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Abstract—There has been a steady growth in interest in
niching approaches within the evolutionary computation com-
munity, as an increasing number of real world problems are
discovered that exhibit multi-modality of varying degrees of
intensity (modes). It is often useful to locate and memorise
the modes encountered – this is because the optimal decision
parameter combinations discovered may not be feasible when
moving from a mathematical model emulating the real problem
to engineering an actual solution, or the model may be in error
in some regions. As such a range of disparate modal solutions is
of practical use. This paper investigates the use of a collection of
localised surrogate models for niche/mode discovery, and analyses
the performance of a novel evolutionary algorithm (EA) which
embeds these surrogates into its search process. Results obtained
are compared to the published performance of state-of-the-art
evolutionary algorithms developed for multi-modal problems. We
find that using a collection of localised surrogates not only makes
the problem tractable from a model-fitting viewpoint, it also
produces competitive results with other EA approaches.

I. INTRODUCTION

Optimisation problems in the real world often exhibit a
degree of multi-modality, be it only a few modes to contend
with, or potentially a vast number. That is, in a particular
volume of design space there may be more than one solution
which performs equally as well as another, but the regions
between these solutions map to quality values distinctly less
good. These are often conceptualised as peaks (or troughs if
the quality measure is to be minimised) – and are referred to
as niches or modes.

Decision makers are often interested in locating disparate
peaks, as they can offer insight into the behaviour of the
problem they are dealing with. Additionally, by discovering
parameter combinations which have the equivalent (or sim-
ilar) behaviour, but which are distributed widely in design
space, a wide range of good potential design solutions can
be subsequently assessed. Often the model optimised is a
software emulation of a physical process, whose mapping
may not be exact in all regions, therefore a spread of good
solutions is typically a desired output; as realising a particular
parameter combination may turn out to be infeasible from a
manufacturing point of view, or when manufactured may not
behave as emulated.

Many methods exist to search for multiple optima, with
fitness-sharing and crowding [1] being two popular evolu-
tionary computation (EC) approaches. Essentially these pro-
mote regional subpopulations of a search population, who

are concerned with optimising separate modes. As recently
highlighted in [2], these algorithms are often highly parame-
terised themselves, and rely on well-chosen values to perform
as required. Other approaches that have been developed for
use within evolutionary algorithms (EAs) include clustering
[3], derating [4], restricted tournament selection [5], speciation
[6], and stretching and deflation [7] (to name but a few).

Here we take a different approach to niching, fitting local
surrogate models to regions of the design space, and select
new design parameters to assess based on the prediction of
these models. The number of local modes is not predefined,
allowing the algorithm to learn the degree of multi-modality as
it searches the design space. It accomplishes this by merging
regions covered by surrogates, and by searching in new regions
via both recombination and speculatively looking in new areas.
Results for this localised surrogates assisted evolutionary algo-
rithm are presented on a number of multi-modal test functions
from the literature [8]–[10].

The paper proceeds as follows. In Section II we provide
a short description of the general multi-modal optimisation
problem, this is followed by a short overview of surrogate-
based optimisation for multi-modal problems and local model
fitting in Section III. In Section IV the multi-modal optimisa-
tion algorithm is described, and in Section V its empirical
performance is compared to that of a number of recently
developed algorithms on a range of standard test problems.
The paper concludes with a discussion in Section VI.

II. MULTI-MODAL LANDSCAPES

Many methods have been developed for locating multiple
optima. From the basic ‘Multistart’ approach, which applies
local search from randomly generated locations [11] – to more
sophisticated techniques like fitness sharing and crowding,
which both fall in the broader area of niching methods. Holland
[12] first introduced the fitness sharing concept, which was
later refined as a means to partition the search population into
different subpopulations based on their fitness [13]. A succinct
overview of these general ideas is presented in [1].

