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Abstract—Hyper-heuristic Flexible Framework (HyFlex) is an
interface designed to enable the development, testing and com-
parison of iterative general-purpose heuristic search algorithms,
particularly selection hyper-heuristics. A selection hyper-heuristic
is a high level methodology that coordinates the interaction of
a fixed set of low level heuristics (operators) during the search
process. The Java implementation of HyFlex along with different
problem domains was recently used in a competition, referred
to as Cross-domain Heuristic Search Challenge (CHeSC2011).
CHeSC2011 sought for the best selection hyper-heuristic with
the best median performance over a set of instances from six
different problem domains. Each problem domain implementa-
tion contained four different types of operators, namely mutation,
ruin-recreate, hill climbing and crossover. CHeSC2011 including
the competing hyper-heuristic methods currently serves asa
benchmark for hyper-heuristic research. Considering the type
of the operators implemented under the HyFlex framework,
CHeSC2011 could also be used as a benchmark to empiri-
cally compare the performance of appropriate variants of the
evolutionary computation methods across a variety of problem
domains for discrete optimisation. In this study, we investigate
the performance and generality level of generic steady-state and
transgenerational memetic algorithms which hybridize genetic
algorithms with hill climbing across six problem domains of the
CHeSC2011 benchmark.

I. I NTRODUCTION

A metaheuristic can be considered as a template showing
how to design a search algorithm to locate near optimal solu-
tions for a given difficult combinatorial optimization problem.
Although conceptually, metaheuristics are general, they require
tailoring to each given specific problem domain. There are
single point-based metaheuristics such as tabu search and
simulated annealing, performing search using a single can-
didate solution (often remembering the best solution). There
are also multi-point-based or population based metaheuristics,
performing search using a set of candidate solutions, such as
genetic programming (GP) and genetic algorithms (GA) [5].
GAs attempt to improve a population of candidate solutions
through an evolutionary cycle by iteratively applying a setof
genetic operators and creating new individuals then replacing
the old individuals with the new ones. While moving from
one generationto the next,selectionoperators together with
crossoverand mutation operators are used to form a new
population as well as avoiding convergence to local optima
[15]. The choice of these operators could influence the inten-
sification/diversification balance, extremely.

Hybridizing single point local search methods with pop-
ulation based evolutionary algorithms achieves a better per-
formance by introducing an additional intensification stepin
the evolutionary cycle. This is the main idea behind a family
of evolutionary algorithms called Memetic Algorithms (MA).
Memetic algorithms were first introduced by Moscato [30].
The termmeme, however, was first coined by Dawkins [13]
referring to a contagious piece of information which is pro-
cessed, comprehended, adapted and passed on by the infected
person. This adaptation process resembles the local refinement,
hence the use of the term memetic algorithms that make
extensive use of local search (hill climbing) methods. In fact,
MA is a hybridization of GA and local search. That is, within
the process of evolution, local search methods are applied to
the individuals of the population in a certain stage of each
cycle to improve their quality. Numerous variants of memetic
algorithms have been proposed in the literature, such as Steady
State Memetic Algorithm (SSMA) and Trans-Generational
Memetic Algorithms (TGMA). A memetic algorithm is often
designed specifically for a given problem domain [32].

Recently, there has been a growing number of studies on
hyper-heuristicswhich are general high-level methodologies
searching in the space of low-level heuristics for search
and optimization [3]. Employing various heuristic selection
mechanisms together with acceptance criteria to decide which
heuristic to proceed with, while maintaining independence
from the underlying problem domain, enables hyper-heuristic
methods to be applicable to a range of problem domains with-
out requiring any modification. Also, learning is sometimes
employed to achieve an improved performance [40]. Hyper-
heuristic methodologies are categorized asheuristic selection
and heuristic generationmethodologies in [6]. An overview
of hyper-heuristics of different types and more can be found
in [3]. A metaheuristic can be used as a hyper-heuristic to
search the space of heuristics rather than solutions directly. An
important challenge within hyper-heuristic research is todesign
automated search methodologies that perform well on the
unseen instances from not only a given single problem domain,
but also a range of domains without requiring expert interven-
tion. This was the topic of a recent competition referred to
as Cross-domain Heuristic Search Challenge (CHeSC2011).
CHeSC2011 based on Hyper-heuristics Flexible Framework
(HyFlex) [34] which currently serves as a benchmark to
compare the performance of selection type of hyper-heuristics.
HyFlex implementation includes six problem domain imple-
mentations, each with a fixed set of low level heuristics. These



