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Abstract—Current trend in store-carry-forward fashioned op-
portunistic networks is towards utilizing social ties in communi-
ties. However, keeping social knowledge/network information up-
to-date is a non-trivial task due to ever-changing dynamics such
as mobility and other human behavior. Therefore, social-based
message forwarding proposals in which network information are
initially provided to mobile nodes are subject to lose actuality
within time. Motivated with this shortcoming, this study presents
a social unicast routing scheme, called RoRo-LT, which is based
on self-assessment of people’s daily routines. Without requiring
any network information, RoRo-LT provides an up-to-date social
awareness with long-term spatiotemporal observations. In RoRo-
LT, nodes in contact estimate their own future trajectories
and decide on forwarding according to their social similarities.
In comparison to well-known forwarding schemes, RoRo-LT’s
performance results indicate a high socio-spatial awareness as
well as a reasonable effectiveness for opportunistic routing.

Keywords—delay-tolerant networks, social networks, oppor-
tunistic routing, context-awareness, next-place prediction

I. INTRODUCTION

Recently, significance of social collaboration has gained
currency in the domain of wireless communications [1]. Spe-
cific tendencies in social space unite people together at specific
points of interests. Therefore, with the advances in tiny-sensor
technologies and ubiquity of smart phones, public awareness
on urgent issues can be raised in more efficient and distributed
ways. In this regard, mobile-phone sensor networks (MPSNs)
have been emerging in order to provide cheap and dynamic
solutions [2]. Nevertheless, human mobility is a key challenge
for social routing. In the last decade, effects of mobile entity
behaviors on networking have been studied thoroughly with
several mobility models and routing approaches [3], [4]. In-
stead of avoiding undesirable effects of mobility, opportunistic
communication schemes have been introduced in order to
exploit movements of mobile node carriers. Intermittent con-
nectivity problems are tackled with delay/disruption-tolerant
networking (DTN) [5] in which every mobile entity adopts a
suitable store-carry-forward mechanism.

In DTN, message forwarding has to be selective for two
main reasons. First, bandwidth in the communication environ-
ment must be used efficiently. Routing algorithms depending
on multi-copy packet forwarding relay excessive message
replicas which severely affect channel capacities. Second,
randomness in forwarding might not necessarily provide high
delivery ratios. Majority of the opportunistic methods rely on
packet switching in consideration of past encounters, frequency
of inter-contact times. However, reachability to high number of

network elements in a vicinity and information dissemination
to distant regions in cities is only possible by understanding
mobile entity behaviors and predicting the future status of
intermittently connected networks [6].

In this paper, we propose an opportunistic message for-
warding algorithm, called RoRo-LT, which provides an oppor-
tunistic routing by analyzing daily routines of MPSN nodes.
LT stands for location and time data; such that we create long-
term observation sets from spatiotemporal history of every
mobile-phone carrier in order to predict their future locations.
We keep track of fine-grained GPS data of each mobile-phone.
During encounters, each mobile node extracts its own history
data, creates a set of predicted outputs for future locations
and trajectories, and compares its results with others in order
to decide on social routing. Forwarding works as follows:
When any two node come across, each node estimates its own
future-locations and the node holding the message compares
trajectory estimations. If there is no similarity, the message is
forwarded to the other node. In this regard, RoRo-LT provides
an introspective analysis which does not require global network
knowledge. Contrary to the popular opinion of obtaining social
similarities from physical and/or network context, our aim is to
provide a local service that with the behavioral context. To the
extent of our knowledge, this study is the first to specifically
explore periodicity and regularity of mobile encounters in
social networks with the following contributions:

• Long-term observations: Unlike existing social-
based proposals that are bound to short-run obser-
vations, RoRo-LT utilizes a large and concatenated
history data for a better understanding of social period-
icities. In [7], we have shown that daily-life routines
of mobile-phone carriers can play an important role
for opportunistic networking. In this study, we extend
our experiments for social routing.

