
 

 

 

 

Abstract— This paper uses a recently presented abstract, 

tuneable Boolean regulatory network model extended to 

consider aspects of mobile DNA, such as transposons. The 

significant role of mobile DNA in the evolution of natural 

systems is becoming increasingly clear. This paper shows how 

dynamically controlling network node connectivity and 

function via transposon-inspired mechanisms can be selected 

for in computational intelligence tasks to give improved 

performance. The designs of dynamical networks intended for 

implementation within the slime mould Physarum 

polycephalum and for the distributed control of a smart surface 

are considered. 

I. INTRODUCTION 

number of mobile DNA mechanisms exist through 

which changes in genomic structure can occur in ways 

other than copy errors, particularly via transposable 

elements (e.g., see [Craig et al., 2002] for an overview). 

Mobile genetic elements such as transposons are DNA 

sequences that may be either copied or removed and then 

inserted at a new position in the genome [McClintock, 

1987]: retrotransposons use an intermediary RNA copy of 

themselves for “copying and pasting”, whereas DNA 

transposons rely upon specific proteins for their “cutting and 

pasting” into new sites, respectively. The targeting of a new 

position ranges from the very specific, typically by 

exploiting sequence recognition proteins, to more or less 

arbitrary movement. These processes, insertion in particular, 

are often reliant upon proteins produced elsewhere within 

the genome. Transposons are found widely in both 

prokaryotes and eukaryotes, and they have been associated 

with many significant evolutionary innovations (e.g., see 

[Kazazian, 2004] for an overview). 

Transposable elements can therefore change the 

behaviour of a given cell: insertion into a gene will typically 

disrupt its coding sequence, i.e., it will be mutated, insertion 

next to a gene may affect its subsequent regulation, e.g., the 

mobile element’s regulatory sequence may take control of 

the gene, the act of excision can leave behind DNA 

fragments which cause a change in the sequence at that 

location, coding segments between transposons can be 

moved with them, etc. The effects of such movement can be 

beneficial or detrimental to a cell. Perhaps the most 

significant aspect of transposons is that these effects occur 

during the organism/cell’s lifetime. That is, such structural 
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changes are made to a genome based upon the actions of its 

own regulatory processes in response to its internal and 

external environment. Moreover, such changes can be 

inherited. Thus, as has recently been highlighted [Shapiro, 

2011], genomes should be viewed as read-write systems 

with embedded change/search heuristics. 

This paper extends initial studies which began 

consideration of the dynamic role of mobile DNA within 

regulatory network representations [Bull, 2012a; 2013]. In 

particular, an aspect of transposable elements within a 

genetic regulatory network (GRN) was explored using an 

extension of a well-known, simple GRN formalism – 

random Boolean networks (RBN) [Kauffman, 1969]. The 

RBN model was extended to include a form of structural 

dynamism to capture some aspects of mobile DNA during 

the cell life-cycle: gene connectivity could be varied based 

upon the current network/environment state. It was shown 

that such dynamism can be selected for in abstract non-

stationary [Bull, 2012a] and multicellular [Bull, 2013] 

environments. 

There is growing interest in the use of GRN 

representations in artificial systems. RBN have been evolved 

to solve well-known logic tasks (e.g., [Van den Broeck & 

Kawai, 1990]), to model micro-array data (e.g., [Tan & Tay, 

2006]), for robot maze tasks (e.g., [Preen & Bull, 2009]), 

etc. (see [Bull, 2012b] for an overview of evolving GRN). 

We are interested in the use of computational intelligence 

techniques as an approach to design/program unconventional 

computing substrates and architectures. Previous work has 

considered in vitro neuronal networks (e.g., [Bull, et al., 

2008]), non-linear chemical media (e.g., [Toth et al., 2008]), 

memristors (e.g., [Howard et al., 2013]), cellular automata 

(e.g., [Sapin et al., 2009]), amongst others. This paper 

presents initial results for the design of dynamical circuits 

within slime mould, where each Boolean logic gate of the 

network is to be implemented in the living substrate, and for 

the design of a dynamical controller for each cell of a “smart 

surface” of distributed actuators and sensors. 