The general aim in multi-modal optimisation is similar to
that of global optimisation, that is, without loss of generality,
we seek to maximise f(x), where x ∈ X ⊆ RK – the
feasible domain as defined by any equality and inequality
constraints. In the case of a multi-modal problem, we seek
not simply to discover a single x ∈ X which maximises f(x),
but the set {x∗} ∈ X of solutions which obtain the maximum



(a) Inverted Vincent function. (b) Composite function 1.

Fig. 1. Example multi-modal function landscapes: (a) has 36 global optima, (b) has a mixture of six global modes and many local modes.

possible function response, but which inhabit isolated peak
regions. That is, the mapped objective values in the immediate
region of an x∗ are all lower than f(x∗). Two example multi-
modal problems are shown in Figure 1. Figure 1a has an
asymmetric distribution of many global optima, Figure 1b has
fewer global optima, but many local optima. Local optima
(local modes/peaks) are locations which are surrounded in the
immediate vicinity with less ‘fit’ solutions (lower responses
from f(·)), but which do not themselves have the highest
possible fitness.

III. SURROGATE-BASED OPTIMISATION

The use of surrogates within evolutionary optimisation
algorithms has started receiving serious attention in the last
decade, a good recent overview of area can be found in [14].
Many industrial problems are expensive to evaluate, and to
mitigate this surrogate models fit a estimate of the cost function
(based on previously evaluated design parametrisations, and
any prior knowledge available). These can then be used in
combination with an EA to guide the search process (although
reference back to the real fitness function is required in order
to update the surrogate – and to compensate for any falsely
induced maxima). Most areas of research in surrogates are
concerned with the type of surrogate used, and how the
surrogate will be integrated within the search process (the
‘model management’ problem [14]).

Some previous studies have used surrogate approaches
for multi-modal problems – in [15] a surrogate is used to
effectively ‘smooth’ the cost landscape as a means to eradicate
local minima for problems with many local modes and a
single maxima. In [16] local weighted ensembles of surrogates
are used for global optimisation, along with lower order
polynomial surrogates to also smooth local optima as in [15].
In [11] a global surrogate is used in conjunction with a local
evolutionary search (which exploited memory for good search
directions [17]) – although they were concerned with finding a
global peak, rather than all global peaks. Most recently in [18]
a classifier was fitted locally to each offspring in a differential
evolution algorithm, to predict their relative rank order when

solutions previously evaluated in their local neighbourhood had
a mixed range of fitnesses.

One drawback of many sophisticated models used as
surrogates is that they can often themselves take time to
fit the data, and often performance (time to learn) scales
poorly with the number of data points. Where the landscape is
highly muti-modal, it is often highly flexible and parameterised
surrogates that are required. The use of these becomes rapidly
intractable as the number of data samples rises, as, unless
the problem being optimised is extremely expensive, the time-
cost of regularly fitting the surrogate soon outweighs the time
cost of evaluating the actual objective function for medium to
long runs. We attempt to side-step this issue here by using a
collection of local surrogates, whose remit is only a very small
region in X , centred on a particular niche estimate, and are
therefore very cheap to fit in comparison to a global model.
This approach is also useful as the maxima from a globally
fitted surrogate may not be as accurate as that induced from
a model fitted to just those points sampled in the location of
the globally estimated maxima (see e.g. [19]). In [20] it is also
observed that the global error of a surrogate may not be a good
indication of its local error - and as such local fidelity tracking
is used to decide when a global model should be refitted to
new data.

Here we use the “Design and Analysis of Computer Exper-
iments” (DACE) approach as our local surrogate model [21],
specifically a zero order polynomial, with Gaussian correlation
model from the MATLAB Kriging toolbox [22]. An example
of this model is provided in Figure 2, where y = f(x). Note
however this illustration is on a global fit, whereas we will
be concerning ourselves with local neighbourhood models.
It is worth mentioning at this juncture, that although we
use Kriging here (also known as a Gaussian Process [23]),
the evolutionary algorithm proposed below could have any
collection of surrogates embedded within it.