• Self-assessment: Next-place prediction studies are
getting popular in the domains of ubiquitous com-
puting and crowdsourcing. Unlike centralized or off-
line methods, we unveil an on-the-fly target location
estimation which does not require global knowledge.

• Other DTN objectives: RoRo-LT’s prediction meth-
ods and outputs are not only congruent for selective
message forwarding, but also for several DTN objec-
tives such as reliable communication and data dis-
semination. For reliable communication, the presented
algorithm is capable of estimating future locations.
In this way, nodes can decide on forming clusters



with respect to their predicted displacements. For data
dissemination, nodes can estimate their own future
trajectories so that during contact times they can
agree on relaying any message to considered necessary
directions. In brief, our online prediction approach is
a helpful tool to find socio-spatial ties. This study
focuses on unicast performance of RoRo-LT, but it can
be also adopted for multicast or broadcast scenarios.

We compare and contrast RoRo-LT with well-accepted
DTN approaches over different scenarios: By using the Op-
portunistic Network Simulator (ONE) [8], an intermittently
connected network environment is designated in a campus map
with several mobile nodes which communicate over the WiFi
protocol. In terms of network efficiency and knowledge utiliza-
tion, our performance results are promising when compared to
well-known DTN-based approaches.

The rest of the paper is organized as follows. Section
II discusses the related work. Section III describes the pro-
cedures behind our next-place prediction algorithm. Section
IV introduces RoRo-LT. Section V presents the experimental
setup. Section VI discourses on the performance analysis and
experimental results. Finally, Section VII concludes with the
discussion and future work.

II. RELATED WORK

Several analogical surveys for DTN-based routing can be
found in [9], [10], [11]. The most-known taxonomic distinction
in opportunistic networking is between studies which adopt
stochastic and deterministic approaches. In general, stochas-
tic methods such as Epidemic [12], Spray&Wait [13], and
Spray&Focus [14] are based on (semi-)epidemic packet relays
which face with flooding issues in population-dense areas and
cannot perform well for sparse network architectures. As Jain
et al proposed in [15], routing decisions can be taken more
rigorously with knowledge utilization during nodal contacts.
By this means, network oracles such as contacts summary,
queuing information, and instantaneous buffer occupancies
help for deterministic decisions so that routing performance
and QoS are increased. MaxProp [16], PRoPHET [17], and
RAPID [18], EBR [19] provide selectiveness by utilizing
physical context such as encounter history tables, delivery
probabilities, similarities, and dependencies.

Recent studies show that investigating node-to-node re-
lations in terms of delivery/encounter likelihood estimations
provides transmission effectiveness only up to a certain degree
[11]. Pioneer examples of broader context utilization such
as FRESH [20], HiBOp [21], and CAR [22] prove that
relationships can be understood smoothly for selection of
most appropriate nodes in routing. Considering scalability,
any router has to provide a scheme which compares local
context not only with context from encounters, but with other
context types as well. In addition, determination level must
be increased with either decentralized or distributed decision
making algorithms for context-awareness (CA). In this regard,
the impact of social relationships are getting popular in DTN-
based scenarios. Early archetypes such as Label [23], SimBET
[24], and PeopleRank [25] exploit social dependencies among
network entities. Similarities (or sometimes dissimilarities) are
investigated with either contact-based data acquisition or infor-
mation related with current network architecture. For instance,

graph theory measures such as centrality and cohesion may
dramatically increase networking performance as the experi-
mental analyses in BubbleRAP [26] and dLife [27] already
demonstrate. However, relationships and network status are
ever-changing; so that updating the network status information
concurrently for all partakers is one of the main challenges in
social routing. Besides, the number of intermittently connected
networks and the density of each may vary from time to
time. Yet, most of the social opportunistic schemes rely on
scenarios in which these information are obtained beforehand
or provided regularly. It is obvious that self-taught network
information is necessary to predict near-future status and
characteristics of the network participated. We strongly believe
that user context in terms of behaviors and activities rather
than social dependencies plays much more important role for
understanding long-term relationships.

