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Abstract—Hyper-heuristic Flexible Framework (HyFlex) is an
interface designed to enable the development, testing andm-
parison of iterative general-purpose heuristic search algrithms,
particularly selection hyper-heuristics. A selection hyr-heuristic
is a high level methodology that coordinates the interactio of
a fixed set of low level heuristics (operators) during the seah
process. The Java implementation of HyFlex along with diffeent
problem domains was recently used in a competition, referre

to as Cross-domain Heuristic Search Challenge (CHeSC2011)

CHeSC2011 sought for the best selection hyper-heuristic

the best median performance over a set of instances from six

different problem domains. Each problem domain implementa
tion contained four different types of operators, namely muation,
ruin-recreate, hill climbing and crossover. CHeSC2011 inkuding
the competing hyper-heuristic methods currently serves asa
benchmark for hyper-heuristic research. Considering the ype
of the operators implemented under the HyFlex framework,

CHeSC2011 could also be used as a benchmark to empiri-

cally compare the performance of appropriate variants of tre
evolutionary computation methods across a variety of prok#m
domains for discrete optimisation. In this study, we invedgate
the performance and generality level of generic steady-sta and
transgenerational memetic algorithms which hybridize gewetic
algorithms with hill climbing across six problem domains of the
CHeSC2011 benchmark.

I. INTRODUCTION

Hybridizing single point local search methods with pop-
ulation based evolutionary algorithms achieves a better pe
formance by introducing an additional intensification step
the evolutionary cycle. This is the main idea behind a family
of evolutionary algorithms called Memetic Algorithms (MA)
Memetic algorithms were first introduced by Moscato [30].
The termmeme however, was first coined by Dawkins [13]
referring to a contagious piece of information which is pro-
cessed, comprehended, adapted and passed on by the infectt
person. This adaptation process resembles the local redimtem
hence the use of the term memetic algorithms that make
extensive use of local search (hill climbing) methods. Ict,fa
MA is a hybridization of GA and local search. That is, within
the process of evolution, local search methods are appdied t
the individuals of the population in a certain stage of each
cycle to improve their quality. Numerous variants of memeti
algorithms have been proposed in the literature, such asite
State Memetic Algorithm (SSMA) and Trans-Generational
Memetic Algorithms (TGMA). A memetic algorithm is often
designed specifically for a given problem domain [32].

Recently, there has been a growing number of studies on
hyper-heuristicswhich are general high-level methodologies
searching in the space of low-level heuristics for search
and optimization [3]. Employing various heuristic seleati
mechanisms together with acceptance criteria to decidehwhi
heuristic to proceed with, while maintaining independence

A metaheuristic can be considered as a template showinfgjom the underlying problem domain, enables hyper-hdarist
how to design a search algorithm to locate near optimal solumethods to be applicable to a range of problem domains with-

tions for a given difficult combinatorial optimization prieim.
Although conceptually, metaheuristics are general, tegyire

out requiring any modification. Also, learning is sometimes
employed to achieve an improved performance [40]. Hyper-

tailoring to each given specific problem domain. There aréheuristic methodologies are categorizedhasiristic selection
single point-based metaheuristics such as tabu search aadd heuristic generatiormethodologies in [6]. An overview
simulated annealing, performing search using a single caref hyper-heuristics of different types and more can be found
didate solution (often remembering the best solution).r&he in [3]. A metaheuristic can be used as a hyper-heuristic to
are also multi-point-based or population based metah@gis search the space of heuristics rather than solutions biréet
performing search using a set of candidate solutions, sach amportant challenge within hyper-heuristic research iddésign
genetic programming (GP) and genetic algorithms (GA) [5].automated search methodologies that perform well on the
GAs attempt to improve a population of candidate solutionsinseen instances from not only a given single problem domain
through an evolutionary cycle by iteratively applying a eét but also a range of domains without requiring expert interve
genetic operators and creating new individuals then r@pdac tion. This was the topic of a recent competition referred to
the old individuals with the new ones. While moving from as Cross-domain Heuristic Search Challenge (CHeSC2011)
one generationto the next,selectionoperators together with CHeSC2011 based on Hyper-heuristics Flexible Framework
crossoverand mutation operators are used to form a new (HyFlex) [34] which currently serves as a benchmark to
population as well as avoiding convergence to local optimaompare the performance of selection type of hyper-hécsist
[15]. The choice of these operators could influence the intenHyFlex implementation includes six problem domain imple-
sification/diversification balance, extremely. mentations, each with a fixed set of low level heuristics.Sehe