heuristics can be used as evolutionary algorithm components
to perform direct search on the solution space as well, hence
enable empirical performance comparison of memetic algo-
rithms on real world discrete optimization problems, rather
than benchmark functions [40].

The HyFlex framework as a benchmark provides a rich
family of problem instances. This study has several goals.
Our first goal is to integrate memetic algorithms into the
HyFlex framework and test them across various problem
domains, providing a baseline for performance comparison
of different evolutionary computation methods in the future.
Such a comparison will, at the same time, demonstrate the
advantages and disadvantages of applying population based
methods versus single point search methods. Our second goal
is to analyze the generalizability of memetic algorithms over
various problem domains without changing their implemen-
tation. We extended HyFlex with the implementation of two
memetic algorithms Steady State Memetic Algorithm (SSMA)
and Trans-Generational Memetic Algorithms (TGMA). Then
we tested their performances on the CHeSC2011 benchmark.

The structure of the paper is organized as follows: In
Section II a literature review on various approaches and recent
advances in memetic algorithms and hyper-heuristics is given.
The HyFlex framework has been described in Section III. In
Section IV, our methodologies are discussed in detail. The
experimental results and subsequent analysis are presented in
Section V. Finally, concluding remarks and a glimpse of our
future work is given in Section VI.

II. RELATED WORK

The term “Memetic Algorithm” was introduced by
Moscato in [30]. Memetic algorithms (MAs), also referred
to as hybrid genetic algorithms, represent a set of genetic
algorithms that make heavy use of hill climbing. Ever since
its emergence, memetic algorithms and subsequent variants
of MAs have been applied to various problems such as the
timetabling problems [7], [1], [42], [37], [9], [43], permutation
flow shop scheduling [21], travelling salesman problem [31],
[2], [16], quadratic assignment problem [28], multi-objective
optimization problems [23], [11] and protein folding problem
[25]. Apart from application of memetic algorithms on various
problem domains, different meme considerations has also been
well studied. An example of such studies can be found in [41]
and [39] in which it has been shown that different meme struc-
tures might yield in different performances. Interested readers
can find more details about memetic algorithms research in the
comprehensive survey paper by Neri et al. [32].

Like many other approaches, memetic algorithms have also
been subjected to constant improvements in various studies,
evolving it to some complex variants such as multi-meme
algorithms and memetic computing. In the excellent work of
Nguyen et al. [33] this evolution of MAs has been covered
extensively. Four generation of memetic algorithms has been
introduced so far where in the first generation, population
based methods are hybridized with local search methods to
achieve improvements in the solution quality. In the second
generation, the concept of evolving meme in which the meme
is a part of the genotype is the focus of research. These type
of algorithms which are usually referred to as multi-meme

MAs [24] transfer memes to the next generation by using
simple inheritance mechanisms. Also hyper-heuristic [22]and
Meta-Lamarckian MA [35], [36] are investigated at this time
suggesting the use of a pool of memes from which a candidate
meme is selected based on the reward value associated to
it. This reward value is computed considering the history of
improvements that the meme has implied in the past. Co-
evolution and self-generation MAs are considered to be con-
cepts relevant to the third generation of MA’s, where memetic
information is passed to offspring with a learning strategy[45],
[26]. Furthermore, the concept of Memetic Computing extends
memetic algorithms as a whole to a framework in which
machine learning, cognitive observation of other individuals
and memory utilization are widely employed [10].