IV. PROPOSED ALGORITHM

Rather than train a single surrogate for the entire cost
landscape, here we take the approach of having many small
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Fig. 2. Kriging surrogate fitness estimate on the equal maxima test function.
Top: based on 10 random samples of x. Bottom: based on 30 random samples
of x. The dashed lines show +/- the root mean squared error estimate provided
by the fitted surrogate at each x location.

surrogates, who are concerned only with the local landscape
surrounding the currently estimated niches.

Because we only fit the surrogate to a small volume of X ,
we only use previously evaluated solutions in the immediate
vicinity to fit the model parameters, thus model fitting at each
generation is extremely rapid, even though there may be many
surrogates fitted. Indeed, it is orders of magnitude quicker
than fitting a single model for all the data (as fitting a single
model is an O(n3) operation – where n is the number of
data points used). The algorithm is self-adaptive, with the
number of niches maintained depending on the properties
of the landscape discovered, and it seeks to balance both
exploration of the space for previously undiscovered niches,
and exploitation of the niches found thus far. As such, the
number of niches in X does not need to be known a priori,
or a vast search population maintained right from the start –
instead the number of niches dynamically shrinks or expands
as the search progresses. The algorithm maintains a set of sets
of niche histories X, where Xi is the set of m designs {x}mj=1,
which are used to define the immediate peak region of the ith
niche. Each Xi therefore includes a single x∗ estimate. Yi

is the collection of corresponding responses from f(·) for the
elements of Xi.

The algorithm at a high-level is described in Figure 3.
The initial number of random solutions to be evaluated, n, is
inputted (these form the basis of the initial estimated niches),
along with the maximum number of true function evaluations
permitted for the algorithm (as distinct from surrogate evalua-
tions). The algorithm proceeds as follows. The initial solutions
are drawn from latin hypercube sampling of X (line 1), which

Require: n,max evals
1: X := latin_hypercube_sample(n)
2: Y := evaluate(X)
3: evals := n
4: t := 0
5: while evals < max evals do
6: {X,Y, evals} := compare_niches(X,Y, evals)
7: S := fit_local_surrogates(X,Y)
8: {X,Y, evals} :=

propose_via_surrogates(S,X,Y, evals)
9: t := t+ 1

10: if t = 5 then
11: {X,Y, evals} :=

crossover_niches(X,Y, evals)
12: t := 0
13: end if
14: {X,Y, evals} :=

generate_random_niche(X,Y, evals)
15: end while
16: {X∗, Y ∗} := extract_peak_members(X,Y)
17: return {X∗, Y ∗}

Fig. 3. High-level pseudocode of the localised surrogates evolutionary
algorithm.

also form the initial niche histories. On line 6 the niches are
compared to one another – and those that are concerned with
the same niche are merged (this is detailed further in Figure 4).
After this, local surrogates are fitted to each niche (line 7, and
Figure 5), and on line 8 these surrogates are used to evaluate
a number of solutions proposed in the vicinity of each niche.
One of these is then evaluated on the actual objective function,
f(·), (details of proposal selection are provided in Figure 6). In
combination with the current niche peak estimates these newly
evaluated locations are used to improve the niche estimate.

Every five generations the niche peaks are crossed over
(line 11) using simulated binary crossover (SBX) [24]. The
resulting children are then placed in new niches (although these
may subsequently be merged when the algorithm loops back
to line 6).

The compare_niches subroutine, as outlined in Figure
4, is concerned with reducing the number of niches maintained,
as two niches may be climbing up the same peak from different
directions (and therefore are concerned in actuality with the
same niche). First all niches whose peaks have changed since
the last generation are marked (i.e. those that are brand new,
or have had a higher point in the niche locality found in the
previous iteration). The closest other niche peak (in design
space) to each of these marked niches is also found. Once
all pairings have been calculated the procedure then processes
each pair in turn1 (lines 4-17). If the two peaks are within
some small tolerance of each other in design space (here set
at 1.0×10−3), then the niches are automatically merged (lines
5-6), otherwise the location midway between the two peaks
is evaluated (lines 8-10). The midpoint, x′, is then compared
to its two parents. If it is worse than both parents then the
niches are maintained separately and the evaluated midpoint
is simply added to the niche histories of both peaks (as it may

1Note, to avoid wasted computation it is best to check the list produced, as
two changed points may be the closest to each other, thus duplicating pairs.



