

Abstract— This paper uses a recently presented abstract,

tuneable Boolean regulatory network model extended to

consider aspects of mobile DNA, such as transposons. The

significant role of mobile DNA in the evolution of natural

systems is becoming increasingly clear. This paper shows how

dynamically controlling network node connectivity and

function via transposon-inspired mechanisms can be selected

for in computational intelligence tasks to give improved

performance. The designs of dynamical networks intended for

implementation within the slime mould Physarum

polycephalum and for the distributed control of a smart surface

are considered.

I. INTRODUCTION

number of mobile DNA mechanisms exist through

which changes in genomic structure can occur in ways

other than copy errors, particularly via transposable

elements (e.g., see [Craig et al., 2002] for an overview).

Mobile genetic elements such as transposons are DNA

sequences that may be either copied or removed and then

inserted at a new position in the genome [McClintock,

1987]: retrotransposons use an intermediary RNA copy of

themselves for “copying and pasting”, whereas DNA

transposons rely upon specific proteins for their “cutting and

pasting” into new sites, respectively. The targeting of a new

position ranges from the very specific, typically by

exploiting sequence recognition proteins, to more or less

arbitrary movement. These processes, insertion in particular,

are often reliant upon proteins produced elsewhere within

the genome. Transposons are found widely in both

prokaryotes and eukaryotes, and they have been associated

with many significant evolutionary innovations (e.g., see

[Kazazian, 2004] for an overview).

Transposable elements can therefore change the

behaviour of a given cell: insertion into a gene will typically

disrupt its coding sequence, i.e., it will be mutated, insertion

next to a gene may affect its subsequent regulation, e.g., the

mobile element’s regulatory sequence may take control of

the gene, the act of excision can leave behind DNA

fragments which cause a change in the sequence at that

location, coding segments between transposons can be

moved with them, etc. The effects of such movement can be

beneficial or detrimental to a cell. Perhaps the most

significant aspect of transposons is that these effects occur

during the organism/cell’s lifetime. That is, such structural

Manuscript received XXXXXX, 2013.

Larry Bull is with the Department of Computer Science & Creative

Technologies, University of the West of England, Bristol, UK (e-mail:
larry.bull@uwe.ac.uk).

Andrew Adamatzky is with the Department of Computer Science &

Creative Technologies, University of the West of England, Bristol, UK (e-
mail: andrew.adamatzky@uwe.ac.uk).

changes are made to a genome based upon the actions of its

own regulatory processes in response to its internal and

external environment. Moreover, such changes can be

inherited. Thus, as has recently been highlighted [Shapiro,

2011], genomes should be viewed as read-write systems

with embedded change/search heuristics.

This paper extends initial studies which began

consideration of the dynamic role of mobile DNA within

regulatory network representations [Bull, 2012a; 2013]. In

particular, an aspect of transposable elements within a

genetic regulatory network (GRN) was explored using an

extension of a well-known, simple GRN formalism –

random Boolean networks (RBN) [Kauffman, 1969]. The

RBN model was extended to include a form of structural

dynamism to capture some aspects of mobile DNA during

the cell life-cycle: gene connectivity could be varied based

upon the current network/environment state. It was shown

that such dynamism can be selected for in abstract non-

stationary [Bull, 2012a] and multicellular [Bull, 2013]

environments.

There is growing interest in the use of GRN

representations in artificial systems. RBN have been evolved

to solve well-known logic tasks (e.g., [Van den Broeck &

Kawai, 1990]), to model micro-array data (e.g., [Tan & Tay,

2006]), for robot maze tasks (e.g., [Preen & Bull, 2009]),

etc. (see [Bull, 2012b] for an overview of evolving GRN).