heuristics can be used as evolutionary algorithm compsnenMAs [24] transfer memes to the next generation by using
to perform direct search on the solution space as well, hencgmple inheritance mechanisms. Also hyper-heuristic g#j
enable empirical performance comparison of memetic algoMeta-Lamarckian MA [35], [36] are investigated at this time
rithms on real world discrete optimization problems, rathe suggesting the use of a pool of memes from which a candidate
than benchmark functions [40]. meme is selected based on the reward value associated t

. . it. This reward value is computed considering the history of
The HyFlex framework as a benchmark provides a richi, ;o ements that the meme has implied in the past. Co-

family of problem instances. This study has several goalsy,qytion and self-generation MAs are considered to be con-
Our first goal is to integrate memetic algorithms into the

HvElex f K and h . bl cepts relevant to the third generation of MA's, where memeti
yFlex framework and test them across various probleMytomation is passed to offspring with a learning stratptf),

domains, providing a baseline for performance comparisofhg) Fyrthermore, the concept of Memetic Computing extend
of different evolutionary computation methods in the fetur - atic algorithms as a whole to a framework in which

Such a comparison will, at the same time, demonstrate thg,,chine |earning, cognitive observation of other indivitsu
advantages and (_dlsadvantages of applying population basgg memory utilization are widely employed [10].
methods versus single point search methods. Our second goa

is to analyze the generalizability of memetic algorithmgmov Similar to the hyper-heuristic research, adaptivity in co-
various problem domains without changing their implemen-€volution and self-generation MAs is achieved by exploring
tation. We extended HyFlex with the implementation of twothe space of local search heuristics and/or other paraseter
memetic algorithms Steady State Memetic Algorithm (SSMA)MAs. Indeed, this is the basic idea behind hyper-heuristics
and Trans-Generational Memetic Algorithms (TGMA). Thenthough in contrast to memetic algorithms, hyper-heusstic
we tested their performances on the CHeSC2011 benchmarRims to perform this in a domain independent fashion. Cov-
] ] ering hyper-heuristic approaches is out of the scope of this
The structure of the paper is organized as follows: Inpaper. However, it is the long-term intention of this study t
Section Il a literature review on various approaches anenec jnyestigate the two frameworks (hyper-heuristics and nt@Eme
advances in memetic algorithms and hyper-heuristics 8V computing) in order to establish a link between both regearc
The HyFlex framework has been described in Section IIl. Ingreas by applying the advances and ideas in one field of
Section 1V, our methodologies are discussed in detail. Theesearch to the other. Moreover, hyper-heuristic reseseems
experimental results and subsequent analysis are preisente to have much to offer to improve the performance of memetic
Section V. Finally, concluding remarks and a glimpse of ourgigorithms, invoking ideas which lead to memetic computing

future work is given in Section VI. and fourth generation of MAs where the main emphasis is on
the utilization of machine learning techniques and cognitn
Il. RELATED WORK MAs. Indeed, these ideas have long been employed in hyper-