Require: X,Y, evals
1: {X∗, Y ∗} := extract_peak_members(X,Y)
2: index members in X∗ whose location has moved in the

last generation
3: find the closest other niche to each changed niche
4: for each selected niche pair X∗i and X∗j do
5: if distance(X∗i , X∗j ) ≤ tolerance then
6: merge niches
7: else
8: find the midpoints, x′, for the paired niches
9: evaluate midpoint for paired niches, y′ = f(x′)

10: evals := evals+ 1
11: if y′ < Y ∗i ∧ y′ < Y ∗j then
12: add x′ to both Xi and Xj

13: else
14: merge niches
15: end if
16: end if
17: end for
18: return {X,Y, evals}

Fig. 4. The compare_niches subroutine.

Require: X,Y
1: for each niche history set Xi do
2: Xi := truncate_least_fit(Xi,Yi, 50)
3: k = min(|Xi|, 50)
4: if k = 1 then
5: fit Si using (up to) 10 closest niche peaks in

parameter space
6: else
7: fit Si using Xi members
8: end if
9: end for

10: return S
Fig. 5. The fit_local_surrogates subroutine.

prove useful to fitting their local surrogates later). However if
it is better than one or both of its parents, then the niches are
merged (and the mid point added to the history of the resultant
merged niche, and becomes its x∗ estimate if appropriate).

In the fit_local_surrogates subroutine (Figure 5)
the niche history stored for each niche is used to fit a surrogate
in the region of the peak estimate. A maximum of 50 locations
are stored in each peak’s niche history. When the number
exceeds 50, the least fit are truncated (line 2) – note, this
distance is calculated from f(x∗) rather than x∗. If there is
only one element in the current niche, then the 10 closest other
peaks in search space (or fewer if there are fewer than 10
niches in total), are used to fit the surrogate model (lines 4-5).

Following the fitting of the surrogate models, the surrogates
are then used to evaluate proposed solutions drawn in the
immediate vicinity of the niche peak, as described in Figure 6.
In the special case where adjacent niches have been used to fit
the surrogate, due to the niche not currently having a history
of its own, then a hypersphere in X is placed around the niche
peak. The hypersphere width is determined by the distance to
the closest next niche peak (in design space), otherwise the
diameter of the hypersphere placed around the peak is chosen

Require: S,X,Y, evals
1: for each fitted surrogate Xi do
2: k = min(|Xi|, 10)
3: if k = 1 then
4: get parameter space distance d to closest other niche

peak
5: else
6: u := U(0, 1)
7: if u < 1

3 then
8: get parameter space distance d to the closest

niche history member (by fitness)
9: else if u < 2

3 then
10: get parameter space distance d to the kth closest

niche history member (by fitness)
11: else
12: get parameter space distance d to closest other

niche peak
13: end if
14: end if
15: u := U(0, 1)
16: if u < 1

2 then
17: generate 100 samples in a truncated Gaussian hy-

persphere, centred on the ith peak, with the hyper-
sphere radius set to d/2

18: induce fitness estimate of samples through Si
19: select sample x with best predicted fitness
20: else
21: generate a sample x in a truncated Gaussian hy-

persphere, centred on the ith peak, with the hyper-
sphere radius set to d/2

22: end if
23: evaluate x on actual problem, to obtain y
24: evals := evals+ 1
25: {X,Y} :=

update_niche(X,Y, i,x, y)
26: end for
27: return {X,Y, evals}

Fig. 6. The propose_via_surrogates subroutine.