II. RANDOM BOOLEAN NETWORKS 

Within the traditional form of RBN, a network of R nodes, 

each with B directed connections from other nodes in the 

network, all update synchronously based upon the current 

state of those B nodes. Hence those B nodes are seen to have 

a regulatory effect upon the given node, specified by the 

given Boolean function attributed to it. Nodes can also be 

self-connected. Since they have a finite number of possible 

states and they are deterministic, such networks eventually 

fall into an attractor. It is well-established that the value of B 

affects the emergent behaviour of RBN wherein attractors 

typically contain an increasing number of states with 
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increasing B. Three phases of behaviour were originally 

suggested by Kauffman through observation of the typical 

dynamics: ordered when B=1, with attractors consisting of 

one or a few states; chaotic when B>3, with a very large 

number of states per attractor; and, a critical regime around 

1<B<4, where similar states lie on trajectories that tend to 

neither diverge nor converge (see [Kauffman, 1993] for 

discussions of this critical regime, e.g., with respect to 

perturbations). Subsequent formal analysis using an 

annealed approximation of behaviour identified B=2 as the 

critical value of connectivity for behaviour change [Derrida 

& Pomeau, 1986]. Figure 1 shows the typical behaviour of 

networks with R=100 and various B. 

 

 
Fig. 1: Typical behavior of RBN: top, showing example temporal dynamics; 

and below, the average behaviour (100 runs) after 5000 update cycles. 

III. TWO MOBILE DNA MECHANISMS 

In the aforementioned initial studies of mobile DNA in 

RBN [Bull, 2012a; 2013], structural dynamism was seen as a 

consequence of the actions of DNA transposons.  That is, the 

cutting-and-pasting of segments of DNA was seen as 

causing a change in the connectivity structure of the GRN. 

Here nodes were extended to (potentially) include a second 

set of B’ connections to defined nodes. Each such dynamic 

nodes also performed an assigned rewiring function based 

upon the current state of the B’ nodes. Hence on each cycle, 

each node updates its state based upon the current state of 

the B nodes it is connected to using the Boolean logic 

function assigned to it in the standard way. Then, if that 

node is also structurally dynamic, those B connections are 

altered according to the current state of the B’ nodes it is 

connected to using its rewiring table. The moving of the B 

connections of a given node via the actions/states of the B’ 

nodes is therefore seen as an abstraction of one or more of 

the possible effects of a mobile element as discussed above, 

triggered by one or more of the B’ nodes, causing a change 

in the regulatory network which affects the given node. For 

simplicity, the number of regulatory connections (B) is 

assumed to be the same as for rewiring (B’), as shown in 

Figure 2. 

 

 
 

Fig. 2:. Example RBN with structural dynamism. The look-up table and 

connections for node 3 are shown in an R=6, B=2 network. Nodes capable 

of rewiring have B’ extra structure regulation connections into the network 

(dashed arrows) and use the state of those nodes to alter the standard B 

transcription regulation connections (solid arrows) on the next update cycle 

(B’=2). Thus in the RBN shown, node 3 is a dynamic node and uses nodes 1 

and 2 to determine any structural changes. At update step t, node 3 is shown 

using the states of nodes 4 and 5 to determine its state for the next cycle. 

Assuming all nodes are at state ‘0’, the given node above would transit to 

state ‘1’ for the next cycle and source its B inputs from nodes 4-1=3 and 

5+1=6 on that subsequent cycle, as defined in the first row of the table 

shown.  

 

As in [Kaufman, 1993], a genetic hill-climber was 

considered previously, as it is here. Each RBN is represented 

as a list to define each node’s Boolean function, B 

connection ids, B’ connection ids, connection changes table 

entries (range +/-5), and whether it is a dynamic node or not. 