We are interested in the use of computational intelligence

techniques as an approach to design/program unconventional

computing substrates and architectures. Previous work has

considered in vitro neuronal networks (e.g., [Bull, et al.,

2008]), non-linear chemical media (e.g., [Toth et al., 2008]),

memristors (e.g., [Howard et al., 2013]), cellular automata

(e.g., [Sapin et al., 2009]), amongst others. This paper

presents initial results for the design of dynamical circuits

within slime mould, where each Boolean logic gate of the

network is to be implemented in the living substrate, and for

the design of a dynamical controller for each cell of a “smart

surface” of distributed actuators and sensors.

II. RANDOM BOOLEAN NETWORKS

Within the traditional form of RBN, a network of R nodes,

each with B directed connections from other nodes in the

network, all update synchronously based upon the current

state of those B nodes. Hence those B nodes are seen to have

a regulatory effect upon the given node, specified by the

given Boolean function attributed to it. Nodes can also be

self-connected. Since they have a finite number of possible

states and they are deterministic, such networks eventually

fall into an attractor. It is well-established that the value of B

affects the emergent behaviour of RBN wherein attractors

typically contain an increasing number of states with

Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

Larry Bull and Andrew Adamatzky

A

increasing B. Three phases of behaviour were originally

suggested by Kauffman through observation of the typical

dynamics: ordered when B=1, with attractors consisting of

one or a few states; chaotic when B>3, with a very large

number of states per attractor; and, a critical regime around

1<B<4, where similar states lie on trajectories that tend to

neither diverge nor converge (see [Kauffman, 1993] for

discussions of this critical regime, e.g., with respect to

perturbations). Subsequent formal analysis using an

annealed approximation of behaviour identified B=2 as the

critical value of connectivity for behaviour change [Derrida

& Pomeau, 1986]. Figure 1 shows the typical behaviour of

networks with R=100 and various B.

Fig. 1: Typical behavior of RBN: top, showing example temporal dynamics;

and below, the average behaviour (100 runs) after 5000 update cycles.

III. TWO MOBILE DNA MECHANISMS

In the aforementioned initial studies of mobile DNA in

RBN [Bull, 2012a; 2013], structural dynamism was seen as a

consequence of the actions of DNA transposons. That is, the

cutting-and-pasting of segments of DNA was seen as

causing a change in the connectivity structure of the GRN.

Here nodes were extended to (potentially) include a second

set of B’ connections to defined nodes. Each such dynamic

nodes also performed an assigned rewiring function based

upon the current state of the B’ nodes. Hence on each cycle,

each node updates its state based upon the current state of

the B nodes it is connected to using the Boolean logic

function assigned to it in the standard way. Then, if that

node is also structurally dynamic, those B connections are

altered according to the current state of the B’ nodes it is

connected to using its rewiring table. The moving of the B

connections of a given node via the actions/states of the B’

nodes is therefore seen as an abstraction of one or more of

the possible effects of a mobile element as discussed above,

triggered by one or more of the B’ nodes, causing a change

in the regulatory network which affects the given node. For

simplicity, the number of regulatory connections (B) is

assumed to be the same as for rewiring (B’), as shown in

Figure 2.

Fig. 2:. Example RBN with structural dynamism. The look-up table and

connections for node 3 are shown in an R=6, B=2 network. Nodes capable

of rewiring have B’ extra structure regulation connections into the network

(dashed arrows) and use the state of those nodes to alter the standard B

transcription regulation connections (solid arrows) on the next update cycle

(B’=2). Thus in the RBN shown, node 3 is a dynamic node and uses nodes 1

and 2 to determine any structural changes. At update step t, node 3 is shown

using the states of nodes 4 and 5 to determine its state for the next cycle.

Assuming all nodes are at state ‘0’, the given node above would transit to

state ‘1’ for the next cycle and source its B inputs from nodes 4-1=3 and

5+1=6 on that subsequent cycle, as defined in the first row of the table

shown.

As in [Kaufman, 1993], a genetic hill-climber was

considered previously, as it is here. Each RBN is represented

as a list to define each node’s Boolean function, B

connection ids, B’ connection ids, connection changes table

entries (range +/-5), and whether it is a dynamic node or not.

