi-threading is optionally supported by some of the
tools listed above. For instance, DNA sequences alignment
is a highly parallel task, and the obtainable speedup is
significant (though affected by memory overhead). Bowtie
allows to execute a parallel search, where threads will run
on separate processors/cores and synchronize when pars-
ing reads2. Consequently, all tools based on Bowtie (e.g.,
TopHat and HiCUP) permit to exploit multi-threading during
the alignment phase. Among the tools in the Cufflinks suite,
Cuffmerge and Cuffdiff walk through short-reads alignment
steps, and they allow to specify the number of threads to
be used when performing such operations. NuchaRt is an R
tool with an embedded C++ engine, built using high-level
parallel programming patterns, that permits to exploit multi-
threading parallelism with optimal memory management to
achieve remarkable performances during Hi-C data analysis.

2. short DNA sequences
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Figure 2. .fastq files are split into several parts, according to the available services, and each piece is dispatched to a remote service. Outputs from
each service are merged to form a definitive, aligned SAM (or BAM) file used during subsequent steps

3. A cloud-based task farm

Processing genomic data through the pipelines described
in Section 2.3 appears manageable, but working on several
such data sets within a reasonable wall-clock time frame
presents a challenge. Each single step of the pipelines could
take up to few hours — depending on the size of input files
and on computing capabilities available (see Section 4.1) —
and produces results that can be combined together to obtain
an enriched data interpretation. If we want our approach to
scale genome-wide, we have to take into account that data
analysis over such datasets represents a significant compu-
tational challenge. Moreover, as the resolution achievable
through NGS experiments is increasing and the read-quality
data is factored in, a dataset containing full DNA molecules
easily reaches to hundreds of gigabytes.

3.1. Set up and communication

In this context, the cloud paradigm represents an ap-
pealing solution that permits to obtain large amounts of
computing capacity on-demand, with variable pricing. Upon
the OpenStack cloud software3 we built our virtualised
infrastructure: OpenStack is a free and open-source cloud
operating system, that controls large pools of compute,
storage and networking resources, providing an IaaS re-
mote environment for end users and includes computing,
networking, storage, and other essential cloud elements,
already integrated and interoperable. OpenStack APIs are
open-source Python clients, and can run on most existing
operating systems, including Linux, Mac OS and Windows.
A command-line interface enables to access the platform’s
API through easy-to-use commands that can be included in
scripts to automate tasks.

Beside these technical aspects — which would deserve
an extended and more detailed discussion — the rate at
which enterprises are adopting open-source technology in
their infrastructure continues to grow, and OpenStack tech-
nology is one of the fastest growing open-source projects
worldwide, which is being deployed by thousands of compa-
nies for business-critical workloads and applications. More-
over, one of the advantages of an open-source approach is
that it permits to create a much more flexible and vendor-
neutral cloud environment.

3. https://www.openstack.org/

We decided to build our basic cloud infrastructure upon
OpenStack: we set up a small computing infrastructure
composed of a small number of virtual machines (VMs)
that will be the computing nodes of our farm. Each VM
has a direct-attached ephemeral storage, plus a secondary
persistent storage, and is equipped with commodity multi-
core architectures with 2 to 4 virtual CPUs and up to 8GB
of RAM. All virtual instances are connected to each other
trough a 100Mbps network and run a 64-bit Linux OS.

We decided to deploy a software-as-a-service scenario.
In this sense, each step of each pipeline is accomplished
by a service (the trapezoid blocks in Figure 1), and each
VM hosts all software need by each pipeline. A VM can
execute one service at a time, provided that all needed input
is ready and available for the service to run. An additional
virtual instance, which we called “work-flow manager” is
responsible for orchestrating task scheduling (Figure 3).