Mutation can therefore either (with equal probability): alter 

the Boolean function of a randomly chosen node; alter a 



 

 

 

randomly chosen B connection (used as the initial 

connectivity if a dynamic node); turn a node into or out of 

being a dynamic rewiring node; alter one of the rewiring 

entries in the look-up table if it is a dynamic node; or, alter a 

randomly chosen B’ connection, again only if it is a dynamic 

node. A mutated GRN becomes the parent for the next 

generation if its fitness is higher than that of the original. In 

the case of fitness ties the number of dynamic nodes is 

considered, with the smaller number favoured, the decision 

being arbitrary upon a further tie. Hence there is a slight 

selective pressure against structural dynamism. 

Results showed such structural dynamism was selected for 

under various conditions and analysis of the underlying 

behaviour indicated that the dynamic nodes typically 

experience constant rewiring during execution, usually 

moving between a finite set of connections as the RBN 

moves through its (deterministic) attractor. That is, the 

rewiring connections were typically made to nodes which 

alter their state within the attractor of the network.  

 

 
 
Fig. 3:. Example RBN with functional dynamism. The look-up table and 

connections for node 3 are shown in an R=6, B=2 network. Nodes capable 

of re-functioning have B’ extra regulation connections into the network 

(dashed arrows) and use the state of those nodes to alter the node’s Boolean 

logic function on the next update cycle (B’=B). Thus in the RBN shown, 

node 3 is a dynamic node and uses nodes 1 and 2 to determine any 

functional changes. At update step t, node 3 is shown using a NAND 

function to determine its state for the next cycle (encoded as 1110). 

Assuming all nodes are at state ‘0’, the given node above would transit to 

state ‘1’ for the next cycle and alter the first non-zero bit in its function 

table on that subsequent cycle, as defined in the first row of the table 

shown, hence changing to XOR (encoded as 0110). 

 

Probabilistic RBN (e.g., see [Shmulevich & Dougherty, 

2010]) allow for a change in node function within a given set 

according to a fixed distribution. It has long been noted (e.g., 

see [Kauffman, 1984]) that a bias in the Boolean function 

space of the traditional RBN - that is, a deviation from the 

expected average probability P of 0.5 for either state as the 

output - reduces the number of attractors and their size for a 

given number of nodes and connectivity. Following the node 

relative adjustment scheme used for connectivity, a 

deterministic context-sensitive form of dynamic node can be 

defined which incrementally alters the number of 0’s or 1’s 

in the Boolean function table for that node, as shown in 

Figure 3. Hence on each cycle, each node updates its state 

based upon the current state of the B nodes it is connected to 

using the Boolean logic function assigned to it in the 

standard way. Then, if that node is also functionally 

dynamic, the node function is altered according to the 

current state of the B’ nodes it is connected to. Entries in the 

B’ columns can now be either a 0 or 1. A node’s Boolean 

logic function is stored as a binary string of 2
B
 bits. The first 

bit in that logic function table which is not the same as the 

entry in the dynamic table indexed by the current state of the 

B’ connections is flipped. In this way node function can be 

varied in an incremental way based upon the current internal 

and external state of the RBN, here seen as capturing 

different aspects of mobile DNA than the structural 

dynamism. Lifetime changes are not inherited here. 

IV. PHYCHIP 

We are currently designing and fabricating a massively 

parallel biomorphic computing device built and operated by 

the slime mould Physarum polycephalum (see [Adamatzky 

et al., 2012]). Physarum polycephalum belongs to the 

species of order Physarales and has a potentially complex 

life cycle. Plasmodium is a `vegetative' phase of the life 

cycle, wherein the slime mould exists as a single cell with a 

myriad of diploid nuclei.  The plasmodium is visible to the 

naked eye and looks like an amorphous yellowish mass with 

networks of protoplasmic tubes. The plasmodium behaves 

and moves as a giant amoeba and feeds on bacteria, spores 

and other microbial creatures and micro-particles. When 

foraging for its food the plasmodium propagates towards 

sources of food particles, surrounds them, secretes enzymes 

and digests the food. When several sources of nutrients are 

scattered in the plasmodium's range, the plasmodium forms a 

network of protoplasmic tubes connecting the masses of 

protoplasm at the food sources (Figure 4).  