Similar to the hyper-heuristic research, adaptivity in co-
evolution and self-generation MAs is achieved by exploring
the space of local search heuristics and/or other parameters of
MAs. Indeed, this is the basic idea behind hyper-heuristics,
though in contrast to memetic algorithms, hyper-heuristics
aims to perform this in a domain independent fashion. Cov-
ering hyper-heuristic approaches is out of the scope of this
paper. However, it is the long-term intention of this study to
investigate the two frameworks (hyper-heuristics and memetic
computing) in order to establish a link between both research
areas by applying the advances and ideas in one field of
research to the other. Moreover, hyper-heuristic researchseems
to have much to offer to improve the performance of memetic
algorithms, invoking ideas which lead to memetic computing
and fourth generation of MAs where the main emphasis is on
the utilization of machine learning techniques and cognition in
MAs. Indeed, these ideas have long been employed in hyper-
heuristic research resulting in algorithms with higher levels of
generality and subsequently better performances. Thus, briefly
discussing main ideas behind the hyper-heuristic approachand
some recent advances in this field seems necessary.

Hyper-heuristics are known as high-level methods search-
ing the space of low-level heuristics for search and opti-
mization. Independence from the underlying problem domain
is usually maintained through considering a domain barrier.
A domain barrier restricts the amount of domain knowledge
available to the higher level heuristic to the fitness value
which is acquired by applying a low-level heuristic to the
problem. Such a domain barrier is a means of providing the
domain-independence which is necessary to achieve higher
level of generality. Thus, during the search process, the hyper-
heuristic uses some selection and acceptance mechanisms to
choose a low-level heuristic and applies it on the problem. On-
line/offline learning techniques are sometimes used to achieve
more generality through self-adaptation in hyper-heuristics. A
detailed study of these approaches as well as a categorization
of hyper-heuristic methods can be found in [6]. However, as
mentioned above, one interesting point which correlates hyper-
heuristic research and multi-meme MAs is their similarity
in utilizing various local search methods to improve the
solution quality. There are numerous examples in which local
search heuristics have been embedded into hyper-heuristics.
Simulated annealing [14], genetic algorithms [12], [19], [17],
tabu search [18], [44], [4] and Variable Neighbourhood Search
[8] are few examples. In fact, since hyper-heuristic methods
provide considerably high quality approaches by utilizing
various online and offline machine learning techniques suchas



reinforcement learning [38] and other data mining techniques,
establishing a link and applying the same ideas to memetic
algorithms might yield into MA approaches fitting into the
category of memetic computing where such extensive use
of machine learning methods are considered as promising
approaches in the literature ([35], [36]).

III. F IRST CROSS-DOMAIN HEURISTIC SEARCH
CHALLENGE (CHESC2011)

Hyperion [46] and Hyper-heuristics Flexible Framework
(HyFlex) [34] are software libraries for the implementation
and comparison of different hyper/meta-heuristics. The HyFlex
framework allows the implementation of hyper-heuristic ap-
proaches and supports reusability of hyper-heuristic compo-
nents, providing an interface for the problem domains. A Java
implementation of HyFlex including six different problem do-
mains was recently used at the Cross-Domain Heuristic Search
Challenge (CHeSC2011)1. The goal of this competition was
determining the best selection hyper-heuristic with the best
median performance across thirty problem instances, five from
each problem domain. 20 competitors reached the finals in the
competition. CHeSC2011, including the HyFlex implemen-
tation and competing hyper-heuristics, currently serves as a
benchmark to compare the performance of selection hyper-
heuristics. HyFlex is designed imposing a domain barrier
concept [12] between the hyper-heuristic and problem domain
layers as illustrated in Figure 1. This barrier keeps the problem
specific details, such as, low level heuristics, representation,
fitness function hidden from the hyper-heuristic. Only problem
independent information, such as the number of heuristics,
fitness value of a solution are allowed to pass through this
barrier from the problem domain.
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Fig. 1. A selection hyper-heuristic framework.