To fully leverage the cloud, there are some design as-
pects that affect architectural choices. Namely, a right com-
bination of data storage, job orchestration and data exchange
solutions would help to minimise processing costs. In our
scenario, datasets are collected from on-line repositories
prior to the start of the analysis. They are accessed in
read-only mode, and must be available for all computing
instances in order to be used throughout the steps of the
pipelines. On the other hand, when a pipeline stage has com-
pleted its execution, the resulting output file(s) will be used
as input for a (possible) subsequent stage. Consequently,
novel produced files need to be accessible by the service
that is going to operate on that data.

While the cloud methodology would suggest data migra-
tion and replication as the favourite mean of shared storage,
we decided that a distributed file system that “ties” together
all compute instances is the best solution for our scenario:
datasets are huge and need only to be accessed in read-
only mode, thus a transferring appears to be unneeded and
impractical, also considering the sizes of these datasets.
Every virtual instance performs temporary writes on its own
local storage, where it has direct I/O access. Writes to the
shared folder only happen when a service has completed its
task. As for contention, services do not interfere with each
other, because each write a single service performs in the
shared storage, only affects the files owned and produced
by that service. Shared data is periodically backed up on a
backup storage.
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Figure 3. Task farm: task scheduling

3.1.1. Task scheduling. The work-flow manager in Figure 3
mainly organizes the steps of the pipelines into tasks4, which
are to be accomplished by services: it maintains a list of
active jobs and a list of tasks ready to be scheduled; it is
responsible for dispatching jobs to (idle) worker machines;
it handles jobs failures and errors.

There are several, well established work-flow manage-
ment systems (WMS) that have supported Bioinformat-
ics and other scientific work-flows (Pegasus, Taverna and
Askalon, among others) which provide several advanced fea-
tures such as fault-tolerance, task clustering, site selection,
resource provisioning, etc. Every WMS has its own pros
and cons: OpenStack includes a library named TaskFlow,
that allows the creation of work-flows where task objects
and functions are combined together. Anyway, we found
that TaskFlow has limited (or at least confusing) support for
orchestrating work-flows over a distributed infrastructure:
it permits to declare work-flow engines as workers, that
are separate processes dedicated for certain task execu-
tion. If running on other machines, engines are connected
through the kombu python messaging library. Differently,
Pegasus [21] seems to better suits our needs, likely because
it has native explicit support for clusters and grids: it works
in combination with HTCondor5, a full-featured workload
management system for compute-intensive jobs.

At the time of writing, a full working cloud solution
based on Pegasus is still under development, mainly because
we started with a small scale cloud infrastructure which was
sufficient to test and benchmark our ideas. We have built our
own simple WMS, loosely inspired by the above, in order
to be able to validate our solution. Simple does not mean
less efficient: our WMS reliably schedules tasks marked as
ready on worker machines that are currently not executing
any task. We used the Paramiko6 python library to handle
SSH connections to remote machines: with Paramiko we
take care of monitoring remote workers, and we developed
basic error handling feature that either attempts to retry on a
different worker a failed task, or tags it as failed and requests
a user-supervised checking.

4. we will use the terms task and job interchangeably
5. https://research.cs.wisc.edu/htcondor/
6. http://www.paramiko.org/
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Figure 4. Task states

Each task in our system is a list containing the name
of the service (e.g., an application) to be executed, paths to
input files, possible parameters needed by the application,
and the path to the proper shared output folder.

Tasks are linked together according to a pattern of
execution. Specifically, for each pipeline in Figure 1, tasks
follow a linear pattern of execution, because the tasks of
a pipeline run one after the other in a serial manner, so
as to respect dependencies among tasks. When considering
the whole schema from a higher perspective, the overall
execution follows an unordered pattern, where a set of tasks
can be executed in any order, provided their input data is
available.