 

 
 

Fig. 4: Showing the slime mould Physarum polycephalum in the 

plasmodium phase, attracted to eight spatially separated food sources. From 

[Adamatzky et al., 2012]. 



 

 

 

Due to its unique features and relative ease of use for 

experimentation, the plasmodium has become a test 

biological substrate for the implementation of various 

computational tasks. The induction of behaviour and spatial 

form/pattern is determined partly by the environment, 

specifically nutrient quality and substrate hardness, dryness 

etc. Physarum can therefore be viewed as a computational 

material based upon the modification of protoplasm 

transport via the presence/absence of external stimuli. 

Moreover, it is sensitive to illumination and AC electric 

fields and therefore allows for the parallel and non-

destructive input of information. Physarum is typically used 

such that it represents results of computation by the 

configuration of its body. The problems solved by the 

plasmodium include mazes, calculation of efficient 

networks, construction of logical gates, data clustering, and 

robot control (see [Adamatzky, 2010] for an overview). 

The Physarum-based biomorphic device – “Phychip” - 

envisaged is shown in Figure 5. Protoplasmic tubes of 

Physarum coated with conductive substances interfaced with 

living blobs of plasmodium are the basic units. The living 

blobs play the role of sensors and processing units. Such blobs 

will communicate with each other using fast electrical signal 

transfer via conductor coated tubes, and slow electrical and 

bio-chemical signal transfer along living protoplasmic tubes.  

 

 
 

Fig. 5: Proposed scheme of the Physarum chip. The chip will consist of 

interwoven living and conductor-coated networks and layers of optical and 

electrical I/O. From [Adamatzky et al., 2012]. 

 

In terms of classical computing architectures, the 

following characteristics can be attributed to such chips:-  

 

 massive parallelism: there are thousands of elementary 

processing units, micro-volumes, in a slime mould 

colonised in a Petri dish 

 local connectivity: micro-volumes of cytoplasm change their 

states, due to diffusion and reaction, depending on states 

of, or concentrations of, reactants, shape and electrical 

charges in their closest neighbours  

 parallel input and output: Physarum computes by 

changing its shape, can record computation optically; 

Physarum is light sensitive, data can be inputted by 

localized illumination 

 fault tolerance: being constantly in a shape changing state, 

Physarum chips can restore their architecture even after 

a substantial part of a protoplasmic network is removed. 

 

One planned use of the chip is to implement RBN within 

the network of plasmodium blobs, using computational 

intelligence techniques to determine the design for a given 

task. As noted above, it has already been shown how some 

Boolean logic gates can be implemented in the slime mould, 

e.g., Tsuda et al. [2004] describe the creation of AND, OR 

and NOT gates. Hence the design of RBN using the 

restricted set of B-input {AND, NAND, OR, NOR} gates 

and spatially local connectivity (nodes can only connect to 

the eight nodes surrounding them, or fewer on 

edges/corners) is considered here.  

V. PHYCHIP EXPERIMENTATION 

In the following, two well-known logic problems are used 

to begin to explore the characteristics and capabilities of the 

general approach. The multiplexer task is used since they 

can be used to build many other logic circuits, including 

larger multiplexers. These Boolean functions are defined for 

binary strings of length l = k + 2
k
 under which the k bits 

index into the remaining 2
k
 bits, returning the value of the 

indexed bit. Hence the multiplexer has multiple inputs and a 

single output. Adders have multiple inputs and multiple 

outputs. As such, a simple example is used here.  A simple 

sequential logic task is also used here - the JK latch. In all 

cases, the correct response to a given input results in a 

quality increment of 1, with all possible binary inputs being 

presented per solution evaluation. Upon each presentation of 

an input, each bit is applied to the first connection of each 

corresponding node in the RBN. The RBN is then executed 

for 10 cycles. The value on the predetermined output node(s) 

is then taken as the response. All results presented are the 

average of 20 runs. Experience found R=5x5= 25 

nodes/blobs was useful across the problems explored here.  