The CHeSC2011 problem domains include Boolean Satis-
fiability (SAT), One Dimensional Bin Packing (BP), Permuta-
tion Flow Shop (PFS), Personnel Scheduling (PS), Travelling
Salesman Problem (TSP) and Vehicle Routing Problem (VRP).
Each domain provides a set of The HyFlex low level heuristics
are classified as mutation (MU), hill climbing (HC), ruin and
re-create and crossover (XO) heuristics (operators). Ruinand
re-create heuristics are considered as mutation operatorsin our
experiments. The current implementation of HyFlex, not to a
great extent but still restricts the evolutionary algorithms that
can be implemented extending it. For example, a crossover
in current version of the HyFlex interface definition returns

1http://www.asap.cs.nott.ac.uk/external/chesc2011/

a single offspring. All low level heuristics in HyFlex are
perturbative. They process and return a complete solution at
all times. Each low level heuristic in CHeSC2011 comes with
a parameter setting that can be adjusted. Themutation density
determines the extent of changes that the selected mutation
operator yields on a solution. Higher values for mutation
density indicate wider range of new values that the solutioncan
take, relevant to its current value. Lower values for mutation
density suggest a more conservative approach where changes
are less influential. As for thedepthof hill climbing, this value
relates to the number of steps completed by the hill climbing
heuristic. Higher values indicate that hill climbing approach
searches more neighborhoods for improvement.

The number of the low level heuristics for each heuris-
tic/operator type for each problem domain implemented in
HyFlex is summarized in Table I. Due to the fact that
CHeSC2011 provides a wide range of problem domains along
with performances of 20 algorithms that competed, it is a
viable benchmark to compare the performances of population
based techniques within themselves and even to the other
single point-based search approaches. All the algorithms in this
paper are applied to the instances across six aforementioned
problem domains and compared to each other to test their level
of generality.

TABLE I. T HE NUMBER OF DIFFERENT TYPES OF LOW LEVEL

HEURISTICS{MUTATION (MU) WHICH INCLUDES RUIN AND RE-CREATE

HEURISTICS, HILL CLIMBING (HC), CROSSOVER(XO)} USED IN EACH
CHESC2011PROBLEM DOMAIN.

Domain MU HC XO Total
SAT 7 2 2 11
BP 5 2 1 8
PS 4 5 3 12
PFS 7 4 4 15
TSP 6 3 4 13
VRP 5 3 2 10

The top three selection hyper-heuristics that generalize well
across the CHeSC2011 problem domains are AdapHH [29],
VNS-TW [20] and ML [27]. The winning algorithm, AdapHH
is a multi-phase learning hyper-heuristic [29]. AdapHH adap-
tively determines the subset of low-level heuristics to apply
at each phase. The duration with which each heuristic is
applied is also dynamically determined during the search. The
algorithm accepts only improving solutions in the absence of
which the algorithm refuses to accept worsening solutions
until no improvements are observed within an adaptively
adjusted number of iterations. The parameters of each low-
level heuristic are dynamically modified via a reinforcement
learning method. This is while low-level heuristics are selected
based on aquality index measure. This measure uses few
weighted performance metrics to compute the quality index for
each heuristic. Among these metrics are the number of new
best solutions explored, the total improvement and worsening
during the run and also the current phase and finally the
remaining execution time. A heuristic with a quality index less
than the average of the quality indexes of all the heuristics
is excluded from the selection process in the corresponding
phase. Using a Tabu style memory, the number of phases in
which the heuristic is consecutively excluded is maintained.
Whenever this number exceeds a threshold the heuristic gets
excluded permanently. AdapHH also employs a relay hy-



bridization with which effective pairs of heuristics whichare
applied consecutively are identified.

The algorithm which ranked second in the competition,
VNS-TW [20], is a double phase algorithm. The first phase
consists of applying mutational or ruin and recreate type
of low-level heuristics to a population of initial solutions.
Subsequently, all the local search heuristics are applied until
no more improvements are observed. In the next phase, the
algorithm shifts from a population based method into a single
solution approach in which the best solution achieved in
the first phase is used. Iteratively, A circular priority queue
of mutational heuristics is formed based on the severity of
changes that they imply. Subsequent to the application of
heuristics a local search is applied. This approach was ranked
first in the Personnel Scheduling problem domain and second
in the overall.