heuristic research resulting in algorithms with higherelswof

The term “Memetic Algorithm” was introduced by generality and subsequently better performances. Thigslybr
Moscato in [30]. Memetic algorithms (MAs), also referred discussing main ideas behind the hyper-heuristic appraadh
to as hybrid genetic algorithms, represent a set of genetisome recent advances in this field seems necessary.
algorithms that make heavy use of hill climbing. Ever since - .
its emergence, memetic algorithms and subsequent variants HYPer-heuristics are known as high-level methods search-
of MAs have been applied to various problems such as thd19 the space of low-level heuristics for search and opti-
timetabling problems [7], [1], [42], [37], [9], [43], perntation mization. Inde_pen_dence from the un_der!ylng problem domam
flow shop scheduling [21], travelling salesman problem [31] S usually maintained through considering a domain barrier
[2], [16], quadratic assignment problem [28], multi-okjee A d_omam barrier restricts the amount of domalr) knowledge
optimization problems [23], [11] and protein folding prebi available to the higher level heuristic to the fitness value
[25]. Apart from application of memetic algorithms on varp  Which is acquired by applying a low-level heuristic to the
problem domains, different meme considerations has alen be Prolem. Such a domain barrier is a means of providing the
well studied. An example of such studies can be found in [41flomain-independence which is necessary to achieve highe

and [39] in which it has been shown that different meme struc—r‘fve'.of generality. Thus,l during thg search process, t;pmhy
tures might yield in different performances. Interesteatrs ~ NEUNStic uses some selection and acceptance mechanisms f
choose a low-level heuristic and applies it on the problem. O

can find more details about memetic algorithms researctein th> : X ; . -
comprehensive survey paper by Neri et al. [32]. line/offline Ieaynmg techniques are sometimes used.tqeaehl
more generality through self-adaptation in hyper-heiggstA
Like many other approaches, memetic algorithms have alsdetailed study of these approaches as well as a categorizati
been subjected to constant improvements in various studiesf hyper-heuristic methods can be found in [6]. However, as
evolving it to some complex variants such as multi-memementioned above, one interesting point which correlatgehy
algorithms and memetic computing. In the excellent work ofheuristic research and multi-meme MAs is their similarity
Nguyen et al. [33] this evolution of MAs has been coveredin utilizing various local search methods to improve the
extensively. Four generation of memetic algorithms hasibeesolution quality. There are numerous examples in whichlloca
introduced so far where in the first generation, populatiorsearch heuristics have been embedded into hyper-hesristic
based methods are hybridized with local search methods t8imulated annealing [14], genetic algorithms [12], [19]7],
achieve improvements in the solution quality. In the secondabu search [18], [44], [4] and Variable Neighbourhood Skar
generation, the concept of evolving meme in which the mem¢8] are few examples. In fact, since hyper-heuristic method
is a part of the genotype is the focus of research. These typarovide considerably high quality approaches by utilizing
of algorithms which are usually referred to as multi-memevarious online and offline machine learning techniques sisch



reinforcement learning [38] and other data mining techegju a single offspring. All low level heuristics in HyFlex are
establishing a link and applying the same ideas to memetiperturbative. They process and return a complete solution a
algorithms might yield into MA approaches fitting into the all times. Each low level heuristic in CHeSC2011 comes with
category of memetic computing where such extensive usa parameter setting that can be adjusted. Mingation density
of machine learning methods are considered as promisindetermines the extent of changes that the selected mutatior

approaches in the literature ([35], [36]). operator yields on a solution. Higher values for mutation
density indicate wider range of new values that the solutemm
. FIRST CROSSDOMAIN HEURISTIC SEARCH take,_relevant to its current vaIue._Lower values for motati
CHALLENGE (CHESC2011) density suggest a more conservative approach where change