Depending on information types exploited, we categorize
DTN-based routing approaches with regard to 3 fundamental
context groups: behavioral context, physical context, and envi-
ronmental context. As shown in Figure 1, behavioral context,
physical context, and environmental context consist of user
information, contact information, and network information,
respectively. We also distinguish the approaches according to
their determinism levels. Determinism together with informa-
tion exploited forms up CA. Intrinsically, network entities
in all DTN-based approaches utilize physical context from
contacts. CA can be broadened with either behavioral context,
or environmental context, or both. To our knowledge, majority
of the stochastic and encounter-based proposals solely depend
on physical context. Besides, approaches which make use of
several network context engender the scope of social-routing.
Current social-based routers mostly focus on graph theory and
similarity metrics since it is practically hard to obtain overall
network status information. If network context is wanted to be
comprehended thoroughly, there is always need for information
retrieval from info-centers and/or by distributed sensing.

Comprehension of the overall network status can be also
possible with behavioral CA. Distributed collaboration of
ubiquitously dispersed behavior-aware nodes can envision the
network status for a specific time. Besides, several user infor-
mation such as activities, points-of-interest (POIs), mobility
traces which may repeat periodically can give insights for
social (dis)similarities. However, there are very few studies
for behavioral CA in the domain of DTN. MobySpace [28]

Fig. 1: DTN-based proposals with respect to CA



employs forwarding between nodes with similar destinations.
CSI [29] provides routing with a behavior-oriented service.
As the most similar study to ours, Profile-Cast [30] analyzes
contact similarities with respect to mobility traces and profile
information. We position our study in the middle of the
behavioral CA as we provide a deterministic social routing
with long-term spatiotemporal self-observation sets.

For behavior-awareness, various off-line algorithms exist in
the research field of ubiquitous computing. In order to utilize
such proposals in opportunistic networking schemes, algo-
rithms must be adapted for on-the-fly scenarios. For instance,
specifically to our study, studies such as analysis of mobility
traces [31], [32], estimation on human activities and behaviors
[33], periodicity forecasting [34], next-place prediction [35],
[36], [37] can be adopted as online learning schemes for
DTN-based routing. We strongly believe that, in the near
future, technological advances will bridge such online learning
algorithms together with opportunistic networking scenarios.

III. NEXT-PLACE PREDICTION MODEL

In this section, we clearly define the next-place prediction
problem and our methodology by providing related definitions
and procedures.

A. Problem Definition

Definitions regarding to the model are given below:

Definition 1: A daily trajectory set Ld is composed of
a sequence of ordered pairs (li, ti) where li and ti stand
for a spatial coordinate and its corresponding time-stamp,
respectively. Cardinality of Ld is denoted by k which equals
to the number of GPS records with fixed time intervals.

Definition 2: A weekly observation set W is denoted by
W =

∪7
d=1 Ld where d represents a unique day of a week.

Equipollently, W1 stands for the set which holds observations
of the preceding week, W2 stands for the ones of the preceding
of W1, and so forth.

Definition 3: For ∀Ld, number of measurements up to the
current time is c ∈ N+. Thusly, tc stands for current time. tg
stands for target time where g ∈ N+. tg relative to tc is equal
to tc+tg and denoted by tc+g. Similarly, lc denotes the current
coordinate measurement whereas lc+g is the coordinate when
tc+g . ∀LD, the location which corresponds to tc is denoted
with ϵc.

Definition 4: A transitory history H of current day d
is composed of h previous measurements back from current
location and time pairs and denoted as H =

∪c
i=c−h(li, ti).

Definition 5: An estimated spatial element is denoted by
θ. An estimated trajectory between tc and tg is shown as Θ =
{θc, . . . , θc+g}. Each sequential element of Θ is a result of
next-place prediction.