Figure 6 shows performance on k=2 versions of the three 

tasks: the 6-bit multiplexer (opt. 64), 2-bit adder (opt. 16), 

and 2-input JK latch (opt. 4). Only structural dynamism is 

used given the non-trivial physical manipulation of the 

plasmodium needed to exhibit a given logic gate [Tsuda et 

al., 2004]. Given the known underlying dynamics of RBN 

(section II), B=2. As can be seen, optimal performance is 

reached in all cases, with varying numbers of dynamic 

nodes. That is, discrete dynamical circuits capable of the 

given logic functions have been designed for potential 

implementation on the Phychip. Figure 6 also shows the 

performance of the equivalent traditional RBN, i.e., without 

structural dynamism, which is statistically significantly 

worse on the multiplexer and adder (T-test, p<0.05), and the 

same on the latch (T-test, p≥0.05). 



 

 

 

 

 
 

 
 

 
Fig. 6: Typical evolutionary performance of RBN with and without mobile 

DNA-inspired mechanisms for the four benchmark tasks. Fitness shown as 

fraction of correct inputs. 

VI. SMART SURFACE 

On the surface of many cells are thin hair-like structures; 

cilia. Once considered vestigial, these cilia are functioning 

organelles of which there are two types. Non-motile or 

primary cilia, typically serve as sensory organelles with roles 

in chemical sensation (as in olfaction), signal transduction 

(rod photoreceptors in vision) and control of cell growth. 

Motile cilia are often found in clusters and move in 

coordinated ways, capable of registering surrounding fluid 

flow such as in the trachea or kidneys. If the combined 

properties of these cilia could be created and controlled, they 

could perform the functions of both motion and sensory 

perception in an intelligent system, sensing and identifying 

properties of objects on the artificial cilia surface, and 

potentially moving in a coordinated way to project the object 

along a predetermined trajectory according to its properties. 

In effect, a multitude of biologically inspired cilia could 

create the emergent properties of both sorting and 

transporting objects around an intelligent manipulator 

surface. We are currently building an intelligent autonomous 

massively parallel manipulator with the aim of achieving the 

distributed sensing, recognition, analysis, sorting, 

transportation and manipulation of light-weight objects. 

Some of the potential benefits of the decentralised 

manipulator surface are: 

 

 absence of a central processor responsible for all 

computation - all cells of the surface act in parallel, 

fulfilling a collective task 

 the number of simultaneously manipulated objects is not 

restricted by computational capability of the central 

processor 

 the system is scalable, i.e. manipulator area can be varied 

(by adding/removing cells) without reprogramming.  

 the system is robust against individual component faults - 

decentralised control and parallel operation ensure that 

no single component fault results in the overall system 

faulting. 

 

Previous approaches to implement such systems include 

airjets (e.g., [Moon & Luntz, 2006]), mechanical wheel-

based arrangements (e.g., [Murphey & Burdick, 2004]), and 

in micro electro mechanical systems (MEMS) (e.g., [Ataka 

et al., 2009]). The hardware implementation of our system 

will be based on an array of piezo-actuators (Figure 7). This 

system will serve as an experimental platform and enable us 

to demonstrate many of the properties listed above. It is 

expected that each axis of each actuator will consist of eight 

piezo elements; object movement will be achieved by 

driving the appropriate transducer element groups. Mass 

induced changes in piezo-electric element resonant 

frequency established through monitoring impedance 

variation will be used to sense the presence of an object.  