are less influential. As for theepthof hill climbing, this value

Hyperion [46] and Hyper-heuristics Flexible Framework relates to the number of steps completed by the hill climbing
(HyFlex) [34] are software libraries for the implementatio heuristic. Higher values indicate that hill climbing apach
and comparison of different hyper/meta-heuristics. ThEley  searches more neighborhoods for improvement.
framework allows the implementation of hyper-heuristic ap o i
proaches and supports reusability of hyper-heuristic @mp The number of the low level heur|st|c$ fc_)r each heurls_-
nents, providing an interface for the problem domains. AaJav tic/operator type for each problem domain implemented in
implementation of HyFlex including six different probleo-d  HYFlex is summarized in Table I. Due to the fact that
mains was recently used at the Cross-Domain Heuristic BearHeSC2011 provides a wide range of problem domains along
Challenge (CHeSC2011) The goal of this competition was With performances of 20 algorithms that competed, it is a
determining the best selection hyper-heuristic with thetbe Viable benchmark to compare the performances of population
median performance across thirty problem instances, far fr based techniques within themselves and even to the othe
each problem domain. 20 competitors reached the finals in th@ingle point-based search approaches. All the algorithrtiss
competition. CHeSC2011, including the HyFlex implemen-Paper are appllled to the instances across six aforemedtione
tation and competing hyper-heuristics, currently sen@saa problem dc_)malns and compared to each other to test thelr leve
benchmark to compare the performance of selection hypeff generality.
heuristics. HyFlex is designed imposing a domain barrier

concept [12] between the hyper-heuristic and problem domai _ "ABLE . THE NUMBER OF DIFFERENT TYPES OF LOW LEVEL
. . . . . HEURISTICS{MUTATION (MU) WHICH INCLUDES RUIN AND RE-CREATE
layers as illustrated in Figure 1. This barrier keeps thélem HEURISTICS HILL CLIMBING (HC), CROSSOVERXO)} USED IN EACH
specific details, such as, low level heuristics, represiemta CHESC2011PROBLEM DOMAIN.
fitness function hidden from the hyper-heuristic. Only peotp
independent information, such as the number of heuristics, Domain MU HC XO Total
fitness value of a solution are allowed to pass through this SAT rooz2 2
. . BP 5 2 1 8
barrier from the problem domain. PS 4 5 3 12
PFS 7 4 4 15
TSP 6 3 4 13
Hyper-heuristic Problem Domain VRP 5 3 2 10
e Select a heuristic to e Representation . o )
apply to a given e Fitness function The top three selection hyper-heuristics that generalede w
solution across the CHeSC2011 problem domains are AdapHH [29],
*  Accept/rejectanew oo Tovel houriert VNS-TW [20] and ML [27]. The winning algorithm, AdapHH
solution owevel eUristies is a multi-phase learning hyper-heuristic [29]. AdapHH mda
@ _____________ @ tively determines the subset of low-level heuristics to lgpp
at each phase. The duration with which each heuristic is
applied is also dynamically determined during the seartte. T
Domain Barrier algorithm accepts only improving solutions in the absenice o
which the algorithm refuses to accept worsening solutions
Fig. 1. A selection hyper-heuristic framework. until no improvements are observed within an adaptively

adjusted number of iterations. The parameters of each low-

The CHeSC2011 problem domains include Boolean Satisevel heuristic are dynamically modified via a reinforcemen
fiability (SAT), One Dimensional Bin Packing (BP), Permuta- learning method. This is while low-level heuristics areesétd
tion Flow Shop (PFS), Personnel Scheduling (PS), Traxgllin based on aguality index measure. This measure uses few
Salesman Problem (TSP) and Vehicle Routing Problem (VRP)veighted performance metrics to compute the quality index f
Each domain provides a set of The HyFlex low level heuristicach heuristic. Among these metrics are the number of new
are classified as mutation (MU), hill climbing (HC), ruin and best solutions explored, the total improvement and worggni
re-create and crossover (XO) heuristics (operators). Rogh ~ during the run and also the current phase and finally the
re-create heuristics are considered as mutation opeiators ~ remaining execution time. A heuristic with a quality indes$
experiments. The current implementation of HyFlex, not to ahan the average of the quality indexes of all the heuristics
great extent but still restricts the evolutionary algariththat  is excluded from the selection process in the corresponding
can be implemented extending it. For example, a crossovédthase. Using a Tabu style memory, the number of phases ir
in current version of the HyFlex interface definition retsrn Which the heuristic is consecutively excluded is maintdine
Whenever this number exceeds a threshold the heuristic get:
Lhttp:/www.asap.cs.nott.ac.uk/external/chesc2011/ excluded permanently. AdapHH also employs a relay hy-