Mutation can therefore either (with equal probability): alter

the Boolean function of a randomly chosen node; alter a

randomly chosen B connection (used as the initial

connectivity if a dynamic node); turn a node into or out of

being a dynamic rewiring node; alter one of the rewiring

entries in the look-up table if it is a dynamic node; or, alter a

randomly chosen B’ connection, again only if it is a dynamic

node. A mutated GRN becomes the parent for the next

generation if its fitness is higher than that of the original. In

the case of fitness ties the number of dynamic nodes is

considered, with the smaller number favoured, the decision

being arbitrary upon a further tie. Hence there is a slight

selective pressure against structural dynamism.

Results showed such structural dynamism was selected for

under various conditions and analysis of the underlying

behaviour indicated that the dynamic nodes typically

experience constant rewiring during execution, usually

moving between a finite set of connections as the RBN

moves through its (deterministic) attractor. That is, the

rewiring connections were typically made to nodes which

alter their state within the attractor of the network.

Fig. 3:. Example RBN with functional dynamism. The look-up table and

connections for node 3 are shown in an R=6, B=2 network. Nodes capable

of re-functioning have B’ extra regulation connections into the network

(dashed arrows) and use the state of those nodes to alter the node’s Boolean

logic function on the next update cycle (B’=B). Thus in the RBN shown,

node 3 is a dynamic node and uses nodes 1 and 2 to determine any

functional changes. At update step t, node 3 is shown using a NAND

function to determine its state for the next cycle (encoded as 1110).

Assuming all nodes are at state ‘0’, the given node above would transit to

state ‘1’ for the next cycle and alter the first non-zero bit in its function

table on that subsequent cycle, as defined in the first row of the table

shown, hence changing to XOR (encoded as 0110).

Probabilistic RBN (e.g., see [Shmulevich & Dougherty,

2010]) allow for a change in node function within a given set

according to a fixed distribution. It has long been noted (e.g.,

see [Kauffman, 1984]) that a bias in the Boolean function

space of the traditional RBN - that is, a deviation from the

expected average probability P of 0.5 for either state as the

output - reduces the number of attractors and their size for a

given number of nodes and connectivity. Following the node

relative adjustment scheme used for connectivity, a

deterministic context-sensitive form of dynamic node can be

defined which incrementally alters the number of 0’s or 1’s

in the Boolean function table for that node, as shown in

Figure 3. Hence on each cycle, each node updates its state

based upon the current state of the B nodes it is connected to

using the Boolean logic function assigned to it in the

standard way. Then, if that node is also functionally

dynamic, the node function is altered according to the

current state of the B’ nodes it is connected to. Entries in the

B’ columns can now be either a 0 or 1. A node’s Boolean

logic function is stored as a binary string of 2
B
 bits. The first

bit in that logic function table which is not the same as the

entry in the dynamic table indexed by the current state of the

B’ connections is flipped. In this way node function can be

varied in an incremental way based upon the current internal

and external state of the RBN, here seen as capturing

different aspects of mobile DNA than the structural

dynamism. Lifetime changes are not inherited here.

IV. PHYCHIP

We are currently designing and fabricating a massively

parallel biomorphic computing device built and operated by

the slime mould Physarum polycephalum (see [Adamatzky

et al., 2012]). Physarum polycephalum belongs to the

species of order Physarales and has a potentially complex

life cycle. Plasmodium is a `vegetative' phase of the life

cycle, wherein the slime mould exists as a single cell with a

myriad of diploid nuclei. The plasmodium is visible to the

naked eye and looks like an amorphous yellowish mass with

networks of protoplasmic tubes. The plasmodium behaves

and moves as a giant amoeba and feeds on bacteria, spores

and other microbial creatures and micro-particles. When

foraging for its food the plasmodium propagates towards

sources of food particles, surrounds them, secretes enzymes

and digests the food. When several sources of nutrients are

scattered in the plasmodium's range, the plasmodium forms a

network of protoplasmic tubes connecting the masses of

protoplasm at the food sources (Figure 4).