either as the distance to the next fittest point in the niche history
(line 8), the distance to the 10th closest point in niche history
(line 10) or the distance to the closest next niche peak (line 12).
By varying the value chosen for the diameter d in these fashion
we seek to generate putative solutions which are compactly
distributed about the current peak estimate for fine-tuning,
and also more widely spread to make larger movements, but
always within the region defined by the current niche and
constrained by the next closest one. Within the hypersphere
itself an isotropic Gaussian distribution is used to generate the
samples (the hypersphere radius effectively defining the scaling
and truncation point of the Gaussian – with three standard
deviations from the hypersphere centre to its edge). 50% of
the time 100 samples are drawn from this hypersphere and
evaluated by the local surrogate, with the predicted fittest of
these selected to be evaluated on the actual problem. The other
50% of the time we take a single random sample from the
truncated Gaussian and do not fit a surrogate. By choosing the
predicted fittest we are exploiting the estimated peak from the
surrogate, whereas the random selection promotes search in
the neighbourhood of the peak estimate.



Require: X,Y, i,x, y
1: {x∗, y∗} := get_peak(Xi,Yi)
2: if y > y∗ then
3: replace peak with x
4: end if
5: update niche history with x and y
6: return {X,Y}

Fig. 7. The update_niche subroutine.

Require: X,Y, evals
1: {X∗, Y ∗} := extract_peak_members(X,Y)
2: randomly permute the indices of the peak sets, and hold

in I
3: while |I| > 1 do
4: remove the last two values held in I , i and j
5: crossover X∗i and X∗j to create x′ and x′′

6: evaluate the offspring, x′ and x′′

7: create a new niche for each of the offspring
8: evals := evals+ 2
9: end while

10: return {X,Y, evals}

Fig. 8. The crossover_niches subroutine.

Before returning, the propose_via_surrogates sub-
routine passes each of the evaluated proposals to the
update_niche subroutine, which ascertains whether the
new solution has improved the peak estimate, and is described
in Figure 7. If the new location is worse than the current peak,
then the proposal is still added to the history of the current
niche.

The main exploration driver occurs via niche crossover, as
described in Figure 8 (the SBX parameter was set to 20 in
our empirical work), with additional speculative search via a
random element in each generation (line 14 of Figure 3).

The surrogates provide the main exploitation driver in the
algorithm and crossover the principal exploration mechanism
(although there is localised mutation around the peaks as
described in Figure 6). Note, the algorithm does not concern
itself with how fit the niches it maintains are in relation to
each other – it is only concerned that the niches are locally
fit with respect to the the immediate vicinity around a niche
peak. As such this algorithm will successfully find many peaks
of varying heights.

V. EMPIRICAL RESULTS

The algorithm’s performance is compared against the pub-
lished results of a number of particle swarm optimisation
(PSO) and differential evolution (DE) algorithms previously
applied to multi-modal problems. Namely Constricted PSO
(CPSO) [25], Gaussian PSO (GPSO) [26], Cauchy and Gaus-
sian PSO (CGPSO) [2], DE/rand/1/bin [27] (labelled DE in the
tables) and the crowding DE/nrand/1/bin [28] (labelled CDE
in the tables). These results are taken from [2] and [29] – and
the form of assessment follows the practice of these articles.

Eight test functions of varying dimensionality and number
of optima are used, as defined in Table I, and illustrated in
Figure 9, and earlier in Figure 1. The one-dimensional equal

TABLE I. TEST FUNCTIONS.