Problem: Given the definitions, our motivation is to create
Θ sets at any tc in a specific day (∃!D) by utilizing LD ⊂W1.
The depth of history for weekly observations may be increased
for a better Θ estimation; so that W2, W3, or more can be uti-
lized as well. Increasing the number of weekly observation sets
can provide more efficiency in periodic pattern recognition.
Procedures of the model are discussed in the next sub-section.

B. Methodology

The next-place prediction model has 3 main procedures:
self-periodicity measurement, inter-periodicity estimation, and
next-place prediction. These procedures are based on local
evaluation, so that network entities are able to use the overall
model on their own for a routing decision which is explained
in the next section. The procedures are explained below:

1) Measuring self-periodicity: We define self-periodicity
level of a node as the similarity between its 2 different equally-
sized spatiotemporal sets. Local calculation of periodicity with
regard to spatiotemporal measurements is shown in Algorithm
III.1. H is compared with the corresponding spatiotemporal
records {ϵc−h, . . . ϵc} ∈ ∃!Ld, Ld ⊂ ∃W . According to the
similarity ratio value between them, a high periodicity label or
a low periodicity label is returned. There is tolerance interval
for comparison, meaning that if the distance between each
location from H and Ld is under a threshold (τ ), they are
taken as similar records.

2) Estimating inter-periodicity: We define inter-periodicity
level of a node pair as the similarity between their equally-
sized and contemporaneous spatiotemporal Θ sets. Similar to
the self-periodicity measurement, node pairs estimate inter-
periodicity level as presented in Algorithm III.2.

3) Predicting next-places: The steps in next-place predic-
tion are given in Algorithm III.3. Each θi ∈ Θ is calculated
as follows. lc is directly assigned to θc. The coordinate shift
between lc and ϵc ∈ ∃!Ld, Ld ⊂ ∃W is added to ϵc+1, . . .,
ϵc+g and assigned as θc+1, . . ., θc+g, respectively.

Algorithm III.1 Self-periodicity Measurement

Input: H , ∃!Ld ⊂ ∃W
Output: Self-Periodicity Level: Low ∨High

1: SimCount← 0;
2: for i = c− h | h = n(H) to i = c do
3: if Distance between li ∈ H and ϵi ∈ Ld ≤ τ then
4: SimCount← SimCount+ 1
5: end if
6: end for
7: if SimCount/h ≥ 0.5 then
8: return High
9: end if

10: return Low

Algorithm III.2 Inter-periodicity Estimation

Input: Θ from each node pair
Output: Inter-periodicity Estimation Level: Low ∨High

1: SimCount← 0;
2: for i = c to i = c+ g do
3: if Distance between θi ∈ Θ from first node and θi ∈ Θ

from second node ≤ τ then
4: SimCount← SimCount+ 1
5: end if
6: end for
7: if SimCount/h ≥ 0.5 then
8: return High
9: end if

10: return Low



Algorithm III.3 Next-place prediction

Input: ∃!Ld ⊂ ∃W
Output: Θ

1: θc ← lc, θc ∈ Θ
2: xDiff ← x-coordinate difference between lc and ϵc ∈ Ld

3: yDiff ← y-coordinate difference between lc and ϵc ∈ Ld

4: shift = (xDiff, yDiff)
5: for i = c+ 1 to i = c+ g do
6: θi ← ϵi + shift, θi ∈ Θ
7: end for
8: return Θ

IV. RORO-LT: A SOCIAL ROUTING SERVICE
WITH RESPECT TO SPATIOTEMPORAL ROUTINES

In this section, we describe our opportunistic routing
scheme RoRo-LT which aims to exploit daily routines of
mobile-phone users in the interest of message forwarding.
With the next-place prediction model presented in Section III,
mobile-phones are individually able to recognize their carriers’
periodic situations in terms of socio-spatial orientations.