A task life cycle is characterised by different states
(Figure 4): a task is ready to be fired for execution when all
input files it needs are available: when in this state, the work-
flow manager dispatches the task to an available service.
Once fired, a task is in the running state and the work-flow
manager updates information concerning VMs’ workload, so
that jobs scheduling is optimized to minimize the number
of idle services. A task moves to the success state after
it has finished successfully (i.e. no exceptions were raised
during running): a successful job has written all its output
files into the shared storage, so that its results can be used
by a following stage of the pipeline. If a task execution has
finished with an error, it enters the failed state.

At this point, the failed task is rescheduled, as soon as
a worker is ready to execute it. If it fails again it remains in
the failed state: due to the nature of the software employed
in the stages, a supervised checking is needed in this case,
because some input files might be missing or incorrect. A
detailed description of the exception occurred is reported,
while the pipeline where the failing task belongs is halted.

A coarse grain parallelism is kept up while services are
running: every command is sent through a SSH channel,
and is in turn managed by a controller thread responsible
for low-level operations, such as establishing the connec-
tion, while the work-flow manager continues its operations.
Once the work-flow manager has dispatched a command
on a worker machine, the controller thread waits for the
command to terminate its execution, and captures the exit
status and output messages returned.

3.1.2. Partitioned alignment. Sequence alignment is noto-
riously a long, time- and resource- consuming task: Bowtie
and Bowtie-based alignment tools normally exhibit execu-
tion times in the order of hours, depending on dataset size,



TABLE 1. FASTQ FILES SPLIT INTO FOUR PARTS, ALIGNED AND MERGED. EXECUTION TIMES AND SIZES

full .fastq split .fastq

fastq file size (GB) align (s) split (s) size (GB) align (s) merge (s)

SRR206986 3.7 1729 374 0.9 559 149
SRR207094 5.5 4871 571 1.4 1893 276

SRR501780 1 15 28800 1927 3.6 10700 1320

aligning options, computing power available and memory re-
sources. Timings are likely to increase as the size of datasets
increases, but this situation is even worst if the physical
memory available is too small, causing the operating system
to swap pages when memory demands are greater than that
physically available for all processes.

Despite being able to exploit thread parallelism during
alignment, the size of raw data files is by far the most
important factor that influences this execution time. In order
to cope with this issue, .fastq files can be further split,
and alignment can be performed on partial files, while the
definitive output is obtained by merging each processed
partial file (Figure 2). An ideal policy would suggest to
create as many partial files as there are working machines
available: the more the parts, the smaller the files, thus the
faster should be the alignment. In reality, there is a trade-off
among the number of parts, splitting time, alignment time
and merging plus sorting time.

In our task farm each computing resource performs the
alignment on a partial .fastq file, yielding a partial .sam
(or .bam) file of aligned sequenced reads. Partial outputs
are then merged together and sorted.

Table 1 reports some details concerning timings and file
sizes during alignment steps for the ChIP-Seq (first row),
RNA-Seq (second row) and Hi-C (third row) pipelines. First
column on the left reports experiments names, as they have
been downloaded from the NCBI repository7.

Timings reported are in seconds and reflect wall-clock
time measured using Linux time command, on virtual
instances equipped with 2 vCPUs. Alignment time for split
files is the average of the four alignments, executed concur-
rently by four services. The last column on the right reports
the sum of the merge and sort operations. These timings
could be lower if more computing power was available (i.e.,
more CPUs) for multi-threading parallelism with aligner
tools.

This solution is a valuable mean for reducing align-
ment timings — compared to the processing of a whole
dataset, maintaining the same configuration — but mostly
it allows to distribute the workload over several computing
instances, making effective use of the IaaS cloud paradigm.
Nevertheless, performance is still heavily dependent on the
underlying computing capabilities and physical memory
available. Also, we used basic configurations when launch-
ing alignment tools, but the number of options varies for
each tool, which permit to customise the process and obtain

7. Experiments from [3] are hosted at http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE29184

more accurate and detailed outcomes, at the cost of higher
memory consumption.