The design of distributed controllers for such systems is 

non-trivial and hence computational intelligence techniques 

may be usefully employed. In the only known related work, 



 

 

 

Matignon et al. (e.g., [2010]) have explored using 

reinforcement learning approaches. As noted above, we are 

interested in the evolution of an RBN controller to exist 

within each cell of the surface, sensing and acting locally, 

i.e., akin to the cells of multicellular organisms (see [Bull, 

2012b] for a review of related multi-GRN work). In the 

aforementioned initial work on structural dynamism in RBN 

it was found that the new mechanism can facilitate 

behavioural differentiation in two coupled cells [Bull, 2013]. 

To act as a controller, each RBN receives five sensor inputs 

as to the presence or absence of an object: itself and the four 

cardinal direction cells (von Neumann neighbourhood of 

cellular automata). To facilitate the emergence of useful cell-

cell communication, each RBN also receives an input from a 

predetermined node in each of the RBN of its four cardinal 

neighbouring cells. Thus, following the input scheme above, 

the first nine nodes of a given RBN each receives an external 

input as its first connection. Possible outputs are to move the 

actuator in one of the four cardinal directions, hence two 

output nodes are predetermined.   

 

 

 
 

Fig. 7: Proposed piezo-ceramic actuator layout of each cell in a multi-celled 

smart surface.  

VII. SMART SURFACE EXPERIMENTATION 

In the following experiments we begin to explore a 

fundamental aspect of controller design for such distributed 

systems – the ability to correctly recognize an object and 

respond appropriately. More specifically, the task of 

distinguishing between two objects by moving them in 

different directions is considered. In these initial 

experiments, a box of 3x1 cells must be moved as far north 

as possible from the middle of a surface of 12x12 cells 

having been placed horizontally. That is, the object is placed 

on cells 75, 76 and 77 of the 144, with the fitness calculated 

as the distance between the middle section of the object and 

cell 76. The surface is then reset, i.e., each RBN is set to its 

start configuration, and a box of 5x1 cells is similarly placed 

horizontally in the middle of the surface and must be moved 

as far south as possible. In each case, each RBN updates in 

parallel internally for 10 cycles for a given sensor input 

before its action is determined. This process is repeated 10 

times. If all cells under an object give the same action, the 

object moves in that direction. Fitness in each case is the 

distance of the middle of the object from the middle of the 

surface, with the fitness of an RBN simply the sum of the 

fitness in each of the two scenarios. Here R=20 and B=2, all 

Boolean functions are allowed, results averaged over 20 

runs. 

 

 
Fig. 8: Typical evolutionary performance of RBN with and without mobile 
DNA-inspired mechanisms for the benchmark surface task. Fitness shown 

as fraction of known optimum. 

 

Figure 8 shows performance with structural dynamism (as 

above) and both structural and functional dynamism. As can 

be seen, in both cases typical performance is better than the 

standard RBN representation (T-test, p<0.05). Moreover, the 

combined dynamism performs better than just the structural 

version (T-test, p<0.05). Both versions of the RBN using the 

mobile DNA-inspired mechanisms evolve to significantly 

separate the two objects whereas the traditional approach 



 

 

 

typically only evolves to move both objects in the same 

direction. That is, only with the extra mechanisms are the 

cells in the ambiguous positions under the objects able to 

distinguish between the two.      

VIII. CONCLUSION 

There is a growing body of work within computational 

intelligence which explores representations more closely 

analogous to the genetic machinery seen in nature, i.e., 

artificial regulatory networks. Adoption of these relatively 

generic representations creates the opportunity to exploit 

new mechanisms from microbiology. That is, molecular 

biologists have identified a variety of mechanisms through 

which changes in DNA occur in natural regulatory networks 

in ways other than the processes which inspired the 

traditional heuristics of evolutionary computation: specific 

biochemical processes generate novelty through targeted 

DNA restructuring based upon the internal and external state 

of a GRN during the organismal lifecycle. This paper has 

presented initial results from using two new mechanisms 

within GRN to solve computational tasks. Current work is 

seeking to incorporate other mechanisms, as well as 

determining the general effectiveness of such systems.  

This work was partially supported by EPSRC grant no. 

EP/H023631/1 and EU FP7-ICT project no. 316366. 
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