A. Impact of Socio-Spatial Dissociations

In the daily life, people gather at several locations such
as business centers, schools, shopping malls, houses and
form several socio-spatial groups for particular time periods.
However, cohesiveness in such temporary groups are subject
to be broken swiftly because of people’s further relations,
private reasons, or other factors. Considering such dynamics,
as already discussed in Section II, social-based DTN routing
schemes which adapt conjectural network/group information
may suffer from actuality. To our knowledge, current informa-
tion about network status can be obtained in a distributed way
by individual observations. Individuals may still be unaware of
the overall network characteristics, but ubiquity of information
from each individual unwittingly forms up an overview about
the network. In other words, social and spatial differences
among people may provide social pervasiveness of informa-
tion. The sole goal of RoRo-LT is to determine whether node
pairs in communication will be in the same region or not
after a specified target time. As a unicast protocol, message
on hand is relayed to the contacts encountered at tc if only
they are predicted to be distant from the node itself at tc+g.
By this means, RoRo-LT enables self-seeking of socio-spatial
dissociations in order to reach different places.

B. Focusing on the User

Majority of the people in the world live with routines.
Certain locations as gathering-places create several intermittent
social relationships based upon temporal and spatial routines.
At the same time, however, high diversity in people’s routines
immediately breaks off those relationships. RoRo-LT focuses
on estimation of possible future locations of each mobile entity
in order to exploit from breakaways in urban life.

C. Forwarding Mechanism

The flowchart of RoRo-LT’s forwarding mechanism is
depicted in Figure 2. When a node establishes a connection
with another node, the self-periodicity measurement procedure

is called as the first step. For the current day d, the node
compares its own H with its own history in Ld ⊂ W1.
Comparing the spatiotemporal records between ϵc−h and ϵc
with H , the next-place prediction function is called if a high
similarity is found. Otherwise, the self-periodicity is measured
for the same corresponding time periods in each older Ld ∈Wi

sets until a high similarity is detected. If a high similarity score
cannot be assured after all of the history records are traced,
then Ld with the highest similarity score is selected as the
input for next-place prediction procedure.

With the next-place prediction algorithm, contact pairs
estimate their own future trajectory for a given target time
(tg). In each individual node, next-coordinates between the
times tc and tg are written in Θ. In the final step, the node
with the message requests Θ of its contact and estimates inter-
periodicity level. The node with the message forwards it to its
contact only if the forecasted next-locations of contact pairs
are non-similar.

Fig. 2: Forwarding mechanism

D. Discussion

RoRo-LT’s forwarding mechanism is symmetric; without
loss of generality, nodes which discover others in the same
radio range call the same periodicity-awareness functions.
During communication, nodes request estimation sets (Θ) with
the same format, structure, and size from their contacts.

V. EXPERIMENTAL DESIGN

For a subtle evaluation of RoRo-LT, the Opportunistic
Networking Environment (ONE) simulator [8] is designated
to create intermittently-connected mobile network scenarios
with various parameters. In the simulations, several groups of
mobile-phone carriers are formed with different daily routines
in the campus map of University of Twente. The parameters
of the network setup and models are introduced in this section.
Table I shows the experimental design parameters.

A. Network Setup

The campus map of University of Twente is used as our
simulation testbed. Dispersed over an area of approximately
2000m by 2000m, the campus contains several POIs: 6 re-
search and faculty buildings, 5 residential centers, 1 library,
1 shopping venue, 1 sport center, and 3 recreational areas
are assigned as POIs. As the MPSN of our scenario, a total
of 12 worker and student groups are generated with varying



TABLE I: MPSN Scenario Parameters

Simulation run-time 24hours
MPSN simulation map UT campus (2000m × 2000m)
POIs 17 fixed locations
Network population 100-1000 nodes under 12 workgroups
Movement model Shortest Path Map Based Movement
Node wait time 10mins-4hours
Node speed 0.5m/sec-1.5m/sec
GPS granularity 5mins-30mins (30mins∗)
Transitory history depth 10
Target time (tg) 30mins-5hours (1hour∗)
Location Tolerance (τ ) 10m,50m,100m∗,500m,1000m
Bandwidth 1.375MBps
Radio Transmit Range 30m
Message size 500kB-1MB
Buffer Size 25MB
Time-to-live 30mins-5hours (1hour∗)

Except as provided elsewhere, “*” demonstrates the default parameters.

populations including a total of 100 to 1000 individuals. The
network architecture does not contain any fixed or mobile in-
frastructures. Identical mobile-phones (carried by pedestrians)
with WiFi interfaces which have 30m radio range compose the
overall network.