Source Definition

[8] f1(x) = sin6(5πx)

[8] f2(x) = sin6
(
5π(x3/4 − 0.05)

)
[8] f3(x) = 200− (x2

1 + x2 − 11)−(x1 + x2
2 − 7)2

[9] f4(x) = −4
(
(4− 2.1x2

1 +
x4
1
3 )x2

1 + x1x2 + (−4 + 4x2
2)x

2
2

)
[6] f5(x) = −

∏p
i=1

∑5
j=1 j cos ((j + 1)xi + j)

[10] f6(x) = 1
p

∑p
i=1 sin (10 log(xi))

[29] f7(x) = two-dimensional problem composed of six basic functions
[29] f8(x) = two-dimensional problem composed of eight basic functions

TABLE II. TEST PROBLEM PARAMETERS (AS USED IN [2] AND [29]).

function range ε r Global peak # global
height peaks

f1 0 ≤ x ≤ 1 0.0001 0.01 1.0 5
f2 0 ≤ x ≤ 1 0.0001 0.01 1.0 5
f3 −6 ≤ xi ≤ 6 0.0001 0.01 200.0 4
f4 −1.9 ≤ x1 ≤ 1.9 0.0001 0.01 1.03163 2

−1.1 ≤ x2 ≤ 1.1
f5(2D) −10 ≤ xi ≤ 10 0.1 0.5 186.731 18
f5(3D) −10 ≤ xi ≤ 10 0.1 0.5 2709.0935 81
f5(4D) −10 ≤ xi ≤ 10 0.1 0.5 39303.55 324
f6(2D) 0.25 ≤ xi ≤ 10 0.01 0.1 1.0 36
f6(3D) 0.25 ≤ xi ≤ 10 0.01 0.1 1.0 216
f6(4D) 0.25 ≤ xi ≤ 10 0.01 0.1 1.0 1296
f7 −5 ≤ xi ≤ 5 0.01 0.01 0.0 6
f8 −5 ≤ xi ≤ 5 0.01 0.01 0.0 8

maxima (f1) and uneven maxima (f2) problems have the
same number of global peaks (that is, niches with the same,
best possible, maxima), however those in f2 are not evenly
spaced, and there is a niche with a lower peak located at the
boundary on the left-hand side. The Himmelblau function (f3)
lives in two dimensions, and has four global maxima (two of
these at the either end of a ridge). The six-hump camel back
function (f4), contrary to its name has two global peaks and
two local peaks (due to the sampling region used, as in [2]).
The inverted Shubert function (f5) is scalable in the number
of dimensions p – with the number of global peaks being
p3p, and considerably more local peaks. The inverted Vincent
function (f6) has 6p global peaks (but does not suffer from
suboptimal local peaks). The composite functions f7 and f8 are
non-symmetric problems with numerous local optima and are
composed of the properties of a number of different functions
from the literature. Due to space constraints formal definitions
are not provided here – however the technical report detailing
them can be found online [29].

Table II details the variable ranges of the different test
functions, and also the parameters used to assess whether an
algorithm has found a peak. The value ε determines how close
(in fitness) a solution must be to a global peak maximum to
be determined to have found the peak (as long an another
solution within r radius in X has not already discovered the
peak). As in [2], test problems f1–f4 have a maximum of
100,000 function evaluations allowed, the 2D and 3D variants
of f5 and f6 have a maximum of 200,000 function evaluations,
and the 4D variants have a maximum of 400,000 function
evaluations.2 The two composite test functions f7 and f8 each
have a maximum of 200,000 function evaluations per run.

2This differs slightly from [29], where the 3D variants have a maximum of
400,000 function evaluations, and 4D variants are not investigated.



Equal maxima Uneven maxima

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

Himmelblau Six-hump camel back

x
2

x
1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x
2

x
1

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Inverted Shubert function Composite function 2

x
1

x
2

−10 −5 0 5 10
−10

−5

0

5

10

x
1

x
2

−5 0 5
−5

0

5

Fig. 9. Contour maps of test function landscapes. Darker greys indicate low
fitness and lighter greys indicate high fitness.