Fig. 4: Showing the slime mould Physarum polycephalum in the

plasmodium phase, attracted to eight spatially separated food sources. From

[Adamatzky et al., 2012].

Due to its unique features and relative ease of use for

experimentation, the plasmodium has become a test

biological substrate for the implementation of various

computational tasks. The induction of behaviour and spatial

form/pattern is determined partly by the environment,

specifically nutrient quality and substrate hardness, dryness

etc. Physarum can therefore be viewed as a computational

material based upon the modification of protoplasm

transport via the presence/absence of external stimuli.

Moreover, it is sensitive to illumination and AC electric

fields and therefore allows for the parallel and non-

destructive input of information. Physarum is typically used

such that it represents results of computation by the

configuration of its body. The problems solved by the

plasmodium include mazes, calculation of efficient

networks, construction of logical gates, data clustering, and

robot control (see [Adamatzky, 2010] for an overview).

The Physarum-based biomorphic device – “Phychip” -

envisaged is shown in Figure 5. Protoplasmic tubes of

Physarum coated with conductive substances interfaced with

living blobs of plasmodium are the basic units. The living

blobs play the role of sensors and processing units. Such blobs

will communicate with each other using fast electrical signal

transfer via conductor coated tubes, and slow electrical and

bio-chemical signal transfer along living protoplasmic tubes.

Fig. 5: Proposed scheme of the Physarum chip. The chip will consist of

interwoven living and conductor-coated networks and layers of optical and

electrical I/O. From [Adamatzky et al., 2012].

In terms of classical computing architectures, the

following characteristics can be attributed to such chips:-

 massive parallelism: there are thousands of elementary

processing units, micro-volumes, in a slime mould

colonised in a Petri dish

 local connectivity: micro-volumes of cytoplasm change their

states, due to diffusion and reaction, depending on states

of, or concentrations of, reactants, shape and electrical

charges in their closest neighbours

 parallel input and output: Physarum computes by

changing its shape, can record computation optically;

Physarum is light sensitive, data can be inputted by

localized illumination

 fault tolerance: being constantly in a shape changing state,

Physarum chips can restore their architecture even after

a substantial part of a protoplasmic network is removed.

One planned use of the chip is to implement RBN within

the network of plasmodium blobs, using computational

intelligence techniques to determine the design for a given

task. As noted above, it has already been shown how some

Boolean logic gates can be implemented in the slime mould,

e.g., Tsuda et al. [2004] describe the creation of AND, OR

and NOT gates. Hence the design of RBN using the

restricted set of B-input {AND, NAND, OR, NOR} gates

and spatially local connectivity (nodes can only connect to

the eight nodes surrounding them, or fewer on

edges/corners) is considered here.

V. PHYCHIP EXPERIMENTATION

In the following, two well-known logic problems are used

to begin to explore the characteristics and capabilities of the

general approach. The multiplexer task is used since they

can be used to build many other logic circuits, including

larger multiplexers. These Boolean functions are defined for

binary strings of length l = k + 2
k
 under which the k bits

index into the remaining 2
k
 bits, returning the value of the

indexed bit. Hence the multiplexer has multiple inputs and a

single output. Adders have multiple inputs and multiple

outputs. As such, a simple example is used here. A simple

sequential logic task is also used here - the JK latch. In all

cases, the correct response to a given input results in a

quality increment of 1, with all possible binary inputs being

presented per solution evaluation. Upon each presentation of

an input, each bit is applied to the first connection of each

corresponding node in the RBN. The RBN is then executed

for 10 cycles. The value on the predetermined output node(s)

is then taken as the response. All results presented are the

average of 20 runs. Experience found R=5x5= 25

nodes/blobs was useful across the problems explored here.