bridization with which effective pairs of heuristics whietie ~ Algorithm 1 Pseudocode of a steady-state memetic algorithm
applied consecutively are identified. Create a population gfopSize random individuals.
/I Apply hill-climbing on each individual
for i = 1: popSize do
OP_ID = Random-Choice(Hill-Climbing-Operators)
Ind(i) + Apply-Hill-Climbing(OP_ID, Ind(i))
end for
while termination criteria is not satisfiedb
Parentl«+ Select-Parent(Population, tour-size)
Parent2+ Select-Parent(Population, tour-size)
OP_ID = Random-Choice(Crossover-Operators)
Offspr «<— Apply-Crossover(OHBD, Parentl, Parent2)
OP_ID = Random-Choice(Mutation-Operators)
Offspr < Apply-Mutation(OP.ID, Offspr)
OP_ID = Random-Choice(Hill-Climbing-Operators)
Offspr < Apply-Hill-Climbing(OP_ID, Offspr)
Replacement: Replace the worst individual by Offspr
The hyper-heuristic proposed in [27], namely ML, relies end while
explicitly on intensification and diversification compoigen
during the search process. A solution is generated injtiall
which goes through a diversification stage by the applloahi‘o SSMA, in TGMA, an Offspring poo”s created by app|y|ng
a mutational or ruin-recreate low-level heuristic. Theusioh tournament selection twice to choose two parents, crossove
achieved at this stage is then subjected to a local searGRutation and hill climbing, successively, for as many tirass
heuristic for further improvement. The local search heigris one less than the popu|ation size. At each time, a random
is applied until no further improvements can be achieve@ Thcrossover, mutation and hill climbing operator is selected
acceptance mechanism, accepts improving solutions asawell \Weak elitism is employed by allowing only the best indivitiua
the cases where the solution has not improved over the |18st 12 the current generation to survive. The rest of the pojarat
iterations. More on the rest of the algorithms can be found ajs then filled with individuals from the offspring pool to for

The algorithm which ranked second in the competition,
VNS-TW [20], is a double phase algorithm. The first phase
consists of applying mutational or ruin and recreate type
of low-level heuristics to a population of initial solutien
Subsequently, all the local search heuristics are appligid u
no more improvements are observed. In the next phase, the
algorithm shifts from a population based method into a &ngl
solution approach in which the best solution achieved in
the first phase is used. lteratively, A circular priority gee
of mutational heuristics is formed based on the severity of
changes that they imply. Subsequent to the application of
heuristics a local search is applied. This approach wasedhnk
first in the Personnel Scheduling problem domain and second
in the overall.

the CHeSC2011 web-site. the next generation.
IV. METHODOLOGIES Algorithm 2 Pseudocode of a transgenerational memetic al-
gorithm

Two different memetic algorithm variants, namely steady- i _
state memetic algorithm (SSMA) and transgenerational Create a population gfopSize random individuals.
memetic algorithm (TGMA) are investigated in this study. // Apply hill-climbing on each individual
Algorithms 1 and 2 present the pseudocode of these algo- for ¢ =1:popSizedo
rithms, respectively. SSMA and TGMA are both implemented ~ OP_ID = Random-Choice(Hill-Climbing-Operators)
as an extension to the HyFlex framework and they both utilize ~ Ind(i) < Apply-Hill-Climbing(OP_ID, Ind(i))
the low-level heuristics as their operators for each donsdin ~ end for o o
CHeSC2011. Each domain in CHeSC2011 contains multiple While termination criteria is not satisfiedo

crossover, mutation and hill climbing operators as illatgd in for i =1: popSize — 1 do _ _

Table IV. The ruin and re-create operators are also coresider Parentl« Select-Parent(Population, tour-size)

as mutation operators in our study. We have performed simple Parent2« Select-Parent(Population, tour-size)

random choice from each type of operator when needed. OP_ID = Random-Choice(Crossover-Operators)