4. Test Case

We tested our infrastructure using datasets from the
work of Shen et al. [3], which is particularly interesting
since it presents associated RNA-Seq, ChIP-Seq and Hi-C
experiments on the same samples of laboratory mouse. In
detail, the work comprises 143 datasets from 19 different
tissues of mouse, and is aimed at finding those genomic
regions that affect genes operation and behaviour. The pe-
culiarity of this work is the concomitant presence of Hi-C
data, which allowed scientists to demonstrate that the mouse
genome is organized into domains of regulated enhancers
and promoters.

4.1. Computational costs

The following tables summarize the computational costs
encountered while running our task farm over some of the
Shen et al. experiments [3]. Our task farm was implemented
over a cloud infrastructure built on top of OpenStack, as de-
scribed in Section 3, with a farm of 4 virtual instances plus a
controller node, where the work-flow manager was running.
All instances had a very simple, identical configuration, with
2 vCPUs and 8GB of RAM.

Tables show timings (in seconds) and input sizes for
each step of each pipeline, for both the control file (marked
with a ’C’) and the sample file (marked with a ’S’). A
control file normally refers to data from an experiment
conducted on a healthy cell, while the sample file contains
data from a diseased cell. Both the ChIP-Seq pipeline and
the RNA-Seq pipeline need to be executed for both control
and sample files, in order to identify significant features
resulting from comparing the two experiments. When both
files are processed together (as it is the case with MACS or
Cuffdiff), timings are reported in the sample column only,
while input sizes are showed for both.

Tools employed in each step might output more than one
file, sometimes containing statistics on the alignment or a
summary of the executed operations. However, input sizes
reported in our tables reflect the sum of the files (if more
than one) used as input by a specific task. Also note that
alignment timings reported are the sum of the average split
time, average aligning time and average merge (and sort)
time.

For what it concerns ChIP-Seq, it is the less demanding
pipeline: smaller datasets led to reduced memory overhead



TABLE 2. EXECUTION TIMES AND SIZE OF INPUT FILES FOR EACH
STEP OF THE CHIP-SEQ PIPELINE

ChIP-Seq

SRR206986 (S) SRR206994 (C)

step time (s) input (GB) time (s) input (GB)
convert fastq 138 0.49 149 0.51

alignment 982 3.7 1017 3.9
MACS 344 2.5 – 2.6

and faster execution time. Table 2 reports details of a run us-
ing SRR206986 experiment as sample file, and SRR206994
experiment as control file (the latter was an input cortex
cell line, while the former had CTCF cortex data). Aligned
chromosome reads from both control and sample files are
used together as input for the MACS tool, which evaluates
the significance of enriched genomic regions where proteins
bind to the DNA, and generates a simple textual output
containing genomic locations, specified by chromosome, be-
gin and end positions, and some more optional information,
including the p-value computed for each identified region.

RNA-Seq pipeline is slightly more complex, and more
steps are required to interpret differential gene expression.
TopHat uses Bowtie for DNA sequences mapping and
alignment, and builds a database of needed and unneeded
genomic features involved in genes expression. This specific
phase is very time- (and memory-) consuming, and there
is little room to speed it up because it does not benefit
from multi-threaded execution. , which is instead exploited
when aligning reads with Bowtie. When we split .fastq
files we can distribute the workload over several working
machines, attempting to reduce the overall execution time —
on average, splitting the file into 4 parts and aligning each
part on separate instances, halves the wall-clock execution
time, with respect to processing the full dataset — but
the overhead of merging partial outputs and sorting the
definitive one is not negligible.

At the Cufflinks stage, sample and control libraries are
compared, in order to quantify genes actual expression:
Cuffmerge and Cuffdiff are responsible for merging and
comparing expression levels of genes in both control and
sample RNA-Seq experiments. The differential expression at
the gene level is reported in a file named gene_exp.diff.