Figure 6 shows performance on k=2 versions of the three

tasks: the 6-bit multiplexer (opt. 64), 2-bit adder (opt. 16),

and 2-input JK latch (opt. 4). Only structural dynamism is

used given the non-trivial physical manipulation of the

plasmodium needed to exhibit a given logic gate [Tsuda et

al., 2004]. Given the known underlying dynamics of RBN

(section II), B=2. As can be seen, optimal performance is

reached in all cases, with varying numbers of dynamic

nodes. That is, discrete dynamical circuits capable of the

given logic functions have been designed for potential

implementation on the Phychip. Figure 6 also shows the

performance of the equivalent traditional RBN, i.e., without

structural dynamism, which is statistically significantly

worse on the multiplexer and adder (T-test, p<0.05), and the

same on the latch (T-test, p≥0.05).

Fig. 6: Typical evolutionary performance of RBN with and without mobile

DNA-inspired mechanisms for the four benchmark tasks. Fitness shown as

fraction of correct inputs.

VI. SMART SURFACE

On the surface of many cells are thin hair-like structures;

cilia. Once considered vestigial, these cilia are functioning

organelles of which there are two types. Non-motile or

primary cilia, typically serve as sensory organelles with roles

in chemical sensation (as in olfaction), signal transduction

(rod photoreceptors in vision) and control of cell growth.

Motile cilia are often found in clusters and move in

coordinated ways, capable of registering surrounding fluid

flow such as in the trachea or kidneys. If the combined

properties of these cilia could be created and controlled, they

could perform the functions of both motion and sensory

perception in an intelligent system, sensing and identifying

properties of objects on the artificial cilia surface, and

potentially moving in a coordinated way to project the object

along a predetermined trajectory according to its properties.

In effect, a multitude of biologically inspired cilia could

create the emergent properties of both sorting and

transporting objects around an intelligent manipulator

surface. We are currently building an intelligent autonomous

massively parallel manipulator with the aim of achieving the

distributed sensing, recognition, analysis, sorting,

transportation and manipulation of light-weight objects.

Some of the potential benefits of the decentralised

manipulator surface are:

 absence of a central processor responsible for all

computation - all cells of the surface act in parallel,

fulfilling a collective task

 the number of simultaneously manipulated objects is not

restricted by computational capability of the central

processor

 the system is scalable, i.e. manipulator area can be varied

(by adding/removing cells) without reprogramming.

 the system is robust against individual component faults -

decentralised control and parallel operation ensure that

no single component fault results in the overall system

faulting.

Previous approaches to implement such systems include

airjets (e.g., [Moon & Luntz, 2006]), mechanical wheel-

based arrangements (e.g., [Murphey & Burdick, 2004]), and

in micro electro mechanical systems (MEMS) (e.g., [Ataka

et al., 2009]). The hardware implementation of our system

will be based on an array of piezo-actuators (Figure 7). This

system will serve as an experimental platform and enable us

to demonstrate many of the properties listed above. It is

expected that each axis of each actuator will consist of eight

piezo elements; object movement will be achieved by

driving the appropriate transducer element groups. Mass

induced changes in piezo-electric element resonant

frequency established through monitoring impedance

variation will be used to sense the presence of an object.

The design of distributed controllers for such systems is

non-trivial and hence computational intelligence techniques

may be usefully employed. In the only known related work,

Matignon et al. (e.g., [2010]) have explored using

reinforcement learning approaches. As noted above, we are

interested in the evolution of an RBN controller to exist

within each cell of the surface, sensing and acting locally,

i.e., akin to the cells of multicellular organisms (see [Bull,

2012b] for a review of related multi-GRN work). In the

aforementioned initial work on structural dynamism in RBN

it was found that the new mechanism can facilitate

behavioural differentiation in two coupled cells [Bull, 2013].

To act as a controller, each RBN receives five sensor inputs

as to the presence or absence of an object: itself and the four

cardinal direction cells (von Neumann neighbourhood of

cellular automata). To facilitate the emergence of useful cell-

cell communication, each RBN also receives an input from a

predetermined node in each of the RBN of its four cardinal

neighbouring cells. Thus, following the input scheme above,

the first nine nodes of a given RBN each receives an external

input as its first connection. Possible outputs are to move the

actuator in one of the four cardinal directions, hence two

output nodes are predetermined.