As in the comparison work, we run our algorithm 50 times
on each problem. Two main criteria are used. On the ‘easier’
problems the success rate (SR) is recorded – which measures
the proportion of successful runs (those which find all global
optima given the prescribed ε and r). A value of 1.0 therefore
indicates that all 50 runs found all global peaks, whereas a
value of 0.5 would indicate that half the runs (25) found all
global peaks. For the other problems, the peak ratio (PR)
measure is employed. This gives the average proportion of
global peaks found across runs, i.e. for q runs:

PR =

∑q
i=1 di
tq

(1)

where di denotes the number of global optima discovered by
the ith run, and t is the total number of global peaks. An SR
of 1.0 also means a PR of 1.0, however the PR level cannot
be deduced from an SR lower than 1.0 (as an SR of 0.0 may
mean every run obtained the majority, but not all, of the peaks,
or the runs may have found no peaks whatsoever). A ‘-’ in a
table entry in Tables III-V indicates where an algorithm was
not run on that particular problem in the comparison studies.

For test problems f1, f2, f3, f4 and f2D5 the success rates
of the localised surrogates evolutionary algorithm (LSEA)
compared well to the other algorithms (results shown in
Table III). LSEA finds the peaks consistently, with the DE
approaches finding all peaks on three problems for all 50 runs
– however as shown in Table IV, the LSEA approach obtains
equivalent or better results in many fewer function evaluations
on these problems.

TABLE III. SUCCESS RATES, INCLUDING COMPARISON RESULTS FROM
[2] AND [29].

func. CPSO GPSO CGPSO DE CDE LSEA

f1 0.94 0.98 0.96 1.00 1.00 1.00
f2 0.92 0.94 0.98 - - 1.00
f3 0.54 0.28 0.44 1.00 0.98 1.00
f4 1.00 1.00 1.00 1.00 1.00 1.00
f2D
5 0.98 0.76 0.98 0.00 1.00 1.00

TABLE IV. AVERAGE NUMBER OF FUNCTION EVALUATIONS FOR
CONVERGENCE WITH ACCURACY LEVEL ε = 0.0001 (DE VALUES FORM

FROM [29]). ON OTHER TEST FUNCTIONS THE DE ALGORITHMS ALL RAN
TO THE MAXIMUM NUMBER OF FUNCTION EVALUATIONS FOR THIS ε

LEVEL.

function DE/nrand/1/bin Crowding DE/rand/1/bin LSEA

f1 1,552 3,386 278
f2 - - 285
f3 13,610 41,666 489
f4 3806 12,980 393

TABLE V. AVERAGE PEAK RATIOS, INCLUDING COMPARISON RESULTS
FROM [2] AND [29]. RESULTS MARKED WITH * WERE RUN FOR TWICE AS
MANY FUNCTION EVALUATIONS COMPARED TO THE OTHER ALGORITHMS.

func. CPSO GPSO CGPSO DE CDE LSEA

f3D
5 0.62 0.45 0.31 0.10* 0.27* 0.99
f4D
5 0.24 0.11 0.04 - - 0.53
f2D
6 0.95 0.80 1.00 0.35 0.72 1.00
f3D
6 0.25 0.25 0.35 1.00* 1.00* 0.99
f4D
6 0.10 0.10 0.12 - - 0.61
f7 - - - 0.673 0.69 0.71
f8 - - - 0.84 0.06 0.75

For the more difficult problems the average peak ratio
values in can be found in Table V. Direct comparison with
the some of the DE results is a little more difficult here, as
[29] does not report results for the 4D variants, and they
were run for twice as many function evaluations than the
other algorithms for the 3D variants. For both the f5 and f6
problems LSEA is seen to perform well in comparison to the
other algorithms. Overall LSEA is seen to perform equivalently
or better than the other algorithms on 11 out of the 12 test
problem formulations. Even given this, its performance does
seem to degrade when a problem has an excessive number
of local peaks (global or local). We will now examine the
behaviour of the population maintained by LSEA to see why
this occurs, and how LSEA may be developed further.