The Hi-C pipeline does not use a control file, but oper-
ates on raw Hi-C data, contained in the .sra file, which is
converted into two .fastq files (with forward and reverse
spot respectively, due to the nature of the experiment). These
files are split, as explained above, processed using HiCUP
that yields .sam files containing pairs of chromosome
fragments which are likely to be close to each other in a
3D view of the DNA.

The Hi-C pipeline proceeds by constructing a graph
from the .sam file produced by HiCUP using NuchaRt:
in these graphs nodes represent genes and edges link two
genes which are found to be close to each other, according
to the .sam file. Each pair of genes linked by an edge
is likely to interact and influence each other’s behaviour.

TABLE 3. EXECUTION TIMES AND SIZE OF INPUT FILES FOR EACH
STEP OF THE RNA-SEQ PIPELINE

RNA-Seq

SRR207094 (S) SRR207095 (C)

step time (s) input (GB) time (s) input (GB)
convert fastq 171 0.45 240 0.53

alignment 4871 5.5 4006 6.2
cufflinks 3156 0.6 3421 0.8

cuffmerge 287 1.2 – 1.3
cuffdiff 18840 2.5 – –

While building a whole-genome graph would be technically
possible with NuchaRt, we normally focus on some genes
of interest, and rather build a neighbourhood graph for these
genes [7].

Upon these graphs we map the heterogeneous informa-
tion obtained from the other pipelines, and then proceed by
rendering the resulting network and performing statistical
analysis over it, by just drawing from the statistical libraries
set provided by the R environment.

The execution time for the NuchaRt phase is relative to
the graph built for few genes of interest (SOX2, POU5F1,
REST) on SRR501780 experiment. The reported execution
time is the sum of 5 distinct steps (as described in [2]).

Minor considerations. Notably, long-lasting tasks are more
likely to incur in platforms or connection errors, causing
the abortion of the failing job and which would force a job
resubmission, increasing the total execution time. Our task
farm can handle failures by trying to resubmit a task in a
different working instance, but has little automated control
over platform errors: misconfiguration of user software or
missing libraries can impede an application to start; huge
datasets can saturate physical memory, causing an appli-
cation to immediately abort. As soon as we upgrade our
infrastructure with a state-of-the-art WMS, we foresee better
handling of failures and errors.

It might also be the case that some stages’ execution time
largely exceed the others, causing a pipeline to halt, waiting
for a output data to be ready. In our case, this happened with
the Hi-C pipeline, where the NuchaRt stage was waiting for
the outputs of both ChIP-Seq and RNA-Seq before it could
build graphs with mapped multi-omic information.

5. Conclusion

The explosion of experimental datasets available for
genome analysis and multi-omic data integration will pose
difficult challenges of data management, which should be
carefully considered by computer scientists working in the
field. Cloud computing can be very useful for this kind of
analysis, since the on-demand paradigm is well suited with
the possibility (and necessity) of providing computational
resources that can host a variety of different workloads,
and that can be deployed and scaled-out through the rapid
provisioning of additional virtual resources as soon as new
experimental data becomes available.



TABLE 4. EXECUTION TIMES AND SIZE OF INPUT FILES FOR EACH
STEP OF THE HI-C PIPELINE

HiC

SRR501780 1 SRR501780 2

step time (s) input (GB) time (s) input (GB)
convert fastq 1517 3.0 1624 3.2

alignment 13606 15+15 – –
NuchaRt 387 ∼8 – –

The presented cloud-based task farm solution attempts to
provide an optimal exploitation of the available resources,
and permits to produce results in a standardized and re-
producible way. In our vision, this solution could be the
background for a Cloud platform that provides Bioinformat-
ics scientists with computing facilities, software tools and
easy access to public data repositories. What we expect is a
complete solution for dealing with complex scientific work-
flows modelled as pipelines, where software services are
made available in an fully equipped environment that can
embrace novel data processing and visualisation techniques,
as soon as novel discoveries spring out from Genomic
communities.
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