Fig. 7: Proposed piezo-ceramic actuator layout of each cell in a multi-celled

smart surface.

VII. SMART SURFACE EXPERIMENTATION

In the following experiments we begin to explore a

fundamental aspect of controller design for such distributed

systems – the ability to correctly recognize an object and

respond appropriately. More specifically, the task of

distinguishing between two objects by moving them in

different directions is considered. In these initial

experiments, a box of 3x1 cells must be moved as far north

as possible from the middle of a surface of 12x12 cells

having been placed horizontally. That is, the object is placed

on cells 75, 76 and 77 of the 144, with the fitness calculated

as the distance between the middle section of the object and

cell 76. The surface is then reset, i.e., each RBN is set to its

start configuration, and a box of 5x1 cells is similarly placed

horizontally in the middle of the surface and must be moved

as far south as possible. In each case, each RBN updates in

parallel internally for 10 cycles for a given sensor input

before its action is determined. This process is repeated 10

times. If all cells under an object give the same action, the

object moves in that direction. Fitness in each case is the

distance of the middle of the object from the middle of the

surface, with the fitness of an RBN simply the sum of the

fitness in each of the two scenarios. Here R=20 and B=2, all

Boolean functions are allowed, results averaged over 20

runs.

Fig. 8: Typical evolutionary performance of RBN with and without mobile
DNA-inspired mechanisms for the benchmark surface task. Fitness shown

as fraction of known optimum.

Figure 8 shows performance with structural dynamism (as

above) and both structural and functional dynamism. As can

be seen, in both cases typical performance is better than the

standard RBN representation (T-test, p<0.05). Moreover, the

combined dynamism performs better than just the structural

version (T-test, p<0.05). Both versions of the RBN using the

mobile DNA-inspired mechanisms evolve to significantly

separate the two objects whereas the traditional approach

typically only evolves to move both objects in the same

direction. That is, only with the extra mechanisms are the

cells in the ambiguous positions under the objects able to

distinguish between the two.

VIII. CONCLUSION

There is a growing body of work within computational

intelligence which explores representations more closely

analogous to the genetic machinery seen in nature, i.e.,

artificial regulatory networks. Adoption of these relatively

generic representations creates the opportunity to exploit

new mechanisms from microbiology. That is, molecular

biologists have identified a variety of mechanisms through

which changes in DNA occur in natural regulatory networks

in ways other than the processes which inspired the

traditional heuristics of evolutionary computation: specific

biochemical processes generate novelty through targeted

DNA restructuring based upon the internal and external state

of a GRN during the organismal lifecycle. This paper has

presented initial results from using two new mechanisms

within GRN to solve computational tasks. Current work is

seeking to incorporate other mechanisms, as well as

determining the general effectiveness of such systems.

This work was partially supported by EPSRC grant no.

EP/H023631/1 and EU FP7-ICT project no. 316366.

REFERENCES

[1] Adamatzky, A. (2010) Physarum Machines. World

Scientific.

[2] Adamatzky, A., Erokhin V., Grube M., Schubert T., &

Schumann, A. (2012) Physarum Chip Project: Growing

Computers from Slime Mould. Unconventional

Computing 8: 319-323

[3] Ataka, M., Legrand, B., Buchaillot, L., Collard, D. &

Fujita, H. (2009) Design, Fabrication, and Operation of

Two-dimensional Conveyance System with Ciliary

Actuator Arrays. IEEE ASME Transactions on

Mechatronics 14(1): 119-125.

[4] Bull, L. (2012a) Evolving Boolean Networks with

Structural Dynamism. Artificial Life 18(4): 385-398.

[5] Bull, L. (2012b) Evolving Boolean networks on tunable

fitness landscapes. IEEE Transactions on Evolutionary

Computation 16(6): 817-828.