B. Mobility Model

Shortest path map-based movement model is used to sim-
ulate people’s mobility. Depending on their daily activities,
mobile nodes under different worker and student groups move
with a purpose. In the simulations, a worker can drop over
places such as his/her house, office, and restaurant whereas
a student can shuttle between places such as his/her house,
faculty, and library. Their POI probabilities may differ from
time to time, from day to day, and from week to week. In
addition, their wait times in specific localities may vary as
well. For each worker and student group, each simulation test
runs for 24 hours where different POI probabilities and wait
times are assigned to the nodes.

C. Next-place Prediction Model Parameters

GPS granularity, target time (tg), location tolerance (τ ),
and transitory set length (h) are the next-place prediction
model parameters. In the simulations, each mobile node keeps
track of spatiotemporal activities in fixed time intervals, called
granularity. The importance of a message (event) is defined
with tg; meaning that that event information is wanted to be
delivered within tg. During similarity detection in periodicity
measurement procedures, τ defines the tolerance interval in
terms of distance for spatial comparisons. In self-periodicity
measurement, h defines the depth of comparisons. All of these
parameters are tested with different values in the simulations.

D. RoRo-LT Parameters

Unicast messages are generated in every 25-35 seconds by
random pedestrians. Considering that messages may contain
critical event information, their sizes are decided to vary
between 500 KBytes to 1 MBytes. Providing a store-carry-
forward mechanism, nodes are able to store messages in their
internal memory. Allocated buffers works in circular fashion
where oldest messages are dropped whenever no space left for
an upcoming message. On the other hand, equal time-to-live

(TTL) durations are assigned for all messages; so that all nodes
store events for the same period of time. TTL is equal to tg.

Contact pairs generate their own Θ just after connection
established. Node with the message requests Θ of the other
node. The size of Θ in contact pairs is dependant on granularity
since number of future locations are estimated by extracting
contemporaneous spatial records from the predetermined his-
tory set. High frequency in spatiotemporal records requires
more processing time for future-trajectory estimation. Since
connections are intermittent most of the time, estimation
process must be handled within communication window of
contact pairs. Therefore, the effect of granularity on both next-
place estimation and routing is discussed in Section VI.

VI. PERFORMANCE ANALYSIS

Extensive number of tests are held in order to assess the
performance of RoRo-LT. The effect of next-place prediction
procedures and parameters are analyzed within routing tests. In
addition, effectiveness of RoRo-LT is compared with the fol-
lowing well-accepted DTN-based routing schemes: Epidemic
[12], Spray&Wait [13], MaxProp [16], PRoPHET [17], and
BubbleRAP [26]. This section explains the evaluation steps
and presents the results in detail.

A. Evaluation Metrics

The results are assessed with the following measures:

1) Delivery success ratio: The total number of successfully
delivered unique messages divided by the total number of
created unique messages. Each unique message is created at
certain time, and has an unique identification number to be
distinguished from others in the network.

2) Average latency: Average delay of messages from cre-
ation to delivery.

3) Message abortion count: Number of aborted transmis-
sions between nodes.

B. Evaluation Methodology

For the performance assessment of RoRo-LT, different
scenarios are generated with different periodicity levels for
all nodes. In order to have weekly observation sets to be
utilized as history in actual routing simulations, a varying
set of POI probabilities are assigned to the MPSN groups.
In ONE, POI probability refers to the probability of being
present at a specific location. In the simulations, nodes which
have zero POI probability for several POIs have a random
movement whereas a 100% POI probability means presence
at the specified POIs is a certain event. Thus, nodes with high
POI probabilities have higher periodicities, and vice versa.
On the other hand, same settings are run for 10 times with
different number of nodes varying from 100 up to 1000. The
results given in this section represent average values for all
node numbers and run counts.