The hyper-heuristic proposed in [27], namely ML, relies
explicitly on intensification and diversification components
during the search process. A solution is generated initially
which goes through a diversification stage by the application of
a mutational or ruin-recreate low-level heuristic. The solution
achieved at this stage is then subjected to a local search
heuristic for further improvement. The local search heuristic
is applied until no further improvements can be achieved. The
acceptance mechanism, accepts improving solutions as wellas
the cases where the solution has not improved over the last 120
iterations. More on the rest of the algorithms can be found at
the CHeSC2011 web-site.

IV. M ETHODOLOGIES

Two different memetic algorithm variants, namely steady-
state memetic algorithm (SSMA) and transgenerational
memetic algorithm (TGMA) are investigated in this study.
Algorithms 1 and 2 present the pseudocode of these algo-
rithms, respectively. SSMA and TGMA are both implemented
as an extension to the HyFlex framework and they both utilize
the low-level heuristics as their operators for each domainof
CHeSC2011. Each domain in CHeSC2011 contains multiple
crossover, mutation and hill climbing operators as illustrated in
Table IV. The ruin and re-create operators are also considered
as mutation operators in our study. We have performed simple
random choice from each type of operator when needed.

In SSMA, the initial population of individuals is created
randomly (Algorithms 1). Hill-climbing is then applied on
each and every individual within the initial population. Subse-
quently, at each cycle of evolution, two parents (individuals)
are chosen using tournament selection method. This method
chooses the individual with the best fitness among a number of
randomly chosen individuals as a parent, which is referred to as
tour size. A new offspring is then created by applying crossover
to those selected parents, which is mutated afterwards. Then a
hill climbing method is used to improve the offspring further.
Crossover, mutation and hill climbing operators are selected
randomly whenever needed from the set of operators that each
CHeSC2011 problem domain provides. The new offspring
consequently substitutes the worst individual in the population.

Similar to SSMA, TGMA starts with a randomly generated
initial population and applies hill-climbing on each individual
of the population (Algorithms 2). However, in contrast to

Algorithm 1 Pseudocode of a steady-state memetic algorithm
Create a population ofpopSize random individuals.
// Apply hill-climbing on each individual
for i = 1 : popSize do

OP ID = Random-Choice(Hill-Climbing-Operators)
Ind(i) ← Apply-Hill-Climbing(OP ID, Ind(i))

end for
while termination criteria is not satisfieddo

Parent1← Select-Parent(Population, tour-size)
Parent2← Select-Parent(Population, tour-size)
OP ID = Random-Choice(Crossover-Operators)
Offspr← Apply-Crossover(OPID, Parent1, Parent2)
OP ID = Random-Choice(Mutation-Operators)
Offspr← Apply-Mutation(OPID, Offspr)
OP ID = Random-Choice(Hill-Climbing-Operators)
Offspr← Apply-Hill-Climbing(OP ID, Offspr)
Replacement: Replace the worst individual by Offspr

end while

SSMA, in TGMA, an offspring pool is created by applying
tournament selection twice to choose two parents, crossover,
mutation and hill climbing, successively, for as many timesas
one less than the population size. At each time, a random
crossover, mutation and hill climbing operator is selected.
Weak elitism is employed by allowing only the best individual
of the current generation to survive. The rest of the population
is then filled with individuals from the offspring pool to form
the next generation.

Algorithm 2 Pseudocode of a transgenerational memetic al-
gorithm

Create a population ofpopSize random individuals.
// Apply hill-climbing on each individual
for i = 1 : popSize do