[6] Bull, L. (2013) Consideration of Mobile DNA: New

Forms of Artificial Genetic Regulatory Networks.

Natural Computing (in press).

[7] Bull, L., Budd, A., Stone, C., Uroukov, I., De Lacy

Costello, B. & Adamatzky, A. (2008) Towards

Unconventional Computing Through Simulated

Evolution: Learning Classifier System Control of Non-

Linear Media. Artificial Life 14(2): 203-222

[8] Craig, N., Craigie, R, Gellert, M, Lambowitz, AM

(2002). Mobile DNA II. American Society for

Microbiology Press.

[9] Derrida, B. & Pomeau, Y. (1986) Random networks of

automata: a simple annealed approximation. Europhys.

Lett. 1: 45-49.

[10] Howard, D., Bull, L., De Lacy Costello, B. &

Adamatzky, A. (2013) Creating Unorganised Machines

from Memristors. International Journal of Applied

Mathematics and Information Sciences (in press).

[11] Kauffman, S. A. (1969) Metabolic Stability and

Epigenesis in Randomly Constructed Genetic Nets.

Journal of Theoretical Biology 22:437-467.

[12] Kauffman, S.A. (1984) Emergent properties in random

complex automata. Physica D 10: 145.

[13] Kauffman, S.A. (1993) The Origins of Order. Oxford

University Press.

[14] Kazazian, H. (2004) Mobile Elements: Drivers of

genome evolution. Science 303: 1626-1638.

[15] Matignon, L., Laurent, G., Le Fort-Piat, N. & Chapuis,

Y-A. (2010) Designing Decentralized Controllers for

Distributed-air-jet MEMS-based Micromanipulators by

Reinforcement Learning. Journal of Intelligent and

Robotic Systems 145(2): 59-80.

[16] McClintock, B. (1987) Discovery and Characterization

of Transposable Elements: The collected papers of

Barbara McClintock. Garland.

[17] Moon, H. & Luntz, J. (2006) Distributed Manipulation

of Flat Objects with Two Airflow Sinks. IEEE

Transactions on Robotics 22(6): 1189-1201.

[18] Murphey, T. & Burdick, J. (2004) Feedback Control

Methods for Distributed Manipulation Systems that

Involve Mechanical Contacts. International Journal of

Robotics Research 23(7-8): 763-781.

[19] Preen, R. & Bull, L. (2009) Discrete Dynamical Genetic

Programming in XCS. In GECCO-2009: Proceedings of

the Genetic and Evolutionary Computation Conference.

ACM Press, pp1299-1306.

[20] Sapin, E., Bull, L. & Adamatzky, A. (2009) Genetic

Approaches to Search for Computing Patterns in

Cellular Automata. IEEE Computational Intelligence

Magazine 4(3): 20-28.

[21] Shapiro, J. (2011) Evolution: A view from the 21
st

century. FT Press.

[22] Shmulevich, I. & Dougherty, E. (2010) Probabilistic

Boolean Networks: The Modeling and Control of Gene

Regulatory Networks. Society for Industrial and Applied

Mathematics.

[23] Tan, P. & Tay, J. (2006) Evolving Boolean Networks to

Find Intervention Points in Dengue Pathogenesis. In

GECCO-2006: Proceedings of the Genetic and

Evolutionary Computation Conference. Springer,

pp307-308.

[24] Toth, R., Stone, C., De Lacy Costello, B., Adamatzky,

A. & Bull, L. (2008) Dynamic Control and Information

Processing in the Belousov-Zhabotinsky Reaction using

a Co-evolutionary Algorithm. Journal of Chemical

Physics 129: 184708.

[25] Tsuda, S., Aono, M. & Gunji, Y-P. (2004) Robust and

Emergent Physarum-computing. BioSystems 73: 45-55.

[26] Van den Broeck, C. & Kawai, R. (1990) Learning in

Feedforward Boolean Networks. Physical Review A 42:

6210-6218.