A set of controlled experiments are held to depict a trade-
off between routing and the next-place prediction model pa-
rameters. As the first evaluation, the effect of people’s routines
on RoRo-LT performance is investigated. For the actual sce-
nario S, equivalent scenarios in which only POI probabilities
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in RoRo-LT is investigated by testing history sets
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scenario, but with varying POI probabilities for
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(c) Decrease in GPS sensing frequency does not
cause a big trouble for routing performance. De-
crease in delivery success ratio is remarkable, but
the variance in loss is low. The number of aborted
messages is almost same for all granularities, except
for 5 and 10 minutes.

Fig. 3: Performance Evaluation of RoRo-LT parameters

differ are run beforehand. In a gradual manner, these history
scenarios are named from S0% to S100% to have similar
instances of the actual scenario with varying periodicities from
0% to 100%, respectively. As the second evaluation, the effect
of history depth on RoRo-LT is investigated. As the forwarding
traces history until a best-matching history is found, searching
process may substantially a problem for routing. To investigate
this issue, actual scenario utilizes different history depths. The
impacts of granularity and location tolerance interval (τ) are
examined as well. The results are given in Section VI-C.

RoRo-LT’s performance is also compared with other well-
known DTN strategies. The evaluation steps and results are
discussed in Section VI-D.

C. Evaluation of RoRo-LT Parameters

Evaluation results for RoRo-LT are given in Figure 3. Fig-
ure 3(a) shows how message delivery is affected when the self-
similarity in the history set W1 changes. In each comparison,
the actual scenario utilizes only W1; so that history depth is 1.
If the past trajectory records of the mobile-nodes get similar
to the ones in the actual scenario, self-similarity procedure of
the next-prediction prediction model provides more accurate
estimations for inter-periodicity estimation. The performance
of the model is also remarkable in terms of latency results (in
minutes) which are shown above of each mark on the graph.
More similarity to the actual scenario helps messages to be
delivered more quickly. On the other hand, as Table II presents,
abortion count out of 2891 messages is almost same for all
scenarios with different periodicity similarities.

As shown in Figure 3(b), the effect of history depth is
also examined in terms of delivery success ratio and latency.
It is evident that RoRo-LT cannot perform well when the self-
similarity procedure increases the depth of search. As Table III
shows, number of aborted messages gradually increases for the
tests where nodes trace more history records.

The effect of granularity is shown in Figure 3(c). Interest-
ingly, high frequency in history sets does not improve routing
performance. However, as expected, the number of aborted

TABLE II: Message abortion count w.r.t. history scenarios

Scenarios utilized S0% S20% S40% S60% S80% S100%

Abortion count 97 89 85 91 88 86

TABLE III: Message abortion count w.r.t. history depth

History Depth 1 3 5 7 9
Abortion count 81 102 155 262 596

messages are almost same for all granularities, except for very
frequent ones. Abortion dramatically increases for the cases
where records are taken in every 5 or 10 minutes since inter-
periodicity estimation has to deal with more frequent records.

When too much precision is requested for self-similarity,
RoRo-LT cannot perform well as Figure 4 demonstrates.
When the actual scenario is tested with different history sets
obtained from the scenarios S20%, . . ., S80%, RoRo-LT has
a reasonable performance for τ = 50m and τ = 100m.
Increasing τ gradually decreases the self-similarity comparison
performance and RoRo-LT delivery success rates.
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Fig. 4: Forwarding mechanism

In this sub-section, several trade-offs between RoRo-LT’s
service parameters are presented. The rest of the evaluation is
done and discussed with the best trade-off values which are
shown as default parameters in Table I.
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Fig. 5: Performance results for RoRo-LT and several DTN-based routers

D. Comparison between RoRo-LT and Other DTN Routers

Figure 5 contains the performance evaluations of Epidemic,
Spray&Wait, PRoPHET, BubbleRAP, and RoRo-LT.