A. Examination of the niche maintenance dynamics within the
proposed algorithm

The effect of the dynamic niche maintenance used in LSEA
can be seen when looking at the number of niches maintained
by the algorithm on the different problems across the 50 runs.
Figure 10 shows the number of estimated niches maintained
for each run of LSEA for each of the problems (until the point
at which they find all global optima, or complete the maximum
permitted function evaluations). The number of ‘true’ global
optima for each problem is plotted as a horizontal dotted line.
The spike of new niches generated via crossover every five
generations is clear to see in the panels with the population
doubling, and then retracting as a number are merged in the
subsequent generation).
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Fig. 10. Maintained niche size per generation for each run (recorded after line 6 of Figure 3). The dotted horizontal line shows the total number of global
optima for the problem. Population shown until all niches are found (or until all permitted function evaluations are exhausted).

For simpler test functions the number of niches maintained
rapidly converges to the actual number of niches. For example,
in the equal maxima function panel (top left of Figure 10),
nearly all runs have converged within 20 iterations, with one
of the runs taking a little longer as it ‘undershoots’ with niche
merging and needs to rediscover the region of the final niche.

For more complex test functions with local optima, the
number of niches maintained can be seen to rapidly expand
to a level considerably above the number of global optima,
before dropping back to a level where it is searching the global
niche regions, but also a good number of the local niches. In
the case of local optima living on a larger scale landscape
feature (as seen in composite function 1), the local optima do
not seem to be regularly maintained – this is likely due to
the mid-point merging in the compare_niches subroutine
‘smearing’ these local optima out in favour of optimising the
larger landscape feature they reside on. However local optima
which do not lie on a larger scale landscape features tend to be
maintained. This is contrast is illustrated in Figure 11, which
plots the niche peak estimate locations found after 200,000
function evaluations of the inverted Shubert function and the
composite function 1.

Although the algorithm is seen to perform well against
existing state-of-the-art optimisers, by examining how the
niche population is evolving there does appear to be scope
for further improvement. Avenues of further investigation are:

1) Using more sophisticated analysis when merging
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Fig. 11. Niche peak locations returned by LSEA after 200,000 function
evaluations (marked with circles) on the 2D inverted Shubert function (left
panel) and the first composite function (right panel). Many more local modes
are seen to be maintained for the former due to the landscape features.

niches or keeping them separate — currently a basic
check is undertaken based on the fitness of a midpoint
between two locations, however a surrogate could
also be employed here (although it may require
storing the less fit solutions at the edge of a niche,
as well as those near the current local maxima).

2) Integrate methods to smooth away local optima to
mitigate their negative impact on the search (as in
for instance [15], [16]).

3) Bias the search toward peaks with higher fitness
(currently all niches are treated equally when found).

In addition to the above, it may be useful to explore the
use of other surrogate models, and examine the effect of



the tolerance value used for merging niches. Also there is a
potential to develop a heuristic for convergence checking on a
particular niche (i.e., exploring when to stop evolving a niche
if it is thought the best value in that local region has now been
attained).

Finally, the use of many local surrogates rather than a single
global surrogate has large efficiency gains in model fitting,
as well as fidelity, however there is still a cost overhead in
evaluating proposals with a surrogate. So, for cheap to compute
f(·) there may be a trade-off in the number of surrogate
evaluations to use per iteration when compared to the number
of evaluations of f(·) taken.

VI. DISCUSSION

A new approach to multi-modal optimisation based on
using an EA with a dynamically varying number of localised
surrogates has been proposed, and evaluated on a range of
problems. It may be viewed as a sophisticated distributed hill-
climber, albeit one employing a degree of communication be-
tween immediately adjacent hills, which uses local surrogates
to guide the hill traversal. The EA component is principally
concerned with searching for new hills to climb, although it
will also exploit any symmetry in the landscape. It is however
seen to perform well on problems which are non-symmetric
too.

Analysis of its behaviour indicates there are areas that
can still be improved, with efficiency gains still to be had
by improving its niche maintenance subroutines, and how it
handles problems with very many local optima. Nevertheless,
even in its current form LSEA is found to be competitive with
the state-of-the-art.
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