L . o ) Offspr <— Apply-Crossover(ORD, Parentl, Parent2)

In SSMA, the initial population of individuals is created OP_ID = Random-Choice(Mutation-Operators)

randomly (Algorithms 1). Hill-climbing is then applied on Offspr < Apply-Mutation(OP D, Offspr)

each and every individual within the initial population.fSe- OP_ID = Random-Choice(Hill-Climbing-Operators)

quently, at each cycle of evolution, two parents (individya Offspr < Apply-Hill-Climbing(OP_ID, Offspr)

are chosen using tournament selection method. This method Add(Offspr, Offspring-Pool)

chooses the individual with the best fithess among a number of  and for

randomly chosen individuals as a parent, which is refeiet Replacement: Keep the best individual in Population and
tour size A new offspring is then created by applying crossover replace the rest with Offspring-Pool

to those selected parents, which is mutated afterwardsr @he  and while

hill climbing method is used to improve the offspring funthe
Crossover, mutation and hill climbing operators are sekbct
randomly whenever needed from the set of operators that ea;

Both SSMA and TGMA utilise Lamarckian learning, as
Hey both put the individual modified by hill climbing back
nto the population. Furthermore, due to the simple random
heuristic selection mechanism used, no feedback from the

Similar to SSMA, TGMA starts with a randomly generated search process is used and no online knowledge is considere
initial population and applies hill-climbing on each indiual  while choosing an operator. Thus, following the classifarat
of the population (Algorithms 2). However, in contrast to of adaptive MAs in [36], the adaptation type in both SSMA

CHeSC2011 problem domain provides. The new offsprin
consequently substitutes the worst individual in the patoih.



TABLE Il AVERAGE PERFORMANCE COMPARISON OSSMA AND
TGMA BASED ON COST AVERAGED OVER31 TRIALS FOR EACH
INSTANCE, WHERE“1.NO.” IS THE INSTANCE NUMBER NOTATION USED IN

and TGMA is static and the level of adaptation is external.

V. EXPERIMENTAL RESULTS “vs8.”: > / < (> / <) DENOTES THATSSMA/TGMAPERFORMS
(SLIGHTLY) BETTER THAN TGMA/SSMA AND THIS PERFORMANCE
A. Experimental settings DIFFERENCE IS(NOT) STATISTICALLY SIGNIFICANT WITHIN A 95%

CONFIDENCE INTERVAL BASED ONWILCOXON SIGNED-RANK TEST.
The performance of the memetic algorithms were tested

on 5 instances from each of the six problem domains in—goman 7
CHeSC2011. Parameter settings for bot memetic algorithms 1 <
used during the experiments are summarized in Table II. g g 2
Population size i40 for both SSMA and TGMA. Tournament 4 <
(parent) selection mechanism uses a tour size dhe density S <
of the mutation operator as well as the depth of the selected ; P
local search method is set to be the default valu@.®f For a BP 3 <
fair performance comparison to the competing hyper-hgcsis ‘5‘ 2
in CHeSC2011, the same instances which were used in the 1 =
competition are employed in our experiments. We have used 2 <

i i PS 3 13203.710 5581.0 > 14028.710 10027.0

az2 Cpre Duo 3.16 GHz (Z_GB RAM) mach_lne during our . 042 419 18200 < 993,710 20030

experiments. In the competition, each algorithm was given 5 435.645 3850 > 498.032 430.0

1 >

2 >

3 >

4 >

5 >

1 >

2 >

3 >

4 >

5 >

1 >

2 <

3 >

4 <

5 >

SSMA TGMA
i.no. avr. best vs. avr. best

21.161 8.0 14.323 3.0
52.484 37.0 41.806 11.0
35.0 10.0 27.129 5.0
27.742 26.0 20.226 13.0
19.194 14.0 17.290 13.0
0.083 0.074 0.075 0.066
0.015 0.115 0.012 0.007
0.022 0.018 0.020 0.016
0.111 0.110 0.110 0.109
0.043 0.036 0.037 0.032
51.129 37.0 66.419 50.0