Figure 5(a) shows the delivery success rates of the routers
with respect to varying TTL durations. As expected and
familiarly known, Epidemic performs very well for lower
TTL durations. However, long TTL values causes numerous
overflows because of Epidemic’s uncontrolled nature. As a
controlled mechanism, Spray&Wait utilizes a tradeoff between
multi-copy and single-copy in order to make the messages with
long TTL values survive in the environment. However, its de-
livery probability is still low than PRoPHET and BubbleRAP.
RoRo-LT provides a reasonable delivery success which is
similar to the performance of PRoPHET and BubbleRAP.
According to the experiments, RoRo-LT performs better than
Spray&Wait and its performance is quite similar to PRoPHET
and BubbleRAP in terms of delivery success ratios.

In Figure 5(b), same routers are compared according to
their latency values. RoRo-LT’s performance in message deliv-
ery durations is reasonable, but still not effective as PRoPHET
and BubbleRAP. However, as Table IV presents, average hop
count value for RoRo-LT is the lowest among all of the routers;
meaning that messages are delivered over less hops to the
destinations.

TABLE IV: Average Hop Count when TTL=150 mins

Router Epidemic Spray&Wait PRoPHET BubbleRAP RoRo-LT
Avg Hop 42.48 24.97 20.01 15.03 9.66

E. Discussion

Provided with history sets which hold self-routines of
mobile-phone carriers, RoRo-LT employs a cross examination
on contact pairs in order to utilize current social dissimilarities
and therefore avoids outdated network information. When its
results are analyzed and compared with other DTN-based pro-
posals, RoRo-LT provides a promising online self-evaluation
and on-the-fly routing service. Even with the less number of
self-measurements, the next-place prediction model featured
in the routing service can guarantee a reasonable level of
determinism for opportunistic message forwarding.

VII. CONCLUSION & FUTURE WORK

In this study, we have presented RoRo-LT—a self-assessed
mobile-phone sensor network (MPSN) routing service which
analyzes daily routines of mobile-phone users with long-
term observations for the sake of an opportunistic message
forwarding scheme. Providing a high level of self-determinism,
RoRo-LT keeps track of spatiotemporal activities and employs
a set of next-place prediction methods in order to exploit
from social dissociations. For a selective message forwarding,
MPSN nodes firstly trace their spatiotemporal history tables
with intent to find similar routines from their past; secondly uti-
lize these routines in order to generate an estimation for future
trajectories; and finally compare their forecasted locations with
others during encounters. Contact pairs forward their messages
if a dissimilarity is expected for the next-places of each other.
By this means, RoRo-LT seeks for socio-spatial separations in
order to disseminate data over large regions. Without requiring
a global network information, locality-based dynamics inside
a MPSN are exploited as an on-the-fly evaluation.

We have assessed several performances of RoRo-LT with
extensive numbers of tests in a campus map simulation sce-
nario. With this scenario, we have drawn a parallel between
the real world and the simulation setup for daily city activities.
In pursuit of finding a trade-off between internal parameters
of our next-place prediction model, we have analyzed the
routing performance with controlled experiments. In addition,
we have presented a brief but novel disquisition on existing
proposals, current trends, and open research problems for the
field of delay tolerant networking by comparing well-known
approaches according to their context utilization. We have
compared RoRo-LT with a group of well-accepted oppor-
tunistic schemes. We have shown that RoRo-LT provides a
reasonable performance in comparison to the other approaches.

As future work, we aim to extend our research on oppor-
tunistic routing by utilizing several behavioral context types
such as activity recognition data sets, user profile information,
and multimedia data. We strongly believe that, beside physical
and environmental context awareness, understanding user be-
haviors can play an important role to build up effective social
networking services. Our long-term motivation is to implement
an adaptive opportunistic communication framework.
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