OP ID = Random-Choice(Hill-Climbing-Operators)
Ind(i) ← Apply-Hill-Climbing(OP ID, Ind(i))

end for
while termination criteria is not satisfieddo

for i = 1 : popSize− 1 do
Parent1← Select-Parent(Population, tour-size)
Parent2← Select-Parent(Population, tour-size)
OP ID = Random-Choice(Crossover-Operators)
Offspr← Apply-Crossover(OPID, Parent1, Parent2)
OP ID = Random-Choice(Mutation-Operators)
Offspr← Apply-Mutation(OPID, Offspr)
OP ID = Random-Choice(Hill-Climbing-Operators)
Offspr← Apply-Hill-Climbing(OP ID, Offspr)
Add(Offspr, Offspring-Pool)

end for
Replacement: Keep the best individual in Population and
replace the rest with Offspring-Pool

end while

Both SSMA and TGMA utilise Lamarckian learning, as
they both put the individual modified by hill climbing back
into the population. Furthermore, due to the simple random
heuristic selection mechanism used, no feedback from the
search process is used and no online knowledge is considered
while choosing an operator. Thus, following the classification
of adaptive MAs in [36], the adaptation type in both SSMA



and TGMA is static and the level of adaptation is external.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

The performance of the memetic algorithms were tested
on 5 instances from each of the six problem domains in
CHeSC2011. Parameter settings for bot memetic algorithms
used during the experiments are summarized in Table II.
Population size is10 for both SSMA and TGMA. Tournament
(parent) selection mechanism uses a tour size of2. The density
of the mutation operator as well as the depth of the selected
local search method is set to be the default value of0.2. For a
fair performance comparison to the competing hyper-heuristics
in CHeSC2011, the same instances which were used in the
competition are employed in our experiments. We have used
a 2 Core Duo 3.16 GHz (2 GB RAM) machine during our
experiments. In the competition, each algorithm was given
600 nominal seconds for a run which corresponds to576
seconds on our machine determined using the benchmarking
tool provided at the CHeSC website. Each experiment with an
algorithm on a given instance is repeated for 31 times. We have
performed Wilcoxon signed-rank test to compare the average
performances of memetic algorithms.

TABLE II. PARAMETER SETTINGS

Parameter value
Population Initialization random

Population Size 10
Selection Mechanism tournament selection

Tour Size 2
Genetic Operator Selection uniform random

Mutation Density 0.2
Local Search Selection uniform random

Local Search Depth 0.2
Termination Condition 600 nominal seconds

B. Performance Comparison of SSMA and TGMA

Table III provides performance comparison of SSMA and
TGMA based on average fitness and best-of-run fitness over 31
trials for each instance. The results reveal that SSMA performs
better than TGMA on two domains considering average and
best-of-run results; flow shop and travelling salesman. Con-
versely, TGMA performs better than SSMA on satisfiability
and bin packing problem domains on average, obtaining the
best results for each instance on those domains. In both cases,
these average performance differences between the memetical-
gorithms are statistically significant. SSMA delivers a slightly
better performance over the personal scheduling and vehicle
routing problem domains. SSMA obtains best solutions for
all the personal scheduling instances and three out of five
instances from the vehicle routing problem domain. SSMA
is slightly better than TGMA considering their average and
best-of-run performances on all instances.

Figures 2(a) to (f) provides average best fitness over 31
trials versus time plot for an arbitrarily chosen sample prob-
lem instance from each problem domain. These plots further
validate the performance differences generated by SSMA and
TGMA on those selected instances as presented in Table III.
Moreover, in almost all cases, a sharp improvement has been
observed within a couple of seconds, then the improvement
slows down. After the initial tens of seconds into the search,

TABLE III. A VERAGE PERFORMANCE COMPARISON OFSSMA AND

TGMA BASED ON COST AVERAGED OVER31 TRIALS FOR EACH

INSTANCE, WHERE “ I .NO.” IS THE INSTANCE NUMBER. NOTATION USED IN
“ VS.”: > / < (≥ / ≤) DENOTES THATSSMA/TGMA PERFORMS

(SLIGHTLY) BETTER THAN TGMA/SSMA AND THIS PERFORMANCE

DIFFERENCE IS(NOT) STATISTICALLY SIGNIFICANT WITHIN A 95%
CONFIDENCE INTERVAL BASED ONWILCOXON SIGNED-RANK TEST.