72015.613 52056.0 70356.161 59736.0

AT

600 nominal seconds for a run which corresponds>16 6257.806 6231.0 6301.968 6273.0
seconds on our machine determined using the benchmarkin i esna 2one
tool provided at the CHeSC website. Each experiment with an 11441.806  11410.0 11499.645 11458.0
algorithm on a given instance is repeated for 31 times. We hav 26699.226 26626.0 26724.742 26668.0
performed Wilcoxon signed-rank test to compare the average

48227.747  48194.920 48337.598 48194.921

X . 2.116E7 2.096E7 2.130E7 2.114E7
performances of memetic algorithms. TSP 6825.552  6800.708 6893.822 6858.803
68123.369  67423.655 69778.135  68922.954
TABLE Il.  PARAMETER SETTINGS 53810.138  52685.992 55463.600  54052.398
71768.053  67820.589 76331.070  71560.119
Parameter value 14324522  13358.611 13869.191 13333.0914
Population Initialization random VRP 176206.081 167704.512 200838.192  193416.831
Population Size 10 21647.018 20678.096 21412.571 20659.896
Selection Mechanism tournament selection| 152642.040 149032.551 157001.253 153557.350
Tour Size 2
Genetic Operator Selection uniform random
Mutation Density 0.2 . .
Tocal Search Seleciion Uniform Tandom the improvement continues gradually but at even a much
Local Search Depth 0.2 slower rate. In the personnel scheduling domain, improveme
Termination Condition | 600 nominal seconds occurs time to time with sudden jumps to a better solution as
it can be observed in Figure 2(c). This could be due to the
B. Performance Comparison of SSMA and TGMA fact that low level heuristics for this domain always retarn

feasiblesolution.
Table 11l provides performance comparison of SSMA and
TGMA based on average fitness and best-of-run fitness over 33, performance Comparison of Memetic Algorithms to Selec-
trials for each instance. The results reveal that SSMA pet$o  tion Hyper-heuristics
better than TGMA on two domains considering average and ) ) .
best-of-run results; flow shop and travelling salesman.-Con Table IV provides the ranking of the memetic algo-
versely, TGMA performs better than SSMA on satisfiability fithms among the competing selection hyper-heuristics in
and bin packing problem domains on average, obtaining theHeSC2011 based on Formula 1 scoring system as used in th:
best results for each instance on those domains. In botls,cas€ompetition. The ranking and overall sum of scores is oktin
these average performance differences between the meahetic Using the median of thal trials for each instance. SSMA de-
gorithms are statistically significant. SSMA delivers ajstly  livers a better median performance when compared to TGMA
better performance over the personal scheduling and eehicRnd performs better than some previously proposed setectio
routing problem domains. SSMA obtains best solutions fohyper-heuristics in the overall and in particular on flow sho
all the personal scheduling instances and three out of fiv@nd travelling salesman problems (Figure 3 ). However, they
instances from the vehicle routing problem domain. SSMAare both among the lowest ranking algorithms. Single point
is slightly better than TGMA considering their average andbased search methods outperform the implemented populatio
best-of-run performances on all instances. based metaheuristics. Simple memetic algorithms do not gen
) ) _ eralize well across different problem domains as the Select

~ Figures 2(a) to (f) provides average best fitness over 3hyper-heuristics do. This was somewhat expected, coriisgler

trials versus time plot for an arbitrarily chosen samplebpro that the memetic algorithms used in our experiments are very

lem instance from each problem domain. These plots furthegimple and static lacking any type of the adaptation [36].
validate the performance differences generated by SSMA and

TGMA on those selected instances as presented in Table IlI.
Moreover, in almost all cases, a sharp improvement has been
observed within a couple of seconds, then the improvement In this paper, we have successfully integrated two memetic
slows down. After the initial tens of seconds into the searchalgorithms, namely steady-state and transgenerationalatie

VI. CONCLUSION
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