SSMA TGMA
domain i.no. avr. best vs. avr. best

SAT

1 21.161 8.0 < 14.323 3.0
2 52.484 37.0 < 41.806 11.0
3 35.0 10.0 < 27.129 5.0
4 27.742 26.0 < 20.226 13.0
5 19.194 14.0 < 17.290 13.0

BP

1 0.083 0.074 < 0.075 0.066
2 0.015 0.115 < 0.012 0.007
3 0.022 0.018 < 0.020 0.016
4 0.111 0.110 < 0.110 0.109
5 0.043 0.036 < 0.037 0.032

PS

1 51.129 37.0 > 66.419 50.0
2 72015.613 52056.0 ≤ 70356.161 59736.0
3 13203.710 5581.0 ≥ 14028.710 10027.0
4 2942.419 1820.0 ≤ 2923.710 2003.0
5 435.645 385.0 > 498.032 430.0

PFS

1 6257.806 6231.0 > 6301.968 6273.0
2 26884.935 26813.0 > 26944.548 26889.0
3 6351.871 6318.0 > 6366.677 6342.0
4 11441.806 11410.0 > 11499.645 11458.0
5 26699.226 26626.0 > 26724.742 26668.0

TSP

1 48227.747 48194.920 > 48337.598 48194.921
2 2.116E7 2.096E7 > 2.130E7 2.114E7
3 6825.552 6800.708 > 6893.822 6858.803
4 68123.369 67423.655 > 69778.135 68922.954
5 53810.138 52685.992 > 55463.600 54052.398

VRP

1 71768.053 67820.589 > 76331.070 71560.119
2 14324.522 13358.611 < 13869.191 13333.0914
3 176206.081 167704.512 > 200838.192 193416.831
4 21647.018 20678.096 < 21412.571 20659.896
5 152642.040 149032.551 > 157001.253 153557.350

the improvement continues gradually but at even a much
slower rate. In the personnel scheduling domain, improvement
occurs time to time with sudden jumps to a better solution as
it can be observed in Figure 2(c). This could be due to the
fact that low level heuristics for this domain always returna
feasiblesolution.

C. Performance Comparison of Memetic Algorithms to Selec-
tion Hyper-heuristics

Table IV provides the ranking of the memetic algo-
rithms among the competing selection hyper-heuristics in
CHeSC2011 based on Formula 1 scoring system as used in the
competition. The ranking and overall sum of scores is obtained
using the median of the31 trials for each instance. SSMA de-
livers a better median performance when compared to TGMA
and performs better than some previously proposed selection
hyper-heuristics in the overall and in particular on flow shop
and travelling salesman problems (Figure 3 ). However, they
are both among the lowest ranking algorithms. Single point
based search methods outperform the implemented population
based metaheuristics. Simple memetic algorithms do not gen-
eralize well across different problem domains as the selection
hyper-heuristics do. This was somewhat expected, considering
that the memetic algorithms used in our experiments are very
simple and static lacking any type of the adaptation [36].

VI. CONCLUSION

In this paper, we have successfully integrated two memetic
algorithms, namely steady-state and transgenerational memetic



(a) Instance 3 (b) Instance 2

(c) Instance 3 (d) Instance 1

(e) Instance 5 (f) Instance 1

Fig. 2. Average best fitness versus time plot based on the results from 31 trials on an arbitrarily selected instance from each CHeSC2011 problem domain
using SSMA and TGMA.

algorithms into the HyFlex framework. The CHeSC2011 prob-
lem domains provide memetic algorithms with a rich family
of genetic operators as well as hill climbing methods. The
two memetic algorithms studied in this paper have relatively
simple structure with no adaptation capacity. While this partly
explains the reason why many of the selection hyper-heuristics
outperformed them in the comparative study, it further en-
courages us to integrate further learning mechanisms into the
memetic framework to handle multiple evolutionary operators.
Moreover, in our experiments, we used the default settings for
the operator parameters enforcing them to usesmallstep sizes
while performing search. We intend to implement, adaptive
and self-adaptive memetic algorithms for choosing operators

and controlling their parameter values and compare their
performances using CHeSC2011 as a benchmark in our future